MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpreimad Structured version   Visualization version   GIF version

Theorem elpreimad 6997
Description: Membership in the preimage of a set under a function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
elpreimad.f (𝜑𝐹 Fn 𝐴)
elpreimad.b (𝜑𝐵𝐴)
elpreimad.c (𝜑 → (𝐹𝐵) ∈ 𝐶)
Assertion
Ref Expression
elpreimad (𝜑𝐵 ∈ (𝐹𝐶))

Proof of Theorem elpreimad
StepHypRef Expression
1 elpreimad.b . 2 (𝜑𝐵𝐴)
2 elpreimad.c . 2 (𝜑 → (𝐹𝐵) ∈ 𝐶)
3 elpreimad.f . . 3 (𝜑𝐹 Fn 𝐴)
4 elpreima 6996 . . 3 (𝐹 Fn 𝐴 → (𝐵 ∈ (𝐹𝐶) ↔ (𝐵𝐴 ∧ (𝐹𝐵) ∈ 𝐶)))
53, 4syl 17 . 2 (𝜑 → (𝐵 ∈ (𝐹𝐶) ↔ (𝐵𝐴 ∧ (𝐹𝐵) ∈ 𝐶)))
61, 2, 5mpbir2and 713 1 (𝜑𝐵 ∈ (𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  ccnv 5622  cima 5626   Fn wfn 6481  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-fv 6494
This theorem is referenced by:  fpwwe2lem8  10551  rhmpreimaidl  21202  evlslem3  22003  elrgspnsubrunlem2  33201  rhmpreimaprmidl  33401  ply1degltel  33539  ply1degleel  33540  ply1degltlss  33541  exsslsb  33571  ply1degltdimlem  33597  ply1degltdim  33598  dimkerim  33602  lvecendof1f1o  33608  zndvdchrrhm  41948  smfsuplem1  46796
  Copyright terms: Public domain W3C validator