Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege77d Structured version   Visualization version   GIF version

Theorem frege77d 40447
Description: If the images of both {𝐴} and 𝑈 are subsets of 𝑈 and 𝐵 follows 𝐴 in the transitive closure of 𝑅, then 𝐵 is an element of 𝑈. Similar to Proposition 77 of [Frege1879] p. 62. Compare with frege77 40641. (Contributed by RP, 15-Jul-2020.)
Hypotheses
Ref Expression
frege77d.r (𝜑𝑅 ∈ V)
frege77d.a (𝜑𝐴 ∈ V)
frege77d.b (𝜑𝐵 ∈ V)
frege77d.ab (𝜑𝐴(t+‘𝑅)𝐵)
frege77d.he (𝜑 → (𝑅𝑈) ⊆ 𝑈)
frege77d.ss (𝜑 → (𝑅 “ {𝐴}) ⊆ 𝑈)
Assertion
Ref Expression
frege77d (𝜑𝐵𝑈)

Proof of Theorem frege77d
StepHypRef Expression
1 frege77d.r . . 3 (𝜑𝑅 ∈ V)
2 imaundi 5975 . . . 4 (𝑅 “ ({𝐴} ∪ 𝑈)) = ((𝑅 “ {𝐴}) ∪ (𝑅𝑈))
3 frege77d.ss . . . . 5 (𝜑 → (𝑅 “ {𝐴}) ⊆ 𝑈)
4 frege77d.he . . . . 5 (𝜑 → (𝑅𝑈) ⊆ 𝑈)
53, 4unssd 4113 . . . 4 (𝜑 → ((𝑅 “ {𝐴}) ∪ (𝑅𝑈)) ⊆ 𝑈)
62, 5eqsstrid 3963 . . 3 (𝜑 → (𝑅 “ ({𝐴} ∪ 𝑈)) ⊆ 𝑈)
7 trclimalb2 40427 . . 3 ((𝑅 ∈ V ∧ (𝑅 “ ({𝐴} ∪ 𝑈)) ⊆ 𝑈) → ((t+‘𝑅) “ {𝐴}) ⊆ 𝑈)
81, 6, 7syl2anc 587 . 2 (𝜑 → ((t+‘𝑅) “ {𝐴}) ⊆ 𝑈)
9 frege77d.ab . . . 4 (𝜑𝐴(t+‘𝑅)𝐵)
10 df-br 5031 . . . 4 (𝐴(t+‘𝑅)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (t+‘𝑅))
119, 10sylib 221 . . 3 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (t+‘𝑅))
12 frege77d.a . . . 4 (𝜑𝐴 ∈ V)
13 frege77d.b . . . 4 (𝜑𝐵 ∈ V)
14 elimasng 5922 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐵 ∈ ((t+‘𝑅) “ {𝐴}) ↔ ⟨𝐴, 𝐵⟩ ∈ (t+‘𝑅)))
1512, 13, 14syl2anc 587 . . 3 (𝜑 → (𝐵 ∈ ((t+‘𝑅) “ {𝐴}) ↔ ⟨𝐴, 𝐵⟩ ∈ (t+‘𝑅)))
1611, 15mpbird 260 . 2 (𝜑𝐵 ∈ ((t+‘𝑅) “ {𝐴}))
178, 16sseldd 3916 1 (𝜑𝐵𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wcel 2111  Vcvv 3441  cun 3879  wss 3881  {csn 4525  cop 4531   class class class wbr 5030  cima 5522  cfv 6324  t+ctcl 14336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-seq 13365  df-trcl 14338  df-relexp 14371
This theorem is referenced by:  frege81d  40448  frege87d  40451
  Copyright terms: Public domain W3C validator