| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > orvcval2 | Structured version Visualization version GIF version | ||
| Description: Another way to express the value of the preimage mapping operator. (Contributed by Thierry Arnoux, 19-Jan-2017.) |
| Ref | Expression |
|---|---|
| orvcval.1 | ⊢ (𝜑 → Fun 𝑋) |
| orvcval.2 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| orvcval.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| orvcval2 | ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧)𝑅𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orvcval.1 | . . 3 ⊢ (𝜑 → Fun 𝑋) | |
| 2 | orvcval.2 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 3 | orvcval.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑊) | |
| 4 | 1, 2, 3 | orvcval 34495 | . 2 ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴})) |
| 5 | funfn 6571 | . . . 4 ⊢ (Fun 𝑋 ↔ 𝑋 Fn dom 𝑋) | |
| 6 | 1, 5 | sylib 218 | . . 3 ⊢ (𝜑 → 𝑋 Fn dom 𝑋) |
| 7 | fncnvima2 7056 | . . 3 ⊢ (𝑋 Fn dom 𝑋 → (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴}) = {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧) ∈ {𝑦 ∣ 𝑦𝑅𝐴}}) | |
| 8 | 6, 7 | syl 17 | . 2 ⊢ (𝜑 → (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴}) = {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧) ∈ {𝑦 ∣ 𝑦𝑅𝐴}}) |
| 9 | fvex 6894 | . . . . 5 ⊢ (𝑋‘𝑧) ∈ V | |
| 10 | breq1 5127 | . . . . 5 ⊢ (𝑦 = (𝑋‘𝑧) → (𝑦𝑅𝐴 ↔ (𝑋‘𝑧)𝑅𝐴)) | |
| 11 | 9, 10 | elab 3663 | . . . 4 ⊢ ((𝑋‘𝑧) ∈ {𝑦 ∣ 𝑦𝑅𝐴} ↔ (𝑋‘𝑧)𝑅𝐴) |
| 12 | 11 | rabbii 3426 | . . 3 ⊢ {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧) ∈ {𝑦 ∣ 𝑦𝑅𝐴}} = {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧)𝑅𝐴} |
| 13 | 12 | a1i 11 | . 2 ⊢ (𝜑 → {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧) ∈ {𝑦 ∣ 𝑦𝑅𝐴}} = {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧)𝑅𝐴}) |
| 14 | 4, 8, 13 | 3eqtrd 2775 | 1 ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧)𝑅𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cab 2714 {crab 3420 class class class wbr 5124 ◡ccnv 5658 dom cdm 5659 “ cima 5662 Fun wfun 6530 Fn wfn 6531 ‘cfv 6536 (class class class)co 7410 ∘RV/𝑐corvc 34493 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-orvc 34494 |
| This theorem is referenced by: elorvc 34497 |
| Copyright terms: Public domain | W3C validator |