Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege77d Structured version   Visualization version   GIF version

Theorem frege77d 43736
Description: If the images of both {𝐴} and 𝑈 are subsets of 𝑈 and 𝐵 follows 𝐴 in the transitive closure of 𝑅, then 𝐵 is an element of 𝑈. Similar to Proposition 77 of [Frege1879] p. 62. Compare with frege77 43930. (Contributed by RP, 15-Jul-2020.)
Hypotheses
Ref Expression
frege77d.r (𝜑𝑅 ∈ V)
frege77d.a (𝜑𝐴 ∈ V)
frege77d.b (𝜑𝐵 ∈ V)
frege77d.ab (𝜑𝐴(t+‘𝑅)𝐵)
frege77d.he (𝜑 → (𝑅𝑈) ⊆ 𝑈)
frege77d.ss (𝜑 → (𝑅 “ {𝐴}) ⊆ 𝑈)
Assertion
Ref Expression
frege77d (𝜑𝐵𝑈)

Proof of Theorem frege77d
StepHypRef Expression
1 frege77d.r . . 3 (𝜑𝑅 ∈ V)
2 imaundi 6172 . . . 4 (𝑅 “ ({𝐴} ∪ 𝑈)) = ((𝑅 “ {𝐴}) ∪ (𝑅𝑈))
3 frege77d.ss . . . . 5 (𝜑 → (𝑅 “ {𝐴}) ⊆ 𝑈)
4 frege77d.he . . . . 5 (𝜑 → (𝑅𝑈) ⊆ 𝑈)
53, 4unssd 4202 . . . 4 (𝜑 → ((𝑅 “ {𝐴}) ∪ (𝑅𝑈)) ⊆ 𝑈)
62, 5eqsstrid 4044 . . 3 (𝜑 → (𝑅 “ ({𝐴} ∪ 𝑈)) ⊆ 𝑈)
7 trclimalb2 43716 . . 3 ((𝑅 ∈ V ∧ (𝑅 “ ({𝐴} ∪ 𝑈)) ⊆ 𝑈) → ((t+‘𝑅) “ {𝐴}) ⊆ 𝑈)
81, 6, 7syl2anc 584 . 2 (𝜑 → ((t+‘𝑅) “ {𝐴}) ⊆ 𝑈)
9 frege77d.ab . . . 4 (𝜑𝐴(t+‘𝑅)𝐵)
10 df-br 5149 . . . 4 (𝐴(t+‘𝑅)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (t+‘𝑅))
119, 10sylib 218 . . 3 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (t+‘𝑅))
12 frege77d.a . . . 4 (𝜑𝐴 ∈ V)
13 frege77d.b . . . 4 (𝜑𝐵 ∈ V)
14 elimasng 6109 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐵 ∈ ((t+‘𝑅) “ {𝐴}) ↔ ⟨𝐴, 𝐵⟩ ∈ (t+‘𝑅)))
1512, 13, 14syl2anc 584 . . 3 (𝜑 → (𝐵 ∈ ((t+‘𝑅) “ {𝐴}) ↔ ⟨𝐴, 𝐵⟩ ∈ (t+‘𝑅)))
1611, 15mpbird 257 . 2 (𝜑𝐵 ∈ ((t+‘𝑅) “ {𝐴}))
178, 16sseldd 3996 1 (𝜑𝐵𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2106  Vcvv 3478  cun 3961  wss 3963  {csn 4631  cop 4637   class class class wbr 5148  cima 5692  cfv 6563  t+ctcl 15021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-seq 14040  df-trcl 15023  df-relexp 15056
This theorem is referenced by:  frege81d  43737  frege87d  43740
  Copyright terms: Public domain W3C validator