![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege77d | Structured version Visualization version GIF version |
Description: If the images of both {𝐴} and 𝑈 are subsets of 𝑈 and 𝐵 follows 𝐴 in the transitive closure of 𝑅, then 𝐵 is an element of 𝑈. Similar to Proposition 77 of [Frege1879] p. 62. Compare with frege77 43902. (Contributed by RP, 15-Jul-2020.) |
Ref | Expression |
---|---|
frege77d.r | ⊢ (𝜑 → 𝑅 ∈ V) |
frege77d.a | ⊢ (𝜑 → 𝐴 ∈ V) |
frege77d.b | ⊢ (𝜑 → 𝐵 ∈ V) |
frege77d.ab | ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) |
frege77d.he | ⊢ (𝜑 → (𝑅 “ 𝑈) ⊆ 𝑈) |
frege77d.ss | ⊢ (𝜑 → (𝑅 “ {𝐴}) ⊆ 𝑈) |
Ref | Expression |
---|---|
frege77d | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege77d.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ V) | |
2 | imaundi 6181 | . . . 4 ⊢ (𝑅 “ ({𝐴} ∪ 𝑈)) = ((𝑅 “ {𝐴}) ∪ (𝑅 “ 𝑈)) | |
3 | frege77d.ss | . . . . 5 ⊢ (𝜑 → (𝑅 “ {𝐴}) ⊆ 𝑈) | |
4 | frege77d.he | . . . . 5 ⊢ (𝜑 → (𝑅 “ 𝑈) ⊆ 𝑈) | |
5 | 3, 4 | unssd 4215 | . . . 4 ⊢ (𝜑 → ((𝑅 “ {𝐴}) ∪ (𝑅 “ 𝑈)) ⊆ 𝑈) |
6 | 2, 5 | eqsstrid 4057 | . . 3 ⊢ (𝜑 → (𝑅 “ ({𝐴} ∪ 𝑈)) ⊆ 𝑈) |
7 | trclimalb2 43688 | . . 3 ⊢ ((𝑅 ∈ V ∧ (𝑅 “ ({𝐴} ∪ 𝑈)) ⊆ 𝑈) → ((t+‘𝑅) “ {𝐴}) ⊆ 𝑈) | |
8 | 1, 6, 7 | syl2anc 583 | . 2 ⊢ (𝜑 → ((t+‘𝑅) “ {𝐴}) ⊆ 𝑈) |
9 | frege77d.ab | . . . 4 ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) | |
10 | df-br 5167 | . . . 4 ⊢ (𝐴(t+‘𝑅)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (t+‘𝑅)) | |
11 | 9, 10 | sylib 218 | . . 3 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ (t+‘𝑅)) |
12 | frege77d.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) | |
13 | frege77d.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ V) | |
14 | elimasng 6118 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐵 ∈ ((t+‘𝑅) “ {𝐴}) ↔ 〈𝐴, 𝐵〉 ∈ (t+‘𝑅))) | |
15 | 12, 13, 14 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝐵 ∈ ((t+‘𝑅) “ {𝐴}) ↔ 〈𝐴, 𝐵〉 ∈ (t+‘𝑅))) |
16 | 11, 15 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐵 ∈ ((t+‘𝑅) “ {𝐴})) |
17 | 8, 16 | sseldd 4009 | 1 ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 Vcvv 3488 ∪ cun 3974 ⊆ wss 3976 {csn 4648 〈cop 4654 class class class wbr 5166 “ cima 5703 ‘cfv 6573 t+ctcl 15034 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-seq 14053 df-trcl 15036 df-relexp 15069 |
This theorem is referenced by: frege81d 43709 frege87d 43712 |
Copyright terms: Public domain | W3C validator |