| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpreimad | Structured version Visualization version GIF version | ||
| Description: Membership in the preimage of a set under a function. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| elpreimad.f | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| elpreimad.b | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
| elpreimad.c | ⊢ (𝜑 → (𝐹‘𝐵) ∈ 𝐶) |
| Ref | Expression |
|---|---|
| elpreimad | ⊢ (𝜑 → 𝐵 ∈ (◡𝐹 “ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpreimad.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
| 2 | elpreimad.c | . 2 ⊢ (𝜑 → (𝐹‘𝐵) ∈ 𝐶) | |
| 3 | elpreimad.f | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 4 | elpreima 6986 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ (◡𝐹 “ 𝐶) ↔ (𝐵 ∈ 𝐴 ∧ (𝐹‘𝐵) ∈ 𝐶))) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → (𝐵 ∈ (◡𝐹 “ 𝐶) ↔ (𝐵 ∈ 𝐴 ∧ (𝐹‘𝐵) ∈ 𝐶))) |
| 6 | 1, 2, 5 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐵 ∈ (◡𝐹 “ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ◡ccnv 5610 “ cima 5614 Fn wfn 6471 ‘cfv 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-fv 6484 |
| This theorem is referenced by: fpwwe2lem8 10524 rhmpreimaidl 21209 evlslem3 22010 elrgspnsubrunlem2 33207 rhmpreimaprmidl 33408 ply1degltel 33547 ply1degleel 33548 ply1degltlss 33549 exsslsb 33601 ply1degltdimlem 33627 ply1degltdim 33628 dimkerim 33632 lvecendof1f1o 33638 zndvdchrrhm 42005 smfsuplem1 46849 |
| Copyright terms: Public domain | W3C validator |