| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpreimad | Structured version Visualization version GIF version | ||
| Description: Membership in the preimage of a set under a function. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| elpreimad.f | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| elpreimad.b | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
| elpreimad.c | ⊢ (𝜑 → (𝐹‘𝐵) ∈ 𝐶) |
| Ref | Expression |
|---|---|
| elpreimad | ⊢ (𝜑 → 𝐵 ∈ (◡𝐹 “ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpreimad.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
| 2 | elpreimad.c | . 2 ⊢ (𝜑 → (𝐹‘𝐵) ∈ 𝐶) | |
| 3 | elpreimad.f | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 4 | elpreima 7033 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ (◡𝐹 “ 𝐶) ↔ (𝐵 ∈ 𝐴 ∧ (𝐹‘𝐵) ∈ 𝐶))) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → (𝐵 ∈ (◡𝐹 “ 𝐶) ↔ (𝐵 ∈ 𝐴 ∧ (𝐹‘𝐵) ∈ 𝐶))) |
| 6 | 1, 2, 5 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐵 ∈ (◡𝐹 “ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ◡ccnv 5640 “ cima 5644 Fn wfn 6509 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-fv 6522 |
| This theorem is referenced by: fpwwe2lem8 10598 rhmpreimaidl 21194 evlslem3 21994 elrgspnsubrunlem2 33206 rhmpreimaprmidl 33429 ply1degltel 33567 ply1degleel 33568 ply1degltlss 33569 exsslsb 33599 ply1degltdimlem 33625 ply1degltdim 33626 dimkerim 33630 lvecendof1f1o 33636 zndvdchrrhm 41967 smfsuplem1 46816 |
| Copyright terms: Public domain | W3C validator |