Step | Hyp | Ref
| Expression |
1 | | cnvimass 6077 |
. . . 4
β’ (β‘πΉ β π½) β dom πΉ |
2 | | eqid 2732 |
. . . . 5
β’
(Baseβπ
) =
(Baseβπ
) |
3 | | eqid 2732 |
. . . . 5
β’
(Baseβπ) =
(Baseβπ) |
4 | 2, 3 | rhmf 20255 |
. . . 4
β’ (πΉ β (π
RingHom π) β πΉ:(Baseβπ
)βΆ(Baseβπ)) |
5 | 1, 4 | fssdm 6734 |
. . 3
β’ (πΉ β (π
RingHom π) β (β‘πΉ β π½) β (Baseβπ
)) |
6 | 5 | adantr 481 |
. 2
β’ ((πΉ β (π
RingHom π) β§ π½ β (LIdealβπ)) β (β‘πΉ β π½) β (Baseβπ
)) |
7 | 4 | adantr 481 |
. . . . 5
β’ ((πΉ β (π
RingHom π) β§ π½ β (LIdealβπ)) β πΉ:(Baseβπ
)βΆ(Baseβπ)) |
8 | 7 | ffund 6718 |
. . . 4
β’ ((πΉ β (π
RingHom π) β§ π½ β (LIdealβπ)) β Fun πΉ) |
9 | | rhmrcl1 20247 |
. . . . . . 7
β’ (πΉ β (π
RingHom π) β π
β Ring) |
10 | 9 | adantr 481 |
. . . . . 6
β’ ((πΉ β (π
RingHom π) β§ π½ β (LIdealβπ)) β π
β Ring) |
11 | | eqid 2732 |
. . . . . . 7
β’
(0gβπ
) = (0gβπ
) |
12 | 2, 11 | ring0cl 20077 |
. . . . . 6
β’ (π
β Ring β
(0gβπ
)
β (Baseβπ
)) |
13 | 10, 12 | syl 17 |
. . . . 5
β’ ((πΉ β (π
RingHom π) β§ π½ β (LIdealβπ)) β (0gβπ
) β (Baseβπ
)) |
14 | 7 | fdmd 6725 |
. . . . 5
β’ ((πΉ β (π
RingHom π) β§ π½ β (LIdealβπ)) β dom πΉ = (Baseβπ
)) |
15 | 13, 14 | eleqtrrd 2836 |
. . . 4
β’ ((πΉ β (π
RingHom π) β§ π½ β (LIdealβπ)) β (0gβπ
) β dom πΉ) |
16 | | rhmghm 20254 |
. . . . . . 7
β’ (πΉ β (π
RingHom π) β πΉ β (π
GrpHom π)) |
17 | | ghmmhm 19096 |
. . . . . . 7
β’ (πΉ β (π
GrpHom π) β πΉ β (π
MndHom π)) |
18 | | eqid 2732 |
. . . . . . . 8
β’
(0gβπ) = (0gβπ) |
19 | 11, 18 | mhm0 18676 |
. . . . . . 7
β’ (πΉ β (π
MndHom π) β (πΉβ(0gβπ
)) = (0gβπ)) |
20 | 16, 17, 19 | 3syl 18 |
. . . . . 6
β’ (πΉ β (π
RingHom π) β (πΉβ(0gβπ
)) = (0gβπ)) |
21 | 20 | adantr 481 |
. . . . 5
β’ ((πΉ β (π
RingHom π) β§ π½ β (LIdealβπ)) β (πΉβ(0gβπ
)) = (0gβπ)) |
22 | | rhmrcl2 20248 |
. . . . . 6
β’ (πΉ β (π
RingHom π) β π β Ring) |
23 | | eqid 2732 |
. . . . . . 7
β’
(LIdealβπ) =
(LIdealβπ) |
24 | 23, 18 | lidl0cl 20827 |
. . . . . 6
β’ ((π β Ring β§ π½ β (LIdealβπ)) β
(0gβπ)
β π½) |
25 | 22, 24 | sylan 580 |
. . . . 5
β’ ((πΉ β (π
RingHom π) β§ π½ β (LIdealβπ)) β (0gβπ) β π½) |
26 | 21, 25 | eqeltrd 2833 |
. . . 4
β’ ((πΉ β (π
RingHom π) β§ π½ β (LIdealβπ)) β (πΉβ(0gβπ
)) β π½) |
27 | | fvimacnv 7051 |
. . . . 5
β’ ((Fun
πΉ β§
(0gβπ
)
β dom πΉ) β
((πΉβ(0gβπ
)) β π½ β (0gβπ
) β (β‘πΉ β π½))) |
28 | 27 | biimpa 477 |
. . . 4
β’ (((Fun
πΉ β§
(0gβπ
)
β dom πΉ) β§ (πΉβ(0gβπ
)) β π½) β (0gβπ
) β (β‘πΉ β π½)) |
29 | 8, 15, 26, 28 | syl21anc 836 |
. . 3
β’ ((πΉ β (π
RingHom π) β§ π½ β (LIdealβπ)) β (0gβπ
) β (β‘πΉ β π½)) |
30 | 29 | ne0d 4334 |
. 2
β’ ((πΉ β (π
RingHom π) β§ π½ β (LIdealβπ)) β (β‘πΉ β π½) β β
) |
31 | 7 | ffnd 6715 |
. . . . . . 7
β’ ((πΉ β (π
RingHom π) β§ π½ β (LIdealβπ)) β πΉ Fn (Baseβπ
)) |
32 | 31 | ad3antrrr 728 |
. . . . . 6
β’
(((((πΉ β (π
RingHom π) β§ π½ β (LIdealβπ)) β§ π₯ β (Baseβπ
)) β§ π β (β‘πΉ β π½)) β§ π β (β‘πΉ β π½)) β πΉ Fn (Baseβπ
)) |
33 | 10 | ad3antrrr 728 |
. . . . . . 7
β’
(((((πΉ β (π
RingHom π) β§ π½ β (LIdealβπ)) β§ π₯ β (Baseβπ
)) β§ π β (β‘πΉ β π½)) β§ π β (β‘πΉ β π½)) β π
β Ring) |
34 | | simpllr 774 |
. . . . . . . 8
β’
(((((πΉ β (π
RingHom π) β§ π½ β (LIdealβπ)) β§ π₯ β (Baseβπ
)) β§ π β (β‘πΉ β π½)) β§ π β (β‘πΉ β π½)) β π₯ β (Baseβπ
)) |
35 | 5 | ad2antrr 724 |
. . . . . . . . . 10
β’ (((πΉ β (π
RingHom π) β§ π½ β (LIdealβπ)) β§ π₯ β (Baseβπ
)) β (β‘πΉ β π½) β (Baseβπ
)) |
36 | 35 | sselda 3981 |
. . . . . . . . 9
β’ ((((πΉ β (π
RingHom π) β§ π½ β (LIdealβπ)) β§ π₯ β (Baseβπ
)) β§ π β (β‘πΉ β π½)) β π β (Baseβπ
)) |
37 | 36 | adantr 481 |
. . . . . . . 8
β’
(((((πΉ β (π
RingHom π) β§ π½ β (LIdealβπ)) β§ π₯ β (Baseβπ
)) β§ π β (β‘πΉ β π½)) β§ π β (β‘πΉ β π½)) β π β (Baseβπ
)) |
38 | | eqid 2732 |
. . . . . . . . 9
β’
(.rβπ
) = (.rβπ
) |
39 | 2, 38 | ringcl 20066 |
. . . . . . . 8
β’ ((π
β Ring β§ π₯ β (Baseβπ
) β§ π β (Baseβπ
)) β (π₯(.rβπ
)π) β (Baseβπ
)) |
40 | 33, 34, 37, 39 | syl3anc 1371 |
. . . . . . 7
β’
(((((πΉ β (π
RingHom π) β§ π½ β (LIdealβπ)) β§ π₯ β (Baseβπ
)) β§ π β (β‘πΉ β π½)) β§ π β (β‘πΉ β π½)) β (π₯(.rβπ
)π) β (Baseβπ
)) |
41 | 35 | adantr 481 |
. . . . . . . 8
β’ ((((πΉ β (π
RingHom π) β§ π½ β (LIdealβπ)) β§ π₯ β (Baseβπ
)) β§ π β (β‘πΉ β π½)) β (β‘πΉ β π½) β (Baseβπ
)) |
42 | 41 | sselda 3981 |
. . . . . . 7
β’
(((((πΉ β (π
RingHom π) β§ π½ β (LIdealβπ)) β§ π₯ β (Baseβπ
)) β§ π β (β‘πΉ β π½)) β§ π β (β‘πΉ β π½)) β π β (Baseβπ
)) |
43 | | eqid 2732 |
. . . . . . . 8
β’
(+gβπ
) = (+gβπ
) |
44 | 2, 43 | ringacl 20088 |
. . . . . . 7
β’ ((π
β Ring β§ (π₯(.rβπ
)π) β (Baseβπ
) β§ π β (Baseβπ
)) β ((π₯(.rβπ
)π)(+gβπ
)π) β (Baseβπ
)) |
45 | 33, 40, 42, 44 | syl3anc 1371 |
. . . . . 6
β’
(((((πΉ β (π
RingHom π) β§ π½ β (LIdealβπ)) β§ π₯ β (Baseβπ
)) β§ π β (β‘πΉ β π½)) β§ π β (β‘πΉ β π½)) β ((π₯(.rβπ
)π)(+gβπ
)π) β (Baseβπ
)) |
46 | 16 | ad4antr 730 |
. . . . . . . 8
β’
(((((πΉ β (π
RingHom π) β§ π½ β (LIdealβπ)) β§ π₯ β (Baseβπ
)) β§ π β (β‘πΉ β π½)) β§ π β (β‘πΉ β π½)) β πΉ β (π
GrpHom π)) |
47 | | eqid 2732 |
. . . . . . . . 9
β’
(+gβπ) = (+gβπ) |
48 | 2, 43, 47 | ghmlin 19091 |
. . . . . . . 8
β’ ((πΉ β (π
GrpHom π) β§ (π₯(.rβπ
)π) β (Baseβπ
) β§ π β (Baseβπ
)) β (πΉβ((π₯(.rβπ
)π)(+gβπ
)π)) = ((πΉβ(π₯(.rβπ
)π))(+gβπ)(πΉβπ))) |
49 | 46, 40, 42, 48 | syl3anc 1371 |
. . . . . . 7
β’
(((((πΉ β (π
RingHom π) β§ π½ β (LIdealβπ)) β§ π₯ β (Baseβπ
)) β§ π β (β‘πΉ β π½)) β§ π β (β‘πΉ β π½)) β (πΉβ((π₯(.rβπ
)π)(+gβπ
)π)) = ((πΉβ(π₯(.rβπ
)π))(+gβπ)(πΉβπ))) |
50 | | simp-4l 781 |
. . . . . . . . 9
β’
(((((πΉ β (π
RingHom π) β§ π½ β (LIdealβπ)) β§ π₯ β (Baseβπ
)) β§ π β (β‘πΉ β π½)) β§ π β (β‘πΉ β π½)) β πΉ β (π
RingHom π)) |
51 | 50, 22 | syl 17 |
. . . . . . . 8
β’
(((((πΉ β (π
RingHom π) β§ π½ β (LIdealβπ)) β§ π₯ β (Baseβπ
)) β§ π β (β‘πΉ β π½)) β§ π β (β‘πΉ β π½)) β π β Ring) |
52 | | simpr 485 |
. . . . . . . . 9
β’ ((πΉ β (π
RingHom π) β§ π½ β (LIdealβπ)) β π½ β (LIdealβπ)) |
53 | 52 | ad3antrrr 728 |
. . . . . . . 8
β’
(((((πΉ β (π
RingHom π) β§ π½ β (LIdealβπ)) β§ π₯ β (Baseβπ
)) β§ π β (β‘πΉ β π½)) β§ π β (β‘πΉ β π½)) β π½ β (LIdealβπ)) |
54 | | eqid 2732 |
. . . . . . . . . . 11
β’
(.rβπ) = (.rβπ) |
55 | 2, 38, 54 | rhmmul 20256 |
. . . . . . . . . 10
β’ ((πΉ β (π
RingHom π) β§ π₯ β (Baseβπ
) β§ π β (Baseβπ
)) β (πΉβ(π₯(.rβπ
)π)) = ((πΉβπ₯)(.rβπ)(πΉβπ))) |
56 | 50, 34, 37, 55 | syl3anc 1371 |
. . . . . . . . 9
β’
(((((πΉ β (π
RingHom π) β§ π½ β (LIdealβπ)) β§ π₯ β (Baseβπ
)) β§ π β (β‘πΉ β π½)) β§ π β (β‘πΉ β π½)) β (πΉβ(π₯(.rβπ
)π)) = ((πΉβπ₯)(.rβπ)(πΉβπ))) |
57 | 7 | ffvelcdmda 7083 |
. . . . . . . . . . 11
β’ (((πΉ β (π
RingHom π) β§ π½ β (LIdealβπ)) β§ π₯ β (Baseβπ
)) β (πΉβπ₯) β (Baseβπ)) |
58 | 57 | ad2antrr 724 |
. . . . . . . . . 10
β’
(((((πΉ β (π
RingHom π) β§ π½ β (LIdealβπ)) β§ π₯ β (Baseβπ
)) β§ π β (β‘πΉ β π½)) β§ π β (β‘πΉ β π½)) β (πΉβπ₯) β (Baseβπ)) |
59 | | simplr 767 |
. . . . . . . . . . 11
β’
(((((πΉ β (π
RingHom π) β§ π½ β (LIdealβπ)) β§ π₯ β (Baseβπ
)) β§ π β (β‘πΉ β π½)) β§ π β (β‘πΉ β π½)) β π β (β‘πΉ β π½)) |
60 | | elpreima 7056 |
. . . . . . . . . . . 12
β’ (πΉ Fn (Baseβπ
) β (π β (β‘πΉ β π½) β (π β (Baseβπ
) β§ (πΉβπ) β π½))) |
61 | 60 | simplbda 500 |
. . . . . . . . . . 11
β’ ((πΉ Fn (Baseβπ
) β§ π β (β‘πΉ β π½)) β (πΉβπ) β π½) |
62 | 32, 59, 61 | syl2anc 584 |
. . . . . . . . . 10
β’
(((((πΉ β (π
RingHom π) β§ π½ β (LIdealβπ)) β§ π₯ β (Baseβπ
)) β§ π β (β‘πΉ β π½)) β§ π β (β‘πΉ β π½)) β (πΉβπ) β π½) |
63 | 23, 3, 54 | lidlmcl 20832 |
. . . . . . . . . 10
β’ (((π β Ring β§ π½ β (LIdealβπ)) β§ ((πΉβπ₯) β (Baseβπ) β§ (πΉβπ) β π½)) β ((πΉβπ₯)(.rβπ)(πΉβπ)) β π½) |
64 | 51, 53, 58, 62, 63 | syl22anc 837 |
. . . . . . . . 9
β’
(((((πΉ β (π
RingHom π) β§ π½ β (LIdealβπ)) β§ π₯ β (Baseβπ
)) β§ π β (β‘πΉ β π½)) β§ π β (β‘πΉ β π½)) β ((πΉβπ₯)(.rβπ)(πΉβπ)) β π½) |
65 | 56, 64 | eqeltrd 2833 |
. . . . . . . 8
β’
(((((πΉ β (π
RingHom π) β§ π½ β (LIdealβπ)) β§ π₯ β (Baseβπ
)) β§ π β (β‘πΉ β π½)) β§ π β (β‘πΉ β π½)) β (πΉβ(π₯(.rβπ
)π)) β π½) |
66 | | simpr 485 |
. . . . . . . . 9
β’
(((((πΉ β (π
RingHom π) β§ π½ β (LIdealβπ)) β§ π₯ β (Baseβπ
)) β§ π β (β‘πΉ β π½)) β§ π β (β‘πΉ β π½)) β π β (β‘πΉ β π½)) |
67 | | elpreima 7056 |
. . . . . . . . . 10
β’ (πΉ Fn (Baseβπ
) β (π β (β‘πΉ β π½) β (π β (Baseβπ
) β§ (πΉβπ) β π½))) |
68 | 67 | simplbda 500 |
. . . . . . . . 9
β’ ((πΉ Fn (Baseβπ
) β§ π β (β‘πΉ β π½)) β (πΉβπ) β π½) |
69 | 32, 66, 68 | syl2anc 584 |
. . . . . . . 8
β’
(((((πΉ β (π
RingHom π) β§ π½ β (LIdealβπ)) β§ π₯ β (Baseβπ
)) β§ π β (β‘πΉ β π½)) β§ π β (β‘πΉ β π½)) β (πΉβπ) β π½) |
70 | 23, 47 | lidlacl 20828 |
. . . . . . . 8
β’ (((π β Ring β§ π½ β (LIdealβπ)) β§ ((πΉβ(π₯(.rβπ
)π)) β π½ β§ (πΉβπ) β π½)) β ((πΉβ(π₯(.rβπ
)π))(+gβπ)(πΉβπ)) β π½) |
71 | 51, 53, 65, 69, 70 | syl22anc 837 |
. . . . . . 7
β’
(((((πΉ β (π
RingHom π) β§ π½ β (LIdealβπ)) β§ π₯ β (Baseβπ
)) β§ π β (β‘πΉ β π½)) β§ π β (β‘πΉ β π½)) β ((πΉβ(π₯(.rβπ
)π))(+gβπ)(πΉβπ)) β π½) |
72 | 49, 71 | eqeltrd 2833 |
. . . . . 6
β’
(((((πΉ β (π
RingHom π) β§ π½ β (LIdealβπ)) β§ π₯ β (Baseβπ
)) β§ π β (β‘πΉ β π½)) β§ π β (β‘πΉ β π½)) β (πΉβ((π₯(.rβπ
)π)(+gβπ
)π)) β π½) |
73 | 32, 45, 72 | elpreimad 7057 |
. . . . 5
β’
(((((πΉ β (π
RingHom π) β§ π½ β (LIdealβπ)) β§ π₯ β (Baseβπ
)) β§ π β (β‘πΉ β π½)) β§ π β (β‘πΉ β π½)) β ((π₯(.rβπ
)π)(+gβπ
)π) β (β‘πΉ β π½)) |
74 | 73 | anasss 467 |
. . . 4
β’ ((((πΉ β (π
RingHom π) β§ π½ β (LIdealβπ)) β§ π₯ β (Baseβπ
)) β§ (π β (β‘πΉ β π½) β§ π β (β‘πΉ β π½))) β ((π₯(.rβπ
)π)(+gβπ
)π) β (β‘πΉ β π½)) |
75 | 74 | ralrimivva 3200 |
. . 3
β’ (((πΉ β (π
RingHom π) β§ π½ β (LIdealβπ)) β§ π₯ β (Baseβπ
)) β βπ β (β‘πΉ β π½)βπ β (β‘πΉ β π½)((π₯(.rβπ
)π)(+gβπ
)π) β (β‘πΉ β π½)) |
76 | 75 | ralrimiva 3146 |
. 2
β’ ((πΉ β (π
RingHom π) β§ π½ β (LIdealβπ)) β βπ₯ β (Baseβπ
)βπ β (β‘πΉ β π½)βπ β (β‘πΉ β π½)((π₯(.rβπ
)π)(+gβπ
)π) β (β‘πΉ β π½)) |
77 | | rhmpreimaidl.i |
. . 3
β’ πΌ = (LIdealβπ
) |
78 | 77, 2, 43, 38 | islidl 20826 |
. 2
β’ ((β‘πΉ β π½) β πΌ β ((β‘πΉ β π½) β (Baseβπ
) β§ (β‘πΉ β π½) β β
β§ βπ₯ β (Baseβπ
)βπ β (β‘πΉ β π½)βπ β (β‘πΉ β π½)((π₯(.rβπ
)π)(+gβπ
)π) β (β‘πΉ β π½))) |
79 | 6, 30, 76, 78 | syl3anbrc 1343 |
1
β’ ((πΉ β (π
RingHom π) β§ π½ β (LIdealβπ)) β (β‘πΉ β π½) β πΌ) |