Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orvcval2 Structured version   Visualization version   GIF version

Theorem orvcval2 32425
Description: Another way to express the value of the preimage mapping operator. (Contributed by Thierry Arnoux, 19-Jan-2017.)
Hypotheses
Ref Expression
orvcval.1 (𝜑 → Fun 𝑋)
orvcval.2 (𝜑𝑋𝑉)
orvcval.3 (𝜑𝐴𝑊)
Assertion
Ref Expression
orvcval2 (𝜑 → (𝑋RV/𝑐𝑅𝐴) = {𝑧 ∈ dom 𝑋 ∣ (𝑋𝑧)𝑅𝐴})
Distinct variable groups:   𝑧,𝐴   𝑧,𝑅   𝑧,𝑋
Allowed substitution hints:   𝜑(𝑧)   𝑉(𝑧)   𝑊(𝑧)

Proof of Theorem orvcval2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 orvcval.1 . . 3 (𝜑 → Fun 𝑋)
2 orvcval.2 . . 3 (𝜑𝑋𝑉)
3 orvcval.3 . . 3 (𝜑𝐴𝑊)
41, 2, 3orvcval 32424 . 2 (𝜑 → (𝑋RV/𝑐𝑅𝐴) = (𝑋 “ {𝑦𝑦𝑅𝐴}))
5 funfn 6464 . . . 4 (Fun 𝑋𝑋 Fn dom 𝑋)
61, 5sylib 217 . . 3 (𝜑𝑋 Fn dom 𝑋)
7 fncnvima2 6938 . . 3 (𝑋 Fn dom 𝑋 → (𝑋 “ {𝑦𝑦𝑅𝐴}) = {𝑧 ∈ dom 𝑋 ∣ (𝑋𝑧) ∈ {𝑦𝑦𝑅𝐴}})
86, 7syl 17 . 2 (𝜑 → (𝑋 “ {𝑦𝑦𝑅𝐴}) = {𝑧 ∈ dom 𝑋 ∣ (𝑋𝑧) ∈ {𝑦𝑦𝑅𝐴}})
9 fvex 6787 . . . . 5 (𝑋𝑧) ∈ V
10 breq1 5077 . . . . 5 (𝑦 = (𝑋𝑧) → (𝑦𝑅𝐴 ↔ (𝑋𝑧)𝑅𝐴))
119, 10elab 3609 . . . 4 ((𝑋𝑧) ∈ {𝑦𝑦𝑅𝐴} ↔ (𝑋𝑧)𝑅𝐴)
1211rabbii 3408 . . 3 {𝑧 ∈ dom 𝑋 ∣ (𝑋𝑧) ∈ {𝑦𝑦𝑅𝐴}} = {𝑧 ∈ dom 𝑋 ∣ (𝑋𝑧)𝑅𝐴}
1312a1i 11 . 2 (𝜑 → {𝑧 ∈ dom 𝑋 ∣ (𝑋𝑧) ∈ {𝑦𝑦𝑅𝐴}} = {𝑧 ∈ dom 𝑋 ∣ (𝑋𝑧)𝑅𝐴})
144, 8, 133eqtrd 2782 1 (𝜑 → (𝑋RV/𝑐𝑅𝐴) = {𝑧 ∈ dom 𝑋 ∣ (𝑋𝑧)𝑅𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  {cab 2715  {crab 3068   class class class wbr 5074  ccnv 5588  dom cdm 5589  cima 5592  Fun wfun 6427   Fn wfn 6428  cfv 6433  (class class class)co 7275  RV/𝑐corvc 32422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-orvc 32423
This theorem is referenced by:  elorvc  32426
  Copyright terms: Public domain W3C validator