Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elorrvc Structured version   Visualization version   GIF version

Theorem elorrvc 32330
Description: Elementhood of a preimage for a real-valued random variable. (Contributed by Thierry Arnoux, 21-Jan-2017.)
Hypotheses
Ref Expression
orrvccel.1 (𝜑𝑃 ∈ Prob)
orrvccel.2 (𝜑𝑋 ∈ (rRndVar‘𝑃))
orrvccel.4 (𝜑𝐴𝑉)
Assertion
Ref Expression
elorrvc ((𝜑𝑧 dom 𝑃) → (𝑧 ∈ (𝑋RV/𝑐𝑅𝐴) ↔ (𝑋𝑧)𝑅𝐴))
Distinct variable groups:   𝑧,𝐴   𝑧,𝑅   𝑧,𝑋
Allowed substitution hints:   𝜑(𝑧)   𝑃(𝑧)   𝑉(𝑧)

Proof of Theorem elorrvc
StepHypRef Expression
1 orrvccel.1 . . . . . 6 (𝜑𝑃 ∈ Prob)
2 orrvccel.2 . . . . . 6 (𝜑𝑋 ∈ (rRndVar‘𝑃))
31, 2rrvdm 32313 . . . . 5 (𝜑 → dom 𝑋 = dom 𝑃)
43eleq2d 2824 . . . 4 (𝜑 → (𝑧 ∈ dom 𝑋𝑧 dom 𝑃))
54biimprd 247 . . 3 (𝜑 → (𝑧 dom 𝑃𝑧 ∈ dom 𝑋))
65imdistani 568 . 2 ((𝜑𝑧 dom 𝑃) → (𝜑𝑧 ∈ dom 𝑋))
71, 2rrvfn 32312 . . . 4 (𝜑𝑋 Fn dom 𝑃)
8 fnfun 6517 . . . 4 (𝑋 Fn dom 𝑃 → Fun 𝑋)
97, 8syl 17 . . 3 (𝜑 → Fun 𝑋)
10 orrvccel.4 . . 3 (𝜑𝐴𝑉)
119, 2, 10elorvc 32326 . 2 ((𝜑𝑧 ∈ dom 𝑋) → (𝑧 ∈ (𝑋RV/𝑐𝑅𝐴) ↔ (𝑋𝑧)𝑅𝐴))
126, 11syl 17 1 ((𝜑𝑧 dom 𝑃) → (𝑧 ∈ (𝑋RV/𝑐𝑅𝐴) ↔ (𝑋𝑧)𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2108   cuni 4836   class class class wbr 5070  dom cdm 5580  Fun wfun 6412   Fn wfn 6413  cfv 6418  (class class class)co 7255  Probcprb 32274  rRndVarcrrv 32307  RV/𝑐corvc 32322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-pre-lttri 10876  ax-pre-lttrn 10877
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-ioo 13012  df-topgen 17071  df-top 21951  df-bases 22004  df-esum 31896  df-siga 31977  df-sigagen 32007  df-brsiga 32050  df-meas 32064  df-mbfm 32118  df-prob 32275  df-rrv 32308  df-orvc 32323
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator