| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege77d | Structured version Visualization version GIF version | ||
| Description: If the images of both {𝐴} and 𝑈 are subsets of 𝑈 and 𝐵 follows 𝐴 in the transitive closure of 𝑅, then 𝐵 is an element of 𝑈. Similar to Proposition 77 of [Frege1879] p. 62. Compare with frege77 43973. (Contributed by RP, 15-Jul-2020.) |
| Ref | Expression |
|---|---|
| frege77d.r | ⊢ (𝜑 → 𝑅 ∈ V) |
| frege77d.a | ⊢ (𝜑 → 𝐴 ∈ V) |
| frege77d.b | ⊢ (𝜑 → 𝐵 ∈ V) |
| frege77d.ab | ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) |
| frege77d.he | ⊢ (𝜑 → (𝑅 “ 𝑈) ⊆ 𝑈) |
| frege77d.ss | ⊢ (𝜑 → (𝑅 “ {𝐴}) ⊆ 𝑈) |
| Ref | Expression |
|---|---|
| frege77d | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege77d.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ V) | |
| 2 | imaundi 6091 | . . . 4 ⊢ (𝑅 “ ({𝐴} ∪ 𝑈)) = ((𝑅 “ {𝐴}) ∪ (𝑅 “ 𝑈)) | |
| 3 | frege77d.ss | . . . . 5 ⊢ (𝜑 → (𝑅 “ {𝐴}) ⊆ 𝑈) | |
| 4 | frege77d.he | . . . . 5 ⊢ (𝜑 → (𝑅 “ 𝑈) ⊆ 𝑈) | |
| 5 | 3, 4 | unssd 4137 | . . . 4 ⊢ (𝜑 → ((𝑅 “ {𝐴}) ∪ (𝑅 “ 𝑈)) ⊆ 𝑈) |
| 6 | 2, 5 | eqsstrid 3968 | . . 3 ⊢ (𝜑 → (𝑅 “ ({𝐴} ∪ 𝑈)) ⊆ 𝑈) |
| 7 | trclimalb2 43759 | . . 3 ⊢ ((𝑅 ∈ V ∧ (𝑅 “ ({𝐴} ∪ 𝑈)) ⊆ 𝑈) → ((t+‘𝑅) “ {𝐴}) ⊆ 𝑈) | |
| 8 | 1, 6, 7 | syl2anc 584 | . 2 ⊢ (𝜑 → ((t+‘𝑅) “ {𝐴}) ⊆ 𝑈) |
| 9 | frege77d.ab | . . . 4 ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) | |
| 10 | df-br 5087 | . . . 4 ⊢ (𝐴(t+‘𝑅)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (t+‘𝑅)) | |
| 11 | 9, 10 | sylib 218 | . . 3 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ (t+‘𝑅)) |
| 12 | frege77d.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) | |
| 13 | frege77d.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ V) | |
| 14 | elimasng 6033 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐵 ∈ ((t+‘𝑅) “ {𝐴}) ↔ 〈𝐴, 𝐵〉 ∈ (t+‘𝑅))) | |
| 15 | 12, 13, 14 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐵 ∈ ((t+‘𝑅) “ {𝐴}) ↔ 〈𝐴, 𝐵〉 ∈ (t+‘𝑅))) |
| 16 | 11, 15 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐵 ∈ ((t+‘𝑅) “ {𝐴})) |
| 17 | 8, 16 | sseldd 3930 | 1 ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2111 Vcvv 3436 ∪ cun 3895 ⊆ wss 3897 {csn 4571 〈cop 4577 class class class wbr 5086 “ cima 5614 ‘cfv 6476 t+ctcl 14887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-n0 12377 df-z 12464 df-uz 12728 df-seq 13904 df-trcl 14889 df-relexp 14922 |
| This theorem is referenced by: frege81d 43780 frege87d 43783 |
| Copyright terms: Public domain | W3C validator |