| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elorrvc | Structured version Visualization version GIF version | ||
| Description: Elementhood of a preimage for a real-valued random variable. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
| Ref | Expression |
|---|---|
| orrvccel.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
| orrvccel.2 | ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) |
| orrvccel.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| elorrvc | ⊢ ((𝜑 ∧ 𝑧 ∈ ∪ dom 𝑃) → (𝑧 ∈ (𝑋∘RV/𝑐𝑅𝐴) ↔ (𝑋‘𝑧)𝑅𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orrvccel.1 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
| 2 | orrvccel.2 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) | |
| 3 | 1, 2 | rrvdm 34389 | . . . . 5 ⊢ (𝜑 → dom 𝑋 = ∪ dom 𝑃) |
| 4 | 3 | eleq2d 2819 | . . . 4 ⊢ (𝜑 → (𝑧 ∈ dom 𝑋 ↔ 𝑧 ∈ ∪ dom 𝑃)) |
| 5 | 4 | biimprd 248 | . . 3 ⊢ (𝜑 → (𝑧 ∈ ∪ dom 𝑃 → 𝑧 ∈ dom 𝑋)) |
| 6 | 5 | imdistani 568 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ ∪ dom 𝑃) → (𝜑 ∧ 𝑧 ∈ dom 𝑋)) |
| 7 | 1, 2 | rrvfn 34388 | . . . 4 ⊢ (𝜑 → 𝑋 Fn ∪ dom 𝑃) |
| 8 | fnfun 6649 | . . . 4 ⊢ (𝑋 Fn ∪ dom 𝑃 → Fun 𝑋) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → Fun 𝑋) |
| 10 | orrvccel.4 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 11 | 9, 2, 10 | elorvc 34403 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ dom 𝑋) → (𝑧 ∈ (𝑋∘RV/𝑐𝑅𝐴) ↔ (𝑋‘𝑧)𝑅𝐴)) |
| 12 | 6, 11 | syl 17 | 1 ⊢ ((𝜑 ∧ 𝑧 ∈ ∪ dom 𝑃) → (𝑧 ∈ (𝑋∘RV/𝑐𝑅𝐴) ↔ (𝑋‘𝑧)𝑅𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2107 ∪ cuni 4889 class class class wbr 5125 dom cdm 5667 Fun wfun 6536 Fn wfn 6537 ‘cfv 6542 (class class class)co 7414 Probcprb 34350 rRndVarcrrv 34383 ∘RV/𝑐corvc 34399 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-pre-lttri 11212 ax-pre-lttrn 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-po 5574 df-so 5575 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7997 df-2nd 7998 df-er 8728 df-map 8851 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-ioo 13374 df-topgen 17464 df-top 22867 df-bases 22919 df-esum 33970 df-siga 34051 df-sigagen 34081 df-brsiga 34124 df-meas 34138 df-mbfm 34192 df-prob 34351 df-rrv 34384 df-orvc 34400 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |