Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elorrvc Structured version   Visualization version   GIF version

Theorem elorrvc 34461
Description: Elementhood of a preimage for a real-valued random variable. (Contributed by Thierry Arnoux, 21-Jan-2017.)
Hypotheses
Ref Expression
orrvccel.1 (𝜑𝑃 ∈ Prob)
orrvccel.2 (𝜑𝑋 ∈ (rRndVar‘𝑃))
orrvccel.4 (𝜑𝐴𝑉)
Assertion
Ref Expression
elorrvc ((𝜑𝑧 dom 𝑃) → (𝑧 ∈ (𝑋RV/𝑐𝑅𝐴) ↔ (𝑋𝑧)𝑅𝐴))
Distinct variable groups:   𝑧,𝐴   𝑧,𝑅   𝑧,𝑋
Allowed substitution hints:   𝜑(𝑧)   𝑃(𝑧)   𝑉(𝑧)

Proof of Theorem elorrvc
StepHypRef Expression
1 orrvccel.1 . . . . . 6 (𝜑𝑃 ∈ Prob)
2 orrvccel.2 . . . . . 6 (𝜑𝑋 ∈ (rRndVar‘𝑃))
31, 2rrvdm 34443 . . . . 5 (𝜑 → dom 𝑋 = dom 𝑃)
43eleq2d 2815 . . . 4 (𝜑 → (𝑧 ∈ dom 𝑋𝑧 dom 𝑃))
54biimprd 248 . . 3 (𝜑 → (𝑧 dom 𝑃𝑧 ∈ dom 𝑋))
65imdistani 568 . 2 ((𝜑𝑧 dom 𝑃) → (𝜑𝑧 ∈ dom 𝑋))
71, 2rrvfn 34442 . . . 4 (𝜑𝑋 Fn dom 𝑃)
8 fnfun 6620 . . . 4 (𝑋 Fn dom 𝑃 → Fun 𝑋)
97, 8syl 17 . . 3 (𝜑 → Fun 𝑋)
10 orrvccel.4 . . 3 (𝜑𝐴𝑉)
119, 2, 10elorvc 34457 . 2 ((𝜑𝑧 ∈ dom 𝑋) → (𝑧 ∈ (𝑋RV/𝑐𝑅𝐴) ↔ (𝑋𝑧)𝑅𝐴))
126, 11syl 17 1 ((𝜑𝑧 dom 𝑃) → (𝑧 ∈ (𝑋RV/𝑐𝑅𝐴) ↔ (𝑋𝑧)𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109   cuni 4873   class class class wbr 5109  dom cdm 5640  Fun wfun 6507   Fn wfn 6508  cfv 6513  (class class class)co 7389  Probcprb 34404  rRndVarcrrv 34437  RV/𝑐corvc 34453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-pre-lttri 11148  ax-pre-lttrn 11149
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-po 5548  df-so 5549  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-er 8673  df-map 8803  df-en 8921  df-dom 8922  df-sdom 8923  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-ioo 13316  df-topgen 17412  df-top 22787  df-bases 22839  df-esum 34024  df-siga 34105  df-sigagen 34135  df-brsiga 34178  df-meas 34192  df-mbfm 34246  df-prob 34405  df-rrv 34438  df-orvc 34454
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator