| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > orvcval2 | Structured version Visualization version GIF version | ||
| Description: Another way to express the value of the preimage mapping operator. (Contributed by Thierry Arnoux, 19-Jan-2017.) |
| Ref | Expression |
|---|---|
| orvcval.1 | ⊢ (𝜑 → Fun 𝑋) |
| orvcval.2 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| orvcval.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| orvcval2 | ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧)𝑅𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orvcval.1 | . . 3 ⊢ (𝜑 → Fun 𝑋) | |
| 2 | orvcval.2 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 3 | orvcval.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑊) | |
| 4 | 1, 2, 3 | orvcval 34401 | . 2 ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴})) |
| 5 | funfn 6577 | . . . 4 ⊢ (Fun 𝑋 ↔ 𝑋 Fn dom 𝑋) | |
| 6 | 1, 5 | sylib 218 | . . 3 ⊢ (𝜑 → 𝑋 Fn dom 𝑋) |
| 7 | fncnvima2 7062 | . . 3 ⊢ (𝑋 Fn dom 𝑋 → (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴}) = {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧) ∈ {𝑦 ∣ 𝑦𝑅𝐴}}) | |
| 8 | 6, 7 | syl 17 | . 2 ⊢ (𝜑 → (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴}) = {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧) ∈ {𝑦 ∣ 𝑦𝑅𝐴}}) |
| 9 | fvex 6900 | . . . . 5 ⊢ (𝑋‘𝑧) ∈ V | |
| 10 | breq1 5128 | . . . . 5 ⊢ (𝑦 = (𝑋‘𝑧) → (𝑦𝑅𝐴 ↔ (𝑋‘𝑧)𝑅𝐴)) | |
| 11 | 9, 10 | elab 3663 | . . . 4 ⊢ ((𝑋‘𝑧) ∈ {𝑦 ∣ 𝑦𝑅𝐴} ↔ (𝑋‘𝑧)𝑅𝐴) |
| 12 | 11 | rabbii 3426 | . . 3 ⊢ {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧) ∈ {𝑦 ∣ 𝑦𝑅𝐴}} = {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧)𝑅𝐴} |
| 13 | 12 | a1i 11 | . 2 ⊢ (𝜑 → {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧) ∈ {𝑦 ∣ 𝑦𝑅𝐴}} = {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧)𝑅𝐴}) |
| 14 | 4, 8, 13 | 3eqtrd 2773 | 1 ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧)𝑅𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {cab 2712 {crab 3420 class class class wbr 5125 ◡ccnv 5666 dom cdm 5667 “ cima 5670 Fun wfun 6536 Fn wfn 6537 ‘cfv 6542 (class class class)co 7414 ∘RV/𝑐corvc 34399 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-sbc 3773 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-orvc 34400 |
| This theorem is referenced by: elorvc 34403 |
| Copyright terms: Public domain | W3C validator |