![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elorvc | Structured version Visualization version GIF version |
Description: Elementhood of a preimage. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
Ref | Expression |
---|---|
orvcval.1 | ⊢ (𝜑 → Fun 𝑋) |
orvcval.2 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
orvcval.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑊) |
Ref | Expression |
---|---|
elorvc | ⊢ ((𝜑 ∧ 𝑧 ∈ dom 𝑋) → (𝑧 ∈ (𝑋∘RV/𝑐𝑅𝐴) ↔ (𝑋‘𝑧)𝑅𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orvcval.1 | . . . . 5 ⊢ (𝜑 → Fun 𝑋) | |
2 | orvcval.2 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
3 | orvcval.3 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑊) | |
4 | 1, 2, 3 | orvcval2 33977 | . . . 4 ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧)𝑅𝐴}) |
5 | 4 | eleq2d 2811 | . . 3 ⊢ (𝜑 → (𝑧 ∈ (𝑋∘RV/𝑐𝑅𝐴) ↔ 𝑧 ∈ {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧)𝑅𝐴})) |
6 | rabid 3444 | . . 3 ⊢ (𝑧 ∈ {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧)𝑅𝐴} ↔ (𝑧 ∈ dom 𝑋 ∧ (𝑋‘𝑧)𝑅𝐴)) | |
7 | 5, 6 | bitrdi 287 | . 2 ⊢ (𝜑 → (𝑧 ∈ (𝑋∘RV/𝑐𝑅𝐴) ↔ (𝑧 ∈ dom 𝑋 ∧ (𝑋‘𝑧)𝑅𝐴))) |
8 | 7 | baibd 539 | 1 ⊢ ((𝜑 ∧ 𝑧 ∈ dom 𝑋) → (𝑧 ∈ (𝑋∘RV/𝑐𝑅𝐴) ↔ (𝑋‘𝑧)𝑅𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2098 {crab 3424 class class class wbr 5139 dom cdm 5667 Fun wfun 6528 ‘cfv 6534 (class class class)co 7402 ∘RV/𝑐corvc 33974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3771 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-fv 6542 df-ov 7405 df-oprab 7406 df-mpo 7407 df-orvc 33975 |
This theorem is referenced by: elorrvc 33982 |
Copyright terms: Public domain | W3C validator |