![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elorvc | Structured version Visualization version GIF version |
Description: Elementhood of a preimage. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
Ref | Expression |
---|---|
orvcval.1 | ⊢ (𝜑 → Fun 𝑋) |
orvcval.2 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
orvcval.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑊) |
Ref | Expression |
---|---|
elorvc | ⊢ ((𝜑 ∧ 𝑧 ∈ dom 𝑋) → (𝑧 ∈ (𝑋∘RV/𝑐𝑅𝐴) ↔ (𝑋‘𝑧)𝑅𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orvcval.1 | . . . . 5 ⊢ (𝜑 → Fun 𝑋) | |
2 | orvcval.2 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
3 | orvcval.3 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑊) | |
4 | 1, 2, 3 | orvcval2 34078 | . . . 4 ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧)𝑅𝐴}) |
5 | 4 | eleq2d 2815 | . . 3 ⊢ (𝜑 → (𝑧 ∈ (𝑋∘RV/𝑐𝑅𝐴) ↔ 𝑧 ∈ {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧)𝑅𝐴})) |
6 | rabid 3449 | . . 3 ⊢ (𝑧 ∈ {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧)𝑅𝐴} ↔ (𝑧 ∈ dom 𝑋 ∧ (𝑋‘𝑧)𝑅𝐴)) | |
7 | 5, 6 | bitrdi 287 | . 2 ⊢ (𝜑 → (𝑧 ∈ (𝑋∘RV/𝑐𝑅𝐴) ↔ (𝑧 ∈ dom 𝑋 ∧ (𝑋‘𝑧)𝑅𝐴))) |
8 | 7 | baibd 539 | 1 ⊢ ((𝜑 ∧ 𝑧 ∈ dom 𝑋) → (𝑧 ∈ (𝑋∘RV/𝑐𝑅𝐴) ↔ (𝑋‘𝑧)𝑅𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2099 {crab 3429 class class class wbr 5148 dom cdm 5678 Fun wfun 6542 ‘cfv 6548 (class class class)co 7420 ∘RV/𝑐corvc 34075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-fv 6556 df-ov 7423 df-oprab 7424 df-mpo 7425 df-orvc 34076 |
This theorem is referenced by: elorrvc 34083 |
Copyright terms: Public domain | W3C validator |