| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elorrvc | Structured version Visualization version GIF version | ||
| Description: Elementhood of a preimage for a real-valued random variable. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
| Ref | Expression |
|---|---|
| orrvccel.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
| orrvccel.2 | ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) |
| orrvccel.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| elorrvc | ⊢ ((𝜑 ∧ 𝑧 ∈ ∪ dom 𝑃) → (𝑧 ∈ (𝑋∘RV/𝑐𝑅𝐴) ↔ (𝑋‘𝑧)𝑅𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orrvccel.1 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
| 2 | orrvccel.2 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) | |
| 3 | 1, 2 | rrvdm 34437 | . . . . 5 ⊢ (𝜑 → dom 𝑋 = ∪ dom 𝑃) |
| 4 | 3 | eleq2d 2814 | . . . 4 ⊢ (𝜑 → (𝑧 ∈ dom 𝑋 ↔ 𝑧 ∈ ∪ dom 𝑃)) |
| 5 | 4 | biimprd 248 | . . 3 ⊢ (𝜑 → (𝑧 ∈ ∪ dom 𝑃 → 𝑧 ∈ dom 𝑋)) |
| 6 | 5 | imdistani 568 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ ∪ dom 𝑃) → (𝜑 ∧ 𝑧 ∈ dom 𝑋)) |
| 7 | 1, 2 | rrvfn 34436 | . . . 4 ⊢ (𝜑 → 𝑋 Fn ∪ dom 𝑃) |
| 8 | fnfun 6618 | . . . 4 ⊢ (𝑋 Fn ∪ dom 𝑃 → Fun 𝑋) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → Fun 𝑋) |
| 10 | orrvccel.4 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 11 | 9, 2, 10 | elorvc 34451 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ dom 𝑋) → (𝑧 ∈ (𝑋∘RV/𝑐𝑅𝐴) ↔ (𝑋‘𝑧)𝑅𝐴)) |
| 12 | 6, 11 | syl 17 | 1 ⊢ ((𝜑 ∧ 𝑧 ∈ ∪ dom 𝑃) → (𝑧 ∈ (𝑋∘RV/𝑐𝑅𝐴) ↔ (𝑋‘𝑧)𝑅𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∪ cuni 4871 class class class wbr 5107 dom cdm 5638 Fun wfun 6505 Fn wfn 6506 ‘cfv 6511 (class class class)co 7387 Probcprb 34398 rRndVarcrrv 34431 ∘RV/𝑐corvc 34447 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-ioo 13310 df-topgen 17406 df-top 22781 df-bases 22833 df-esum 34018 df-siga 34099 df-sigagen 34129 df-brsiga 34172 df-meas 34186 df-mbfm 34240 df-prob 34399 df-rrv 34432 df-orvc 34448 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |