Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpglem3 Structured version   Visualization version   GIF version

Theorem elpglem3 49675
Description: Lemma for elpg 49676. (Contributed by Emmett Weisz, 28-Aug-2021.)
Assertion
Ref Expression
elpglem3 (∃𝑥(𝑥 ⊆ Pg ∧ 𝐴 ∈ ((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))‘𝑥)) ↔ (𝐴 ∈ (V × V) ∧ ∃𝑥(𝑥 ⊆ Pg ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem elpglem3
StepHypRef Expression
1 vex 3448 . . . . . . . 8 𝑥 ∈ V
2 pweq 4573 . . . . . . . . . 10 (𝑦 = 𝑥 → 𝒫 𝑦 = 𝒫 𝑥)
32sqxpeqd 5663 . . . . . . . . 9 (𝑦 = 𝑥 → (𝒫 𝑦 × 𝒫 𝑦) = (𝒫 𝑥 × 𝒫 𝑥))
4 eqid 2729 . . . . . . . . 9 (𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦)) = (𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))
51pwex 5330 . . . . . . . . . 10 𝒫 𝑥 ∈ V
65, 5xpex 7709 . . . . . . . . 9 (𝒫 𝑥 × 𝒫 𝑥) ∈ V
73, 4, 6fvmpt 6950 . . . . . . . 8 (𝑥 ∈ V → ((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))‘𝑥) = (𝒫 𝑥 × 𝒫 𝑥))
81, 7ax-mp 5 . . . . . . 7 ((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))‘𝑥) = (𝒫 𝑥 × 𝒫 𝑥)
98eleq2i 2820 . . . . . 6 (𝐴 ∈ ((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))‘𝑥) ↔ 𝐴 ∈ (𝒫 𝑥 × 𝒫 𝑥))
10 elxp7 7982 . . . . . 6 (𝐴 ∈ (𝒫 𝑥 × 𝒫 𝑥) ↔ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥)))
119, 10bitri 275 . . . . 5 (𝐴 ∈ ((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))‘𝑥) ↔ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥)))
1211anbi2i 623 . . . 4 ((𝑥 ⊆ Pg ∧ 𝐴 ∈ ((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))‘𝑥)) ↔ (𝑥 ⊆ Pg ∧ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥))))
13 an12 645 . . . 4 ((𝑥 ⊆ Pg ∧ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥))) ↔ (𝐴 ∈ (V × V) ∧ (𝑥 ⊆ Pg ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥))))
1412, 13bitri 275 . . 3 ((𝑥 ⊆ Pg ∧ 𝐴 ∈ ((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))‘𝑥)) ↔ (𝐴 ∈ (V × V) ∧ (𝑥 ⊆ Pg ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥))))
1514exbii 1848 . 2 (∃𝑥(𝑥 ⊆ Pg ∧ 𝐴 ∈ ((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))‘𝑥)) ↔ ∃𝑥(𝐴 ∈ (V × V) ∧ (𝑥 ⊆ Pg ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥))))
16 19.42v 1953 . 2 (∃𝑥(𝐴 ∈ (V × V) ∧ (𝑥 ⊆ Pg ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥))) ↔ (𝐴 ∈ (V × V) ∧ ∃𝑥(𝑥 ⊆ Pg ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥))))
1715, 16bitri 275 1 (∃𝑥(𝑥 ⊆ Pg ∧ 𝐴 ∈ ((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))‘𝑥)) ↔ (𝐴 ∈ (V × V) ∧ ∃𝑥(𝑥 ⊆ Pg ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  Vcvv 3444  wss 3911  𝒫 cpw 4559  cmpt 5183   × cxp 5629  cfv 6499  1st c1st 7945  2nd c2nd 7946  Pgcpg 49671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-iota 6452  df-fun 6501  df-fv 6507  df-1st 7947  df-2nd 7948
This theorem is referenced by:  elpg  49676
  Copyright terms: Public domain W3C validator