MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpreimad Structured version   Visualization version   GIF version

Theorem elpreimad 7092
Description: Membership in the preimage of a set under a function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
elpreimad.f (𝜑𝐹 Fn 𝐴)
elpreimad.b (𝜑𝐵𝐴)
elpreimad.c (𝜑 → (𝐹𝐵) ∈ 𝐶)
Assertion
Ref Expression
elpreimad (𝜑𝐵 ∈ (𝐹𝐶))

Proof of Theorem elpreimad
StepHypRef Expression
1 elpreimad.b . 2 (𝜑𝐵𝐴)
2 elpreimad.c . 2 (𝜑 → (𝐹𝐵) ∈ 𝐶)
3 elpreimad.f . . 3 (𝜑𝐹 Fn 𝐴)
4 elpreima 7091 . . 3 (𝐹 Fn 𝐴 → (𝐵 ∈ (𝐹𝐶) ↔ (𝐵𝐴 ∧ (𝐹𝐵) ∈ 𝐶)))
53, 4syl 17 . 2 (𝜑 → (𝐵 ∈ (𝐹𝐶) ↔ (𝐵𝐴 ∧ (𝐹𝐵) ∈ 𝐶)))
61, 2, 5mpbir2and 712 1 (𝜑𝐵 ∈ (𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  ccnv 5699  cima 5703   Fn wfn 6568  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581
This theorem is referenced by:  fpwwe2lem8  10707  rhmpreimaidl  21310  evlslem3  22127  rhmpreimaprmidl  33444  ply1degltel  33580  ply1degleel  33581  ply1degltlss  33582  ply1degltdimlem  33635  ply1degltdim  33636  dimkerim  33640  lvecendof1f1o  33646  zndvdchrrhm  41927  smfsuplem1  46732
  Copyright terms: Public domain W3C validator