| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpreimad | Structured version Visualization version GIF version | ||
| Description: Membership in the preimage of a set under a function. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| elpreimad.f | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| elpreimad.b | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
| elpreimad.c | ⊢ (𝜑 → (𝐹‘𝐵) ∈ 𝐶) |
| Ref | Expression |
|---|---|
| elpreimad | ⊢ (𝜑 → 𝐵 ∈ (◡𝐹 “ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpreimad.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
| 2 | elpreimad.c | . 2 ⊢ (𝜑 → (𝐹‘𝐵) ∈ 𝐶) | |
| 3 | elpreimad.f | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 4 | elpreima 7030 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ (◡𝐹 “ 𝐶) ↔ (𝐵 ∈ 𝐴 ∧ (𝐹‘𝐵) ∈ 𝐶))) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → (𝐵 ∈ (◡𝐹 “ 𝐶) ↔ (𝐵 ∈ 𝐴 ∧ (𝐹‘𝐵) ∈ 𝐶))) |
| 6 | 1, 2, 5 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐵 ∈ (◡𝐹 “ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ◡ccnv 5637 “ cima 5641 Fn wfn 6506 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-fv 6519 |
| This theorem is referenced by: fpwwe2lem8 10591 rhmpreimaidl 21187 evlslem3 21987 elrgspnsubrunlem2 33199 rhmpreimaprmidl 33422 ply1degltel 33560 ply1degleel 33561 ply1degltlss 33562 exsslsb 33592 ply1degltdimlem 33618 ply1degltdim 33619 dimkerim 33623 lvecendof1f1o 33629 zndvdchrrhm 41960 smfsuplem1 46809 |
| Copyright terms: Public domain | W3C validator |