MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpreimad Structured version   Visualization version   GIF version

Theorem elpreimad 6987
Description: Membership in the preimage of a set under a function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
elpreimad.f (𝜑𝐹 Fn 𝐴)
elpreimad.b (𝜑𝐵𝐴)
elpreimad.c (𝜑 → (𝐹𝐵) ∈ 𝐶)
Assertion
Ref Expression
elpreimad (𝜑𝐵 ∈ (𝐹𝐶))

Proof of Theorem elpreimad
StepHypRef Expression
1 elpreimad.b . 2 (𝜑𝐵𝐴)
2 elpreimad.c . 2 (𝜑 → (𝐹𝐵) ∈ 𝐶)
3 elpreimad.f . . 3 (𝜑𝐹 Fn 𝐴)
4 elpreima 6986 . . 3 (𝐹 Fn 𝐴 → (𝐵 ∈ (𝐹𝐶) ↔ (𝐵𝐴 ∧ (𝐹𝐵) ∈ 𝐶)))
53, 4syl 17 . 2 (𝜑 → (𝐵 ∈ (𝐹𝐶) ↔ (𝐵𝐴 ∧ (𝐹𝐵) ∈ 𝐶)))
61, 2, 5mpbir2and 713 1 (𝜑𝐵 ∈ (𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2111  ccnv 5610  cima 5614   Fn wfn 6471  cfv 6476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-fv 6484
This theorem is referenced by:  fpwwe2lem8  10524  rhmpreimaidl  21209  evlslem3  22010  elrgspnsubrunlem2  33207  rhmpreimaprmidl  33408  ply1degltel  33547  ply1degleel  33548  ply1degltlss  33549  exsslsb  33601  ply1degltdimlem  33627  ply1degltdim  33628  dimkerim  33632  lvecendof1f1o  33638  zndvdchrrhm  42005  smfsuplem1  46849
  Copyright terms: Public domain W3C validator