Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elorvc Structured version   Visualization version   GIF version

Theorem elorvc 34463
Description: Elementhood of a preimage. (Contributed by Thierry Arnoux, 21-Jan-2017.)
Hypotheses
Ref Expression
orvcval.1 (𝜑 → Fun 𝑋)
orvcval.2 (𝜑𝑋𝑉)
orvcval.3 (𝜑𝐴𝑊)
Assertion
Ref Expression
elorvc ((𝜑𝑧 ∈ dom 𝑋) → (𝑧 ∈ (𝑋RV/𝑐𝑅𝐴) ↔ (𝑋𝑧)𝑅𝐴))
Distinct variable groups:   𝑧,𝐴   𝑧,𝑅   𝑧,𝑋
Allowed substitution hints:   𝜑(𝑧)   𝑉(𝑧)   𝑊(𝑧)

Proof of Theorem elorvc
StepHypRef Expression
1 orvcval.1 . . . . 5 (𝜑 → Fun 𝑋)
2 orvcval.2 . . . . 5 (𝜑𝑋𝑉)
3 orvcval.3 . . . . 5 (𝜑𝐴𝑊)
41, 2, 3orvcval2 34462 . . . 4 (𝜑 → (𝑋RV/𝑐𝑅𝐴) = {𝑧 ∈ dom 𝑋 ∣ (𝑋𝑧)𝑅𝐴})
54eleq2d 2826 . . 3 (𝜑 → (𝑧 ∈ (𝑋RV/𝑐𝑅𝐴) ↔ 𝑧 ∈ {𝑧 ∈ dom 𝑋 ∣ (𝑋𝑧)𝑅𝐴}))
6 rabid 3457 . . 3 (𝑧 ∈ {𝑧 ∈ dom 𝑋 ∣ (𝑋𝑧)𝑅𝐴} ↔ (𝑧 ∈ dom 𝑋 ∧ (𝑋𝑧)𝑅𝐴))
75, 6bitrdi 287 . 2 (𝜑 → (𝑧 ∈ (𝑋RV/𝑐𝑅𝐴) ↔ (𝑧 ∈ dom 𝑋 ∧ (𝑋𝑧)𝑅𝐴)))
87baibd 539 1 ((𝜑𝑧 ∈ dom 𝑋) → (𝑧 ∈ (𝑋RV/𝑐𝑅𝐴) ↔ (𝑋𝑧)𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2107  {crab 3435   class class class wbr 5142  dom cdm 5684  Fun wfun 6554  cfv 6560  (class class class)co 7432  RV/𝑐corvc 34459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-orvc 34460
This theorem is referenced by:  elorrvc  34467
  Copyright terms: Public domain W3C validator