| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > orvcval2 | Structured version Visualization version GIF version | ||
| Description: Another way to express the value of the preimage mapping operator. (Contributed by Thierry Arnoux, 19-Jan-2017.) |
| Ref | Expression |
|---|---|
| orvcval.1 | ⊢ (𝜑 → Fun 𝑋) |
| orvcval.2 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| orvcval.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| orvcval2 | ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧)𝑅𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orvcval.1 | . . 3 ⊢ (𝜑 → Fun 𝑋) | |
| 2 | orvcval.2 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 3 | orvcval.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑊) | |
| 4 | 1, 2, 3 | orvcval 34425 | . 2 ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴})) |
| 5 | funfn 6516 | . . . 4 ⊢ (Fun 𝑋 ↔ 𝑋 Fn dom 𝑋) | |
| 6 | 1, 5 | sylib 218 | . . 3 ⊢ (𝜑 → 𝑋 Fn dom 𝑋) |
| 7 | fncnvima2 6999 | . . 3 ⊢ (𝑋 Fn dom 𝑋 → (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴}) = {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧) ∈ {𝑦 ∣ 𝑦𝑅𝐴}}) | |
| 8 | 6, 7 | syl 17 | . 2 ⊢ (𝜑 → (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴}) = {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧) ∈ {𝑦 ∣ 𝑦𝑅𝐴}}) |
| 9 | fvex 6839 | . . . . 5 ⊢ (𝑋‘𝑧) ∈ V | |
| 10 | breq1 5098 | . . . . 5 ⊢ (𝑦 = (𝑋‘𝑧) → (𝑦𝑅𝐴 ↔ (𝑋‘𝑧)𝑅𝐴)) | |
| 11 | 9, 10 | elab 3637 | . . . 4 ⊢ ((𝑋‘𝑧) ∈ {𝑦 ∣ 𝑦𝑅𝐴} ↔ (𝑋‘𝑧)𝑅𝐴) |
| 12 | 11 | rabbii 3402 | . . 3 ⊢ {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧) ∈ {𝑦 ∣ 𝑦𝑅𝐴}} = {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧)𝑅𝐴} |
| 13 | 12 | a1i 11 | . 2 ⊢ (𝜑 → {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧) ∈ {𝑦 ∣ 𝑦𝑅𝐴}} = {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧)𝑅𝐴}) |
| 14 | 4, 8, 13 | 3eqtrd 2768 | 1 ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧)𝑅𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cab 2707 {crab 3396 class class class wbr 5095 ◡ccnv 5622 dom cdm 5623 “ cima 5626 Fun wfun 6480 Fn wfn 6481 ‘cfv 6486 (class class class)co 7353 ∘RV/𝑐corvc 34423 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-orvc 34424 |
| This theorem is referenced by: elorvc 34427 |
| Copyright terms: Public domain | W3C validator |