Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elorvc Structured version   Visualization version   GIF version

Theorem elorvc 34430
Description: Elementhood of a preimage. (Contributed by Thierry Arnoux, 21-Jan-2017.)
Hypotheses
Ref Expression
orvcval.1 (𝜑 → Fun 𝑋)
orvcval.2 (𝜑𝑋𝑉)
orvcval.3 (𝜑𝐴𝑊)
Assertion
Ref Expression
elorvc ((𝜑𝑧 ∈ dom 𝑋) → (𝑧 ∈ (𝑋RV/𝑐𝑅𝐴) ↔ (𝑋𝑧)𝑅𝐴))
Distinct variable groups:   𝑧,𝐴   𝑧,𝑅   𝑧,𝑋
Allowed substitution hints:   𝜑(𝑧)   𝑉(𝑧)   𝑊(𝑧)

Proof of Theorem elorvc
StepHypRef Expression
1 orvcval.1 . . . . 5 (𝜑 → Fun 𝑋)
2 orvcval.2 . . . . 5 (𝜑𝑋𝑉)
3 orvcval.3 . . . . 5 (𝜑𝐴𝑊)
41, 2, 3orvcval2 34429 . . . 4 (𝜑 → (𝑋RV/𝑐𝑅𝐴) = {𝑧 ∈ dom 𝑋 ∣ (𝑋𝑧)𝑅𝐴})
54eleq2d 2814 . . 3 (𝜑 → (𝑧 ∈ (𝑋RV/𝑐𝑅𝐴) ↔ 𝑧 ∈ {𝑧 ∈ dom 𝑋 ∣ (𝑋𝑧)𝑅𝐴}))
6 rabid 3418 . . 3 (𝑧 ∈ {𝑧 ∈ dom 𝑋 ∣ (𝑋𝑧)𝑅𝐴} ↔ (𝑧 ∈ dom 𝑋 ∧ (𝑋𝑧)𝑅𝐴))
75, 6bitrdi 287 . 2 (𝜑 → (𝑧 ∈ (𝑋RV/𝑐𝑅𝐴) ↔ (𝑧 ∈ dom 𝑋 ∧ (𝑋𝑧)𝑅𝐴)))
87baibd 539 1 ((𝜑𝑧 ∈ dom 𝑋) → (𝑧 ∈ (𝑋RV/𝑐𝑅𝐴) ↔ (𝑋𝑧)𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  {crab 3396   class class class wbr 5095  dom cdm 5623  Fun wfun 6480  cfv 6486  (class class class)co 7353  RV/𝑐corvc 34426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-orvc 34427
This theorem is referenced by:  elorrvc  34434
  Copyright terms: Public domain W3C validator