| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege77d | Structured version Visualization version GIF version | ||
| Description: If the images of both {𝐴} and 𝑈 are subsets of 𝑈 and 𝐵 follows 𝐴 in the transitive closure of 𝑅, then 𝐵 is an element of 𝑈. Similar to Proposition 77 of [Frege1879] p. 62. Compare with frege77 43936. (Contributed by RP, 15-Jul-2020.) |
| Ref | Expression |
|---|---|
| frege77d.r | ⊢ (𝜑 → 𝑅 ∈ V) |
| frege77d.a | ⊢ (𝜑 → 𝐴 ∈ V) |
| frege77d.b | ⊢ (𝜑 → 𝐵 ∈ V) |
| frege77d.ab | ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) |
| frege77d.he | ⊢ (𝜑 → (𝑅 “ 𝑈) ⊆ 𝑈) |
| frege77d.ss | ⊢ (𝜑 → (𝑅 “ {𝐴}) ⊆ 𝑈) |
| Ref | Expression |
|---|---|
| frege77d | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege77d.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ V) | |
| 2 | imaundi 6125 | . . . 4 ⊢ (𝑅 “ ({𝐴} ∪ 𝑈)) = ((𝑅 “ {𝐴}) ∪ (𝑅 “ 𝑈)) | |
| 3 | frege77d.ss | . . . . 5 ⊢ (𝜑 → (𝑅 “ {𝐴}) ⊆ 𝑈) | |
| 4 | frege77d.he | . . . . 5 ⊢ (𝜑 → (𝑅 “ 𝑈) ⊆ 𝑈) | |
| 5 | 3, 4 | unssd 4158 | . . . 4 ⊢ (𝜑 → ((𝑅 “ {𝐴}) ∪ (𝑅 “ 𝑈)) ⊆ 𝑈) |
| 6 | 2, 5 | eqsstrid 3988 | . . 3 ⊢ (𝜑 → (𝑅 “ ({𝐴} ∪ 𝑈)) ⊆ 𝑈) |
| 7 | trclimalb2 43722 | . . 3 ⊢ ((𝑅 ∈ V ∧ (𝑅 “ ({𝐴} ∪ 𝑈)) ⊆ 𝑈) → ((t+‘𝑅) “ {𝐴}) ⊆ 𝑈) | |
| 8 | 1, 6, 7 | syl2anc 584 | . 2 ⊢ (𝜑 → ((t+‘𝑅) “ {𝐴}) ⊆ 𝑈) |
| 9 | frege77d.ab | . . . 4 ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) | |
| 10 | df-br 5111 | . . . 4 ⊢ (𝐴(t+‘𝑅)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (t+‘𝑅)) | |
| 11 | 9, 10 | sylib 218 | . . 3 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ (t+‘𝑅)) |
| 12 | frege77d.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) | |
| 13 | frege77d.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ V) | |
| 14 | elimasng 6063 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐵 ∈ ((t+‘𝑅) “ {𝐴}) ↔ 〈𝐴, 𝐵〉 ∈ (t+‘𝑅))) | |
| 15 | 12, 13, 14 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐵 ∈ ((t+‘𝑅) “ {𝐴}) ↔ 〈𝐴, 𝐵〉 ∈ (t+‘𝑅))) |
| 16 | 11, 15 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐵 ∈ ((t+‘𝑅) “ {𝐴})) |
| 17 | 8, 16 | sseldd 3950 | 1 ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 Vcvv 3450 ∪ cun 3915 ⊆ wss 3917 {csn 4592 〈cop 4598 class class class wbr 5110 “ cima 5644 ‘cfv 6514 t+ctcl 14958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-n0 12450 df-z 12537 df-uz 12801 df-seq 13974 df-trcl 14960 df-relexp 14993 |
| This theorem is referenced by: frege81d 43743 frege87d 43746 |
| Copyright terms: Public domain | W3C validator |