MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpreimad Structured version   Visualization version   GIF version

Theorem elpreimad 7001
Description: Membership in the preimage of a set under a function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
elpreimad.f (𝜑𝐹 Fn 𝐴)
elpreimad.b (𝜑𝐵𝐴)
elpreimad.c (𝜑 → (𝐹𝐵) ∈ 𝐶)
Assertion
Ref Expression
elpreimad (𝜑𝐵 ∈ (𝐹𝐶))

Proof of Theorem elpreimad
StepHypRef Expression
1 elpreimad.b . 2 (𝜑𝐵𝐴)
2 elpreimad.c . 2 (𝜑 → (𝐹𝐵) ∈ 𝐶)
3 elpreimad.f . . 3 (𝜑𝐹 Fn 𝐴)
4 elpreima 7000 . . 3 (𝐹 Fn 𝐴 → (𝐵 ∈ (𝐹𝐶) ↔ (𝐵𝐴 ∧ (𝐹𝐵) ∈ 𝐶)))
53, 4syl 17 . 2 (𝜑 → (𝐵 ∈ (𝐹𝐶) ↔ (𝐵𝐴 ∧ (𝐹𝐵) ∈ 𝐶)))
61, 2, 5mpbir2and 713 1 (𝜑𝐵 ∈ (𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2113  ccnv 5620  cima 5624   Fn wfn 6484  cfv 6489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-fv 6497
This theorem is referenced by:  fpwwe2lem8  10540  rhmpreimaidl  21223  evlslem3  22026  elrgspnsubrunlem2  33258  rhmpreimaprmidl  33460  ply1degltel  33603  ply1degleel  33604  ply1degltlss  33605  exsslsb  33681  ply1degltdimlem  33707  ply1degltdim  33708  dimkerim  33712  lvecendof1f1o  33718  zndvdchrrhm  42138  smfsuplem1  46971
  Copyright terms: Public domain W3C validator