![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpreimad | Structured version Visualization version GIF version |
Description: Membership in the preimage of a set under a function. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
elpreimad.f | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
elpreimad.b | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
elpreimad.c | ⊢ (𝜑 → (𝐹‘𝐵) ∈ 𝐶) |
Ref | Expression |
---|---|
elpreimad | ⊢ (𝜑 → 𝐵 ∈ (◡𝐹 “ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpreimad.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
2 | elpreimad.c | . 2 ⊢ (𝜑 → (𝐹‘𝐵) ∈ 𝐶) | |
3 | elpreimad.f | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
4 | elpreima 7071 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ (◡𝐹 “ 𝐶) ↔ (𝐵 ∈ 𝐴 ∧ (𝐹‘𝐵) ∈ 𝐶))) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → (𝐵 ∈ (◡𝐹 “ 𝐶) ↔ (𝐵 ∈ 𝐴 ∧ (𝐹‘𝐵) ∈ 𝐶))) |
6 | 1, 2, 5 | mpbir2and 711 | 1 ⊢ (𝜑 → 𝐵 ∈ (◡𝐹 “ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2099 ◡ccnv 5681 “ cima 5685 Fn wfn 6549 ‘cfv 6554 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fn 6557 df-fv 6562 |
This theorem is referenced by: fpwwe2lem8 10681 rhmpreimaidl 21266 evlslem3 22095 rhmpreimaprmidl 33326 ply1degltel 33462 ply1degleel 33463 ply1degltlss 33464 ply1degltdimlem 33517 ply1degltdim 33518 dimkerim 33522 zndvdchrrhm 41669 smfsuplem1 46432 |
Copyright terms: Public domain | W3C validator |