| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege77d | Structured version Visualization version GIF version | ||
| Description: If the images of both {𝐴} and 𝑈 are subsets of 𝑈 and 𝐵 follows 𝐴 in the transitive closure of 𝑅, then 𝐵 is an element of 𝑈. Similar to Proposition 77 of [Frege1879] p. 62. Compare with frege77 44097. (Contributed by RP, 15-Jul-2020.) |
| Ref | Expression |
|---|---|
| frege77d.r | ⊢ (𝜑 → 𝑅 ∈ V) |
| frege77d.a | ⊢ (𝜑 → 𝐴 ∈ V) |
| frege77d.b | ⊢ (𝜑 → 𝐵 ∈ V) |
| frege77d.ab | ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) |
| frege77d.he | ⊢ (𝜑 → (𝑅 “ 𝑈) ⊆ 𝑈) |
| frege77d.ss | ⊢ (𝜑 → (𝑅 “ {𝐴}) ⊆ 𝑈) |
| Ref | Expression |
|---|---|
| frege77d | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege77d.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ V) | |
| 2 | imaundi 6104 | . . . 4 ⊢ (𝑅 “ ({𝐴} ∪ 𝑈)) = ((𝑅 “ {𝐴}) ∪ (𝑅 “ 𝑈)) | |
| 3 | frege77d.ss | . . . . 5 ⊢ (𝜑 → (𝑅 “ {𝐴}) ⊆ 𝑈) | |
| 4 | frege77d.he | . . . . 5 ⊢ (𝜑 → (𝑅 “ 𝑈) ⊆ 𝑈) | |
| 5 | 3, 4 | unssd 4141 | . . . 4 ⊢ (𝜑 → ((𝑅 “ {𝐴}) ∪ (𝑅 “ 𝑈)) ⊆ 𝑈) |
| 6 | 2, 5 | eqsstrid 3969 | . . 3 ⊢ (𝜑 → (𝑅 “ ({𝐴} ∪ 𝑈)) ⊆ 𝑈) |
| 7 | trclimalb2 43883 | . . 3 ⊢ ((𝑅 ∈ V ∧ (𝑅 “ ({𝐴} ∪ 𝑈)) ⊆ 𝑈) → ((t+‘𝑅) “ {𝐴}) ⊆ 𝑈) | |
| 8 | 1, 6, 7 | syl2anc 584 | . 2 ⊢ (𝜑 → ((t+‘𝑅) “ {𝐴}) ⊆ 𝑈) |
| 9 | frege77d.ab | . . . 4 ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) | |
| 10 | df-br 5096 | . . . 4 ⊢ (𝐴(t+‘𝑅)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (t+‘𝑅)) | |
| 11 | 9, 10 | sylib 218 | . . 3 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ (t+‘𝑅)) |
| 12 | frege77d.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) | |
| 13 | frege77d.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ V) | |
| 14 | elimasng 6045 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐵 ∈ ((t+‘𝑅) “ {𝐴}) ↔ 〈𝐴, 𝐵〉 ∈ (t+‘𝑅))) | |
| 15 | 12, 13, 14 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐵 ∈ ((t+‘𝑅) “ {𝐴}) ↔ 〈𝐴, 𝐵〉 ∈ (t+‘𝑅))) |
| 16 | 11, 15 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐵 ∈ ((t+‘𝑅) “ {𝐴})) |
| 17 | 8, 16 | sseldd 3931 | 1 ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2113 Vcvv 3437 ∪ cun 3896 ⊆ wss 3898 {csn 4577 〈cop 4583 class class class wbr 5095 “ cima 5624 ‘cfv 6489 t+ctcl 14899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-n0 12393 df-z 12480 df-uz 12743 df-seq 13916 df-trcl 14901 df-relexp 14934 |
| This theorem is referenced by: frege81d 43904 frege87d 43907 |
| Copyright terms: Public domain | W3C validator |