| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elorrvc | Structured version Visualization version GIF version | ||
| Description: Elementhood of a preimage for a real-valued random variable. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
| Ref | Expression |
|---|---|
| orrvccel.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
| orrvccel.2 | ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) |
| orrvccel.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| elorrvc | ⊢ ((𝜑 ∧ 𝑧 ∈ ∪ dom 𝑃) → (𝑧 ∈ (𝑋∘RV/𝑐𝑅𝐴) ↔ (𝑋‘𝑧)𝑅𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orrvccel.1 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
| 2 | orrvccel.2 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) | |
| 3 | 1, 2 | rrvdm 34531 | . . . . 5 ⊢ (𝜑 → dom 𝑋 = ∪ dom 𝑃) |
| 4 | 3 | eleq2d 2819 | . . . 4 ⊢ (𝜑 → (𝑧 ∈ dom 𝑋 ↔ 𝑧 ∈ ∪ dom 𝑃)) |
| 5 | 4 | biimprd 248 | . . 3 ⊢ (𝜑 → (𝑧 ∈ ∪ dom 𝑃 → 𝑧 ∈ dom 𝑋)) |
| 6 | 5 | imdistani 568 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ ∪ dom 𝑃) → (𝜑 ∧ 𝑧 ∈ dom 𝑋)) |
| 7 | 1, 2 | rrvfn 34530 | . . . 4 ⊢ (𝜑 → 𝑋 Fn ∪ dom 𝑃) |
| 8 | fnfun 6589 | . . . 4 ⊢ (𝑋 Fn ∪ dom 𝑃 → Fun 𝑋) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → Fun 𝑋) |
| 10 | orrvccel.4 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 11 | 9, 2, 10 | elorvc 34545 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ dom 𝑋) → (𝑧 ∈ (𝑋∘RV/𝑐𝑅𝐴) ↔ (𝑋‘𝑧)𝑅𝐴)) |
| 12 | 6, 11 | syl 17 | 1 ⊢ ((𝜑 ∧ 𝑧 ∈ ∪ dom 𝑃) → (𝑧 ∈ (𝑋∘RV/𝑐𝑅𝐴) ↔ (𝑋‘𝑧)𝑅𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2113 ∪ cuni 4860 class class class wbr 5095 dom cdm 5621 Fun wfun 6483 Fn wfn 6484 ‘cfv 6489 (class class class)co 7355 Probcprb 34492 rRndVarcrrv 34525 ∘RV/𝑐corvc 34541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-pre-lttri 11091 ax-pre-lttrn 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-er 8631 df-map 8761 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-ioo 13256 df-topgen 17354 df-top 22829 df-bases 22881 df-esum 34113 df-siga 34194 df-sigagen 34224 df-brsiga 34267 df-meas 34281 df-mbfm 34335 df-prob 34493 df-rrv 34526 df-orvc 34542 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |