Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege77d Structured version   Visualization version   GIF version

Theorem frege77d 43764
Description: If the images of both {𝐴} and 𝑈 are subsets of 𝑈 and 𝐵 follows 𝐴 in the transitive closure of 𝑅, then 𝐵 is an element of 𝑈. Similar to Proposition 77 of [Frege1879] p. 62. Compare with frege77 43958. (Contributed by RP, 15-Jul-2020.)
Hypotheses
Ref Expression
frege77d.r (𝜑𝑅 ∈ V)
frege77d.a (𝜑𝐴 ∈ V)
frege77d.b (𝜑𝐵 ∈ V)
frege77d.ab (𝜑𝐴(t+‘𝑅)𝐵)
frege77d.he (𝜑 → (𝑅𝑈) ⊆ 𝑈)
frege77d.ss (𝜑 → (𝑅 “ {𝐴}) ⊆ 𝑈)
Assertion
Ref Expression
frege77d (𝜑𝐵𝑈)

Proof of Theorem frege77d
StepHypRef Expression
1 frege77d.r . . 3 (𝜑𝑅 ∈ V)
2 imaundi 6168 . . . 4 (𝑅 “ ({𝐴} ∪ 𝑈)) = ((𝑅 “ {𝐴}) ∪ (𝑅𝑈))
3 frege77d.ss . . . . 5 (𝜑 → (𝑅 “ {𝐴}) ⊆ 𝑈)
4 frege77d.he . . . . 5 (𝜑 → (𝑅𝑈) ⊆ 𝑈)
53, 4unssd 4191 . . . 4 (𝜑 → ((𝑅 “ {𝐴}) ∪ (𝑅𝑈)) ⊆ 𝑈)
62, 5eqsstrid 4021 . . 3 (𝜑 → (𝑅 “ ({𝐴} ∪ 𝑈)) ⊆ 𝑈)
7 trclimalb2 43744 . . 3 ((𝑅 ∈ V ∧ (𝑅 “ ({𝐴} ∪ 𝑈)) ⊆ 𝑈) → ((t+‘𝑅) “ {𝐴}) ⊆ 𝑈)
81, 6, 7syl2anc 584 . 2 (𝜑 → ((t+‘𝑅) “ {𝐴}) ⊆ 𝑈)
9 frege77d.ab . . . 4 (𝜑𝐴(t+‘𝑅)𝐵)
10 df-br 5143 . . . 4 (𝐴(t+‘𝑅)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (t+‘𝑅))
119, 10sylib 218 . . 3 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (t+‘𝑅))
12 frege77d.a . . . 4 (𝜑𝐴 ∈ V)
13 frege77d.b . . . 4 (𝜑𝐵 ∈ V)
14 elimasng 6106 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐵 ∈ ((t+‘𝑅) “ {𝐴}) ↔ ⟨𝐴, 𝐵⟩ ∈ (t+‘𝑅)))
1512, 13, 14syl2anc 584 . . 3 (𝜑 → (𝐵 ∈ ((t+‘𝑅) “ {𝐴}) ↔ ⟨𝐴, 𝐵⟩ ∈ (t+‘𝑅)))
1611, 15mpbird 257 . 2 (𝜑𝐵 ∈ ((t+‘𝑅) “ {𝐴}))
178, 16sseldd 3983 1 (𝜑𝐵𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2107  Vcvv 3479  cun 3948  wss 3950  {csn 4625  cop 4631   class class class wbr 5142  cima 5687  cfv 6560  t+ctcl 15025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-n0 12529  df-z 12616  df-uz 12880  df-seq 14044  df-trcl 15027  df-relexp 15060
This theorem is referenced by:  frege81d  43765  frege87d  43768
  Copyright terms: Public domain W3C validator