Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orvcval2 Structured version   Visualization version   GIF version

Theorem orvcval2 34440
Description: Another way to express the value of the preimage mapping operator. (Contributed by Thierry Arnoux, 19-Jan-2017.)
Hypotheses
Ref Expression
orvcval.1 (𝜑 → Fun 𝑋)
orvcval.2 (𝜑𝑋𝑉)
orvcval.3 (𝜑𝐴𝑊)
Assertion
Ref Expression
orvcval2 (𝜑 → (𝑋RV/𝑐𝑅𝐴) = {𝑧 ∈ dom 𝑋 ∣ (𝑋𝑧)𝑅𝐴})
Distinct variable groups:   𝑧,𝐴   𝑧,𝑅   𝑧,𝑋
Allowed substitution hints:   𝜑(𝑧)   𝑉(𝑧)   𝑊(𝑧)

Proof of Theorem orvcval2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 orvcval.1 . . 3 (𝜑 → Fun 𝑋)
2 orvcval.2 . . 3 (𝜑𝑋𝑉)
3 orvcval.3 . . 3 (𝜑𝐴𝑊)
41, 2, 3orvcval 34439 . 2 (𝜑 → (𝑋RV/𝑐𝑅𝐴) = (𝑋 “ {𝑦𝑦𝑅𝐴}))
5 funfn 6598 . . . 4 (Fun 𝑋𝑋 Fn dom 𝑋)
61, 5sylib 218 . . 3 (𝜑𝑋 Fn dom 𝑋)
7 fncnvima2 7081 . . 3 (𝑋 Fn dom 𝑋 → (𝑋 “ {𝑦𝑦𝑅𝐴}) = {𝑧 ∈ dom 𝑋 ∣ (𝑋𝑧) ∈ {𝑦𝑦𝑅𝐴}})
86, 7syl 17 . 2 (𝜑 → (𝑋 “ {𝑦𝑦𝑅𝐴}) = {𝑧 ∈ dom 𝑋 ∣ (𝑋𝑧) ∈ {𝑦𝑦𝑅𝐴}})
9 fvex 6920 . . . . 5 (𝑋𝑧) ∈ V
10 breq1 5151 . . . . 5 (𝑦 = (𝑋𝑧) → (𝑦𝑅𝐴 ↔ (𝑋𝑧)𝑅𝐴))
119, 10elab 3681 . . . 4 ((𝑋𝑧) ∈ {𝑦𝑦𝑅𝐴} ↔ (𝑋𝑧)𝑅𝐴)
1211rabbii 3439 . . 3 {𝑧 ∈ dom 𝑋 ∣ (𝑋𝑧) ∈ {𝑦𝑦𝑅𝐴}} = {𝑧 ∈ dom 𝑋 ∣ (𝑋𝑧)𝑅𝐴}
1312a1i 11 . 2 (𝜑 → {𝑧 ∈ dom 𝑋 ∣ (𝑋𝑧) ∈ {𝑦𝑦𝑅𝐴}} = {𝑧 ∈ dom 𝑋 ∣ (𝑋𝑧)𝑅𝐴})
144, 8, 133eqtrd 2779 1 (𝜑 → (𝑋RV/𝑐𝑅𝐴) = {𝑧 ∈ dom 𝑋 ∣ (𝑋𝑧)𝑅𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  {cab 2712  {crab 3433   class class class wbr 5148  ccnv 5688  dom cdm 5689  cima 5692  Fun wfun 6557   Fn wfn 6558  cfv 6563  (class class class)co 7431  RV/𝑐corvc 34437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-orvc 34438
This theorem is referenced by:  elorvc  34441
  Copyright terms: Public domain W3C validator