| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elorvc | Structured version Visualization version GIF version | ||
| Description: Elementhood of a preimage. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
| Ref | Expression |
|---|---|
| orvcval.1 | ⊢ (𝜑 → Fun 𝑋) |
| orvcval.2 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| orvcval.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| elorvc | ⊢ ((𝜑 ∧ 𝑧 ∈ dom 𝑋) → (𝑧 ∈ (𝑋∘RV/𝑐𝑅𝐴) ↔ (𝑋‘𝑧)𝑅𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orvcval.1 | . . . . 5 ⊢ (𝜑 → Fun 𝑋) | |
| 2 | orvcval.2 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 3 | orvcval.3 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑊) | |
| 4 | 1, 2, 3 | orvcval2 34496 | . . . 4 ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧)𝑅𝐴}) |
| 5 | 4 | eleq2d 2821 | . . 3 ⊢ (𝜑 → (𝑧 ∈ (𝑋∘RV/𝑐𝑅𝐴) ↔ 𝑧 ∈ {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧)𝑅𝐴})) |
| 6 | rabid 3442 | . . 3 ⊢ (𝑧 ∈ {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧)𝑅𝐴} ↔ (𝑧 ∈ dom 𝑋 ∧ (𝑋‘𝑧)𝑅𝐴)) | |
| 7 | 5, 6 | bitrdi 287 | . 2 ⊢ (𝜑 → (𝑧 ∈ (𝑋∘RV/𝑐𝑅𝐴) ↔ (𝑧 ∈ dom 𝑋 ∧ (𝑋‘𝑧)𝑅𝐴))) |
| 8 | 7 | baibd 539 | 1 ⊢ ((𝜑 ∧ 𝑧 ∈ dom 𝑋) → (𝑧 ∈ (𝑋∘RV/𝑐𝑅𝐴) ↔ (𝑋‘𝑧)𝑅𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 {crab 3420 class class class wbr 5124 dom cdm 5659 Fun wfun 6530 ‘cfv 6536 (class class class)co 7410 ∘RV/𝑐corvc 34493 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-orvc 34494 |
| This theorem is referenced by: elorrvc 34501 |
| Copyright terms: Public domain | W3C validator |