Proof of Theorem elpglem3
Step | Hyp | Ref
| Expression |
1 | | vex 3426 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
2 | | pweq 4546 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → 𝒫 𝑦 = 𝒫 𝑥) |
3 | 2 | sqxpeqd 5612 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → (𝒫 𝑦 × 𝒫 𝑦) = (𝒫 𝑥 × 𝒫 𝑥)) |
4 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑦 ∈ V ↦ (𝒫
𝑦 × 𝒫 𝑦)) = (𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦)) |
5 | 1 | pwex 5298 |
. . . . . . . . . 10
⊢ 𝒫
𝑥 ∈ V |
6 | 5, 5 | xpex 7581 |
. . . . . . . . 9
⊢
(𝒫 𝑥 ×
𝒫 𝑥) ∈
V |
7 | 3, 4, 6 | fvmpt 6857 |
. . . . . . . 8
⊢ (𝑥 ∈ V → ((𝑦 ∈ V ↦ (𝒫
𝑦 × 𝒫 𝑦))‘𝑥) = (𝒫 𝑥 × 𝒫 𝑥)) |
8 | 1, 7 | ax-mp 5 |
. . . . . . 7
⊢ ((𝑦 ∈ V ↦ (𝒫
𝑦 × 𝒫 𝑦))‘𝑥) = (𝒫 𝑥 × 𝒫 𝑥) |
9 | 8 | eleq2i 2830 |
. . . . . 6
⊢ (𝐴 ∈ ((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))‘𝑥) ↔ 𝐴 ∈ (𝒫 𝑥 × 𝒫 𝑥)) |
10 | | elxp7 7839 |
. . . . . 6
⊢ (𝐴 ∈ (𝒫 𝑥 × 𝒫 𝑥) ↔ (𝐴 ∈ (V × V) ∧ ((1st
‘𝐴) ∈ 𝒫
𝑥 ∧ (2nd
‘𝐴) ∈ 𝒫
𝑥))) |
11 | 9, 10 | bitri 274 |
. . . . 5
⊢ (𝐴 ∈ ((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))‘𝑥) ↔ (𝐴 ∈ (V × V) ∧ ((1st
‘𝐴) ∈ 𝒫
𝑥 ∧ (2nd
‘𝐴) ∈ 𝒫
𝑥))) |
12 | 11 | anbi2i 622 |
. . . 4
⊢ ((𝑥 ⊆ Pg ∧ 𝐴 ∈ ((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))‘𝑥)) ↔ (𝑥 ⊆ Pg ∧ (𝐴 ∈ (V × V) ∧ ((1st
‘𝐴) ∈ 𝒫
𝑥 ∧ (2nd
‘𝐴) ∈ 𝒫
𝑥)))) |
13 | | an12 641 |
. . . 4
⊢ ((𝑥 ⊆ Pg ∧ (𝐴 ∈ (V × V) ∧
((1st ‘𝐴)
∈ 𝒫 𝑥 ∧
(2nd ‘𝐴)
∈ 𝒫 𝑥)))
↔ (𝐴 ∈ (V ×
V) ∧ (𝑥 ⊆ Pg
∧ ((1st ‘𝐴) ∈ 𝒫 𝑥 ∧ (2nd ‘𝐴) ∈ 𝒫 𝑥)))) |
14 | 12, 13 | bitri 274 |
. . 3
⊢ ((𝑥 ⊆ Pg ∧ 𝐴 ∈ ((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))‘𝑥)) ↔ (𝐴 ∈ (V × V) ∧ (𝑥 ⊆ Pg ∧
((1st ‘𝐴)
∈ 𝒫 𝑥 ∧
(2nd ‘𝐴)
∈ 𝒫 𝑥)))) |
15 | 14 | exbii 1851 |
. 2
⊢
(∃𝑥(𝑥 ⊆ Pg ∧ 𝐴 ∈ ((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))‘𝑥)) ↔ ∃𝑥(𝐴 ∈ (V × V) ∧ (𝑥 ⊆ Pg ∧
((1st ‘𝐴)
∈ 𝒫 𝑥 ∧
(2nd ‘𝐴)
∈ 𝒫 𝑥)))) |
16 | | 19.42v 1958 |
. 2
⊢
(∃𝑥(𝐴 ∈ (V × V) ∧
(𝑥 ⊆ Pg ∧
((1st ‘𝐴)
∈ 𝒫 𝑥 ∧
(2nd ‘𝐴)
∈ 𝒫 𝑥)))
↔ (𝐴 ∈ (V ×
V) ∧ ∃𝑥(𝑥 ⊆ Pg ∧
((1st ‘𝐴)
∈ 𝒫 𝑥 ∧
(2nd ‘𝐴)
∈ 𝒫 𝑥)))) |
17 | 15, 16 | bitri 274 |
1
⊢
(∃𝑥(𝑥 ⊆ Pg ∧ 𝐴 ∈ ((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))‘𝑥)) ↔ (𝐴 ∈ (V × V) ∧ ∃𝑥(𝑥 ⊆ Pg ∧ ((1st
‘𝐴) ∈ 𝒫
𝑥 ∧ (2nd
‘𝐴) ∈ 𝒫
𝑥)))) |