Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpglem3 Structured version   Visualization version   GIF version

Theorem elpglem3 48965
Description: Lemma for elpg 48966. (Contributed by Emmett Weisz, 28-Aug-2021.)
Assertion
Ref Expression
elpglem3 (∃𝑥(𝑥 ⊆ Pg ∧ 𝐴 ∈ ((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))‘𝑥)) ↔ (𝐴 ∈ (V × V) ∧ ∃𝑥(𝑥 ⊆ Pg ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem elpglem3
StepHypRef Expression
1 vex 3483 . . . . . . . 8 𝑥 ∈ V
2 pweq 4620 . . . . . . . . . 10 (𝑦 = 𝑥 → 𝒫 𝑦 = 𝒫 𝑥)
32sqxpeqd 5722 . . . . . . . . 9 (𝑦 = 𝑥 → (𝒫 𝑦 × 𝒫 𝑦) = (𝒫 𝑥 × 𝒫 𝑥))
4 eqid 2736 . . . . . . . . 9 (𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦)) = (𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))
51pwex 5387 . . . . . . . . . 10 𝒫 𝑥 ∈ V
65, 5xpex 7776 . . . . . . . . 9 (𝒫 𝑥 × 𝒫 𝑥) ∈ V
73, 4, 6fvmpt 7020 . . . . . . . 8 (𝑥 ∈ V → ((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))‘𝑥) = (𝒫 𝑥 × 𝒫 𝑥))
81, 7ax-mp 5 . . . . . . 7 ((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))‘𝑥) = (𝒫 𝑥 × 𝒫 𝑥)
98eleq2i 2832 . . . . . 6 (𝐴 ∈ ((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))‘𝑥) ↔ 𝐴 ∈ (𝒫 𝑥 × 𝒫 𝑥))
10 elxp7 8054 . . . . . 6 (𝐴 ∈ (𝒫 𝑥 × 𝒫 𝑥) ↔ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥)))
119, 10bitri 275 . . . . 5 (𝐴 ∈ ((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))‘𝑥) ↔ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥)))
1211anbi2i 623 . . . 4 ((𝑥 ⊆ Pg ∧ 𝐴 ∈ ((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))‘𝑥)) ↔ (𝑥 ⊆ Pg ∧ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥))))
13 an12 645 . . . 4 ((𝑥 ⊆ Pg ∧ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥))) ↔ (𝐴 ∈ (V × V) ∧ (𝑥 ⊆ Pg ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥))))
1412, 13bitri 275 . . 3 ((𝑥 ⊆ Pg ∧ 𝐴 ∈ ((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))‘𝑥)) ↔ (𝐴 ∈ (V × V) ∧ (𝑥 ⊆ Pg ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥))))
1514exbii 1846 . 2 (∃𝑥(𝑥 ⊆ Pg ∧ 𝐴 ∈ ((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))‘𝑥)) ↔ ∃𝑥(𝐴 ∈ (V × V) ∧ (𝑥 ⊆ Pg ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥))))
16 19.42v 1952 . 2 (∃𝑥(𝐴 ∈ (V × V) ∧ (𝑥 ⊆ Pg ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥))) ↔ (𝐴 ∈ (V × V) ∧ ∃𝑥(𝑥 ⊆ Pg ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥))))
1715, 16bitri 275 1 (∃𝑥(𝑥 ⊆ Pg ∧ 𝐴 ∈ ((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))‘𝑥)) ↔ (𝐴 ∈ (V × V) ∧ ∃𝑥(𝑥 ⊆ Pg ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1538  wex 1777  wcel 2107  Vcvv 3479  wss 3964  𝒫 cpw 4606  cmpt 5232   × cxp 5688  cfv 6566  1st c1st 8017  2nd c2nd 8018  Pgcpg 48961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5303  ax-nul 5313  ax-pow 5372  ax-pr 5439  ax-un 7758
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3435  df-v 3481  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-nul 4341  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5584  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-iota 6519  df-fun 6568  df-fv 6574  df-1st 8019  df-2nd 8020
This theorem is referenced by:  elpg  48966
  Copyright terms: Public domain W3C validator