![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elorrvc | Structured version Visualization version GIF version |
Description: Elementhood of a preimage for a real-valued random variable. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
Ref | Expression |
---|---|
orrvccel.1 | β’ (π β π β Prob) |
orrvccel.2 | β’ (π β π β (rRndVarβπ)) |
orrvccel.4 | β’ (π β π΄ β π) |
Ref | Expression |
---|---|
elorrvc | β’ ((π β§ π§ β βͺ dom π) β (π§ β (πβRV/ππ π΄) β (πβπ§)π π΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orrvccel.1 | . . . . . 6 β’ (π β π β Prob) | |
2 | orrvccel.2 | . . . . . 6 β’ (π β π β (rRndVarβπ)) | |
3 | 1, 2 | rrvdm 33433 | . . . . 5 β’ (π β dom π = βͺ dom π) |
4 | 3 | eleq2d 2819 | . . . 4 β’ (π β (π§ β dom π β π§ β βͺ dom π)) |
5 | 4 | biimprd 247 | . . 3 β’ (π β (π§ β βͺ dom π β π§ β dom π)) |
6 | 5 | imdistani 569 | . 2 β’ ((π β§ π§ β βͺ dom π) β (π β§ π§ β dom π)) |
7 | 1, 2 | rrvfn 33432 | . . . 4 β’ (π β π Fn βͺ dom π) |
8 | fnfun 6646 | . . . 4 β’ (π Fn βͺ dom π β Fun π) | |
9 | 7, 8 | syl 17 | . . 3 β’ (π β Fun π) |
10 | orrvccel.4 | . . 3 β’ (π β π΄ β π) | |
11 | 9, 2, 10 | elorvc 33446 | . 2 β’ ((π β§ π§ β dom π) β (π§ β (πβRV/ππ π΄) β (πβπ§)π π΄)) |
12 | 6, 11 | syl 17 | 1 β’ ((π β§ π§ β βͺ dom π) β (π§ β (πβRV/ππ π΄) β (πβπ§)π π΄)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 β wcel 2106 βͺ cuni 4907 class class class wbr 5147 dom cdm 5675 Fun wfun 6534 Fn wfn 6535 βcfv 6540 (class class class)co 7405 Probcprb 33394 rRndVarcrrv 33427 βRV/πcorvc 33442 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-pre-lttri 11180 ax-pre-lttrn 11181 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-ioo 13324 df-topgen 17385 df-top 22387 df-bases 22440 df-esum 33014 df-siga 33095 df-sigagen 33125 df-brsiga 33168 df-meas 33182 df-mbfm 33236 df-prob 33395 df-rrv 33428 df-orvc 33443 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |