Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elorvc | Structured version Visualization version GIF version |
Description: Elementhood of a preimage. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
Ref | Expression |
---|---|
orvcval.1 | ⊢ (𝜑 → Fun 𝑋) |
orvcval.2 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
orvcval.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑊) |
Ref | Expression |
---|---|
elorvc | ⊢ ((𝜑 ∧ 𝑧 ∈ dom 𝑋) → (𝑧 ∈ (𝑋∘RV/𝑐𝑅𝐴) ↔ (𝑋‘𝑧)𝑅𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orvcval.1 | . . . . 5 ⊢ (𝜑 → Fun 𝑋) | |
2 | orvcval.2 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
3 | orvcval.3 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑊) | |
4 | 1, 2, 3 | orvcval2 32453 | . . . 4 ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧)𝑅𝐴}) |
5 | 4 | eleq2d 2819 | . . 3 ⊢ (𝜑 → (𝑧 ∈ (𝑋∘RV/𝑐𝑅𝐴) ↔ 𝑧 ∈ {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧)𝑅𝐴})) |
6 | rabid 3312 | . . 3 ⊢ (𝑧 ∈ {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧)𝑅𝐴} ↔ (𝑧 ∈ dom 𝑋 ∧ (𝑋‘𝑧)𝑅𝐴)) | |
7 | 5, 6 | bitrdi 286 | . 2 ⊢ (𝜑 → (𝑧 ∈ (𝑋∘RV/𝑐𝑅𝐴) ↔ (𝑧 ∈ dom 𝑋 ∧ (𝑋‘𝑧)𝑅𝐴))) |
8 | 7 | baibd 539 | 1 ⊢ ((𝜑 ∧ 𝑧 ∈ dom 𝑋) → (𝑧 ∈ (𝑋∘RV/𝑐𝑅𝐴) ↔ (𝑋‘𝑧)𝑅𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2101 {crab 3221 class class class wbr 5077 dom cdm 5591 Fun wfun 6441 ‘cfv 6447 (class class class)co 7295 ∘RV/𝑐corvc 32450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3224 df-v 3436 df-sbc 3719 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-br 5078 df-opab 5140 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-iota 6399 df-fun 6449 df-fn 6450 df-fv 6455 df-ov 7298 df-oprab 7299 df-mpo 7300 df-orvc 32451 |
This theorem is referenced by: elorrvc 32458 |
Copyright terms: Public domain | W3C validator |