MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpreimad Structured version   Visualization version   GIF version

Theorem elpreimad 6936
Description: Membership in the preimage of a set under a function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
elpreimad.f (𝜑𝐹 Fn 𝐴)
elpreimad.b (𝜑𝐵𝐴)
elpreimad.c (𝜑 → (𝐹𝐵) ∈ 𝐶)
Assertion
Ref Expression
elpreimad (𝜑𝐵 ∈ (𝐹𝐶))

Proof of Theorem elpreimad
StepHypRef Expression
1 elpreimad.b . 2 (𝜑𝐵𝐴)
2 elpreimad.c . 2 (𝜑 → (𝐹𝐵) ∈ 𝐶)
3 elpreimad.f . . 3 (𝜑𝐹 Fn 𝐴)
4 elpreima 6935 . . 3 (𝐹 Fn 𝐴 → (𝐵 ∈ (𝐹𝐶) ↔ (𝐵𝐴 ∧ (𝐹𝐵) ∈ 𝐶)))
53, 4syl 17 . 2 (𝜑 → (𝐵 ∈ (𝐹𝐶) ↔ (𝐵𝐴 ∧ (𝐹𝐵) ∈ 𝐶)))
61, 2, 5mpbir2and 710 1 (𝜑𝐵 ∈ (𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  ccnv 5588  cima 5592   Fn wfn 6428  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441
This theorem is referenced by:  fpwwe2lem8  10394  evlslem3  21290  rhmpreimaidl  31603  rhmpreimaprmidl  31627  dimkerim  31708  smfsuplem1  44344
  Copyright terms: Public domain W3C validator