Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elorrvc Structured version   Visualization version   GIF version

Theorem elorrvc 34299
Description: Elementhood of a preimage for a real-valued random variable. (Contributed by Thierry Arnoux, 21-Jan-2017.)
Hypotheses
Ref Expression
orrvccel.1 (𝜑𝑃 ∈ Prob)
orrvccel.2 (𝜑𝑋 ∈ (rRndVar‘𝑃))
orrvccel.4 (𝜑𝐴𝑉)
Assertion
Ref Expression
elorrvc ((𝜑𝑧 dom 𝑃) → (𝑧 ∈ (𝑋RV/𝑐𝑅𝐴) ↔ (𝑋𝑧)𝑅𝐴))
Distinct variable groups:   𝑧,𝐴   𝑧,𝑅   𝑧,𝑋
Allowed substitution hints:   𝜑(𝑧)   𝑃(𝑧)   𝑉(𝑧)

Proof of Theorem elorrvc
StepHypRef Expression
1 orrvccel.1 . . . . . 6 (𝜑𝑃 ∈ Prob)
2 orrvccel.2 . . . . . 6 (𝜑𝑋 ∈ (rRndVar‘𝑃))
31, 2rrvdm 34282 . . . . 5 (𝜑 → dom 𝑋 = dom 𝑃)
43eleq2d 2812 . . . 4 (𝜑 → (𝑧 ∈ dom 𝑋𝑧 dom 𝑃))
54biimprd 247 . . 3 (𝜑 → (𝑧 dom 𝑃𝑧 ∈ dom 𝑋))
65imdistani 567 . 2 ((𝜑𝑧 dom 𝑃) → (𝜑𝑧 ∈ dom 𝑋))
71, 2rrvfn 34281 . . . 4 (𝜑𝑋 Fn dom 𝑃)
8 fnfun 6662 . . . 4 (𝑋 Fn dom 𝑃 → Fun 𝑋)
97, 8syl 17 . . 3 (𝜑 → Fun 𝑋)
10 orrvccel.4 . . 3 (𝜑𝐴𝑉)
119, 2, 10elorvc 34295 . 2 ((𝜑𝑧 ∈ dom 𝑋) → (𝑧 ∈ (𝑋RV/𝑐𝑅𝐴) ↔ (𝑋𝑧)𝑅𝐴))
126, 11syl 17 1 ((𝜑𝑧 dom 𝑃) → (𝑧 ∈ (𝑋RV/𝑐𝑅𝐴) ↔ (𝑋𝑧)𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wcel 2099   cuni 4915   class class class wbr 5155  dom cdm 5684  Fun wfun 6550   Fn wfn 6551  cfv 6556  (class class class)co 7426  Probcprb 34243  rRndVarcrrv 34276  RV/𝑐corvc 34291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748  ax-cnex 11216  ax-resscn 11217  ax-pre-lttri 11234  ax-pre-lttrn 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-int 4957  df-iun 5005  df-br 5156  df-opab 5218  df-mpt 5239  df-id 5582  df-po 5596  df-so 5597  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-ov 7429  df-oprab 7430  df-mpo 7431  df-1st 8005  df-2nd 8006  df-er 8736  df-map 8859  df-en 8977  df-dom 8978  df-sdom 8979  df-pnf 11302  df-mnf 11303  df-xr 11304  df-ltxr 11305  df-le 11306  df-ioo 13384  df-topgen 17460  df-top 22890  df-bases 22943  df-esum 33863  df-siga 33944  df-sigagen 33974  df-brsiga 34017  df-meas 34031  df-mbfm 34085  df-prob 34244  df-rrv 34277  df-orvc 34292
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator