| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elorvc | Structured version Visualization version GIF version | ||
| Description: Elementhood of a preimage. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
| Ref | Expression |
|---|---|
| orvcval.1 | ⊢ (𝜑 → Fun 𝑋) |
| orvcval.2 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| orvcval.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| elorvc | ⊢ ((𝜑 ∧ 𝑧 ∈ dom 𝑋) → (𝑧 ∈ (𝑋∘RV/𝑐𝑅𝐴) ↔ (𝑋‘𝑧)𝑅𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orvcval.1 | . . . . 5 ⊢ (𝜑 → Fun 𝑋) | |
| 2 | orvcval.2 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 3 | orvcval.3 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑊) | |
| 4 | 1, 2, 3 | orvcval2 34450 | . . . 4 ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧)𝑅𝐴}) |
| 5 | 4 | eleq2d 2814 | . . 3 ⊢ (𝜑 → (𝑧 ∈ (𝑋∘RV/𝑐𝑅𝐴) ↔ 𝑧 ∈ {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧)𝑅𝐴})) |
| 6 | rabid 3427 | . . 3 ⊢ (𝑧 ∈ {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧)𝑅𝐴} ↔ (𝑧 ∈ dom 𝑋 ∧ (𝑋‘𝑧)𝑅𝐴)) | |
| 7 | 5, 6 | bitrdi 287 | . 2 ⊢ (𝜑 → (𝑧 ∈ (𝑋∘RV/𝑐𝑅𝐴) ↔ (𝑧 ∈ dom 𝑋 ∧ (𝑋‘𝑧)𝑅𝐴))) |
| 8 | 7 | baibd 539 | 1 ⊢ ((𝜑 ∧ 𝑧 ∈ dom 𝑋) → (𝑧 ∈ (𝑋∘RV/𝑐𝑅𝐴) ↔ (𝑋‘𝑧)𝑅𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 {crab 3405 class class class wbr 5107 dom cdm 5638 Fun wfun 6505 ‘cfv 6511 (class class class)co 7387 ∘RV/𝑐corvc 34447 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-orvc 34448 |
| This theorem is referenced by: elorrvc 34455 |
| Copyright terms: Public domain | W3C validator |