Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orvcval2 Structured version   Visualization version   GIF version

Theorem orvcval2 31329
Description: Another way to express the value of the preimage mapping operator. (Contributed by Thierry Arnoux, 19-Jan-2017.)
Hypotheses
Ref Expression
orvcval.1 (𝜑 → Fun 𝑋)
orvcval.2 (𝜑𝑋𝑉)
orvcval.3 (𝜑𝐴𝑊)
Assertion
Ref Expression
orvcval2 (𝜑 → (𝑋RV/𝑐𝑅𝐴) = {𝑧 ∈ dom 𝑋 ∣ (𝑋𝑧)𝑅𝐴})
Distinct variable groups:   𝑧,𝐴   𝑧,𝑅   𝑧,𝑋
Allowed substitution hints:   𝜑(𝑧)   𝑉(𝑧)   𝑊(𝑧)

Proof of Theorem orvcval2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 orvcval.1 . . 3 (𝜑 → Fun 𝑋)
2 orvcval.2 . . 3 (𝜑𝑋𝑉)
3 orvcval.3 . . 3 (𝜑𝐴𝑊)
41, 2, 3orvcval 31328 . 2 (𝜑 → (𝑋RV/𝑐𝑅𝐴) = (𝑋 “ {𝑦𝑦𝑅𝐴}))
5 funfn 6262 . . . 4 (Fun 𝑋𝑋 Fn dom 𝑋)
61, 5sylib 219 . . 3 (𝜑𝑋 Fn dom 𝑋)
7 fncnvima2 6703 . . 3 (𝑋 Fn dom 𝑋 → (𝑋 “ {𝑦𝑦𝑅𝐴}) = {𝑧 ∈ dom 𝑋 ∣ (𝑋𝑧) ∈ {𝑦𝑦𝑅𝐴}})
86, 7syl 17 . 2 (𝜑 → (𝑋 “ {𝑦𝑦𝑅𝐴}) = {𝑧 ∈ dom 𝑋 ∣ (𝑋𝑧) ∈ {𝑦𝑦𝑅𝐴}})
9 fvex 6558 . . . . 5 (𝑋𝑧) ∈ V
10 breq1 4971 . . . . 5 (𝑦 = (𝑋𝑧) → (𝑦𝑅𝐴 ↔ (𝑋𝑧)𝑅𝐴))
119, 10elab 3608 . . . 4 ((𝑋𝑧) ∈ {𝑦𝑦𝑅𝐴} ↔ (𝑋𝑧)𝑅𝐴)
1211rabbii 3421 . . 3 {𝑧 ∈ dom 𝑋 ∣ (𝑋𝑧) ∈ {𝑦𝑦𝑅𝐴}} = {𝑧 ∈ dom 𝑋 ∣ (𝑋𝑧)𝑅𝐴}
1312a1i 11 . 2 (𝜑 → {𝑧 ∈ dom 𝑋 ∣ (𝑋𝑧) ∈ {𝑦𝑦𝑅𝐴}} = {𝑧 ∈ dom 𝑋 ∣ (𝑋𝑧)𝑅𝐴})
144, 8, 133eqtrd 2837 1 (𝜑 → (𝑋RV/𝑐𝑅𝐴) = {𝑧 ∈ dom 𝑋 ∣ (𝑋𝑧)𝑅𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1525  wcel 2083  {cab 2777  {crab 3111   class class class wbr 4968  ccnv 5449  dom cdm 5450  cima 5453  Fun wfun 6226   Fn wfn 6227  cfv 6232  (class class class)co 7023  RV/𝑐corvc 31326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-ral 3112  df-rex 3113  df-rab 3116  df-v 3442  df-sbc 3712  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-op 4485  df-uni 4752  df-br 4969  df-opab 5031  df-id 5355  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-iota 6196  df-fun 6234  df-fn 6235  df-fv 6240  df-ov 7026  df-oprab 7027  df-mpo 7028  df-orvc 31327
This theorem is referenced by:  elorvc  31330
  Copyright terms: Public domain W3C validator