Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elorvc Structured version   Visualization version   GIF version

Theorem elorvc 32326
Description: Elementhood of a preimage. (Contributed by Thierry Arnoux, 21-Jan-2017.)
Hypotheses
Ref Expression
orvcval.1 (𝜑 → Fun 𝑋)
orvcval.2 (𝜑𝑋𝑉)
orvcval.3 (𝜑𝐴𝑊)
Assertion
Ref Expression
elorvc ((𝜑𝑧 ∈ dom 𝑋) → (𝑧 ∈ (𝑋RV/𝑐𝑅𝐴) ↔ (𝑋𝑧)𝑅𝐴))
Distinct variable groups:   𝑧,𝐴   𝑧,𝑅   𝑧,𝑋
Allowed substitution hints:   𝜑(𝑧)   𝑉(𝑧)   𝑊(𝑧)

Proof of Theorem elorvc
StepHypRef Expression
1 orvcval.1 . . . . 5 (𝜑 → Fun 𝑋)
2 orvcval.2 . . . . 5 (𝜑𝑋𝑉)
3 orvcval.3 . . . . 5 (𝜑𝐴𝑊)
41, 2, 3orvcval2 32325 . . . 4 (𝜑 → (𝑋RV/𝑐𝑅𝐴) = {𝑧 ∈ dom 𝑋 ∣ (𝑋𝑧)𝑅𝐴})
54eleq2d 2824 . . 3 (𝜑 → (𝑧 ∈ (𝑋RV/𝑐𝑅𝐴) ↔ 𝑧 ∈ {𝑧 ∈ dom 𝑋 ∣ (𝑋𝑧)𝑅𝐴}))
6 rabid 3304 . . 3 (𝑧 ∈ {𝑧 ∈ dom 𝑋 ∣ (𝑋𝑧)𝑅𝐴} ↔ (𝑧 ∈ dom 𝑋 ∧ (𝑋𝑧)𝑅𝐴))
75, 6bitrdi 286 . 2 (𝜑 → (𝑧 ∈ (𝑋RV/𝑐𝑅𝐴) ↔ (𝑧 ∈ dom 𝑋 ∧ (𝑋𝑧)𝑅𝐴)))
87baibd 539 1 ((𝜑𝑧 ∈ dom 𝑋) → (𝑧 ∈ (𝑋RV/𝑐𝑅𝐴) ↔ (𝑋𝑧)𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2108  {crab 3067   class class class wbr 5070  dom cdm 5580  Fun wfun 6412  cfv 6418  (class class class)co 7255  RV/𝑐corvc 32322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-orvc 32323
This theorem is referenced by:  elorrvc  32330
  Copyright terms: Public domain W3C validator