Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmpreimaidl Structured version   Visualization version   GIF version

Theorem rhmpreimaidl 31505
Description: The preimage of an ideal by a ring homomorphism is an ideal. (Contributed by Thierry Arnoux, 30-Jun-2024.)
Hypothesis
Ref Expression
rhmpreimaidl.i 𝐼 = (LIdeal‘𝑅)
Assertion
Ref Expression
rhmpreimaidl ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (𝐹𝐽) ∈ 𝐼)

Proof of Theorem rhmpreimaidl
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvimass 5978 . . . 4 (𝐹𝐽) ⊆ dom 𝐹
2 eqid 2738 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2738 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
42, 3rhmf 19885 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆))
51, 4fssdm 6604 . . 3 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹𝐽) ⊆ (Base‘𝑅))
65adantr 480 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (𝐹𝐽) ⊆ (Base‘𝑅))
74adantr 480 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆))
87ffund 6588 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → Fun 𝐹)
9 rhmrcl1 19878 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
109adantr 480 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → 𝑅 ∈ Ring)
11 eqid 2738 . . . . . . 7 (0g𝑅) = (0g𝑅)
122, 11ring0cl 19723 . . . . . 6 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
1310, 12syl 17 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (0g𝑅) ∈ (Base‘𝑅))
147fdmd 6595 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → dom 𝐹 = (Base‘𝑅))
1513, 14eleqtrrd 2842 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (0g𝑅) ∈ dom 𝐹)
16 rhmghm 19884 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
17 ghmmhm 18759 . . . . . . 7 (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝐹 ∈ (𝑅 MndHom 𝑆))
18 eqid 2738 . . . . . . . 8 (0g𝑆) = (0g𝑆)
1911, 18mhm0 18353 . . . . . . 7 (𝐹 ∈ (𝑅 MndHom 𝑆) → (𝐹‘(0g𝑅)) = (0g𝑆))
2016, 17, 193syl 18 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(0g𝑅)) = (0g𝑆))
2120adantr 480 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (𝐹‘(0g𝑅)) = (0g𝑆))
22 rhmrcl2 19879 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
23 eqid 2738 . . . . . . 7 (LIdeal‘𝑆) = (LIdeal‘𝑆)
2423, 18lidl0cl 20396 . . . . . 6 ((𝑆 ∈ Ring ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (0g𝑆) ∈ 𝐽)
2522, 24sylan 579 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (0g𝑆) ∈ 𝐽)
2621, 25eqeltrd 2839 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (𝐹‘(0g𝑅)) ∈ 𝐽)
27 fvimacnv 6912 . . . . 5 ((Fun 𝐹 ∧ (0g𝑅) ∈ dom 𝐹) → ((𝐹‘(0g𝑅)) ∈ 𝐽 ↔ (0g𝑅) ∈ (𝐹𝐽)))
2827biimpa 476 . . . 4 (((Fun 𝐹 ∧ (0g𝑅) ∈ dom 𝐹) ∧ (𝐹‘(0g𝑅)) ∈ 𝐽) → (0g𝑅) ∈ (𝐹𝐽))
298, 15, 26, 28syl21anc 834 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (0g𝑅) ∈ (𝐹𝐽))
3029ne0d 4266 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (𝐹𝐽) ≠ ∅)
317ffnd 6585 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → 𝐹 Fn (Base‘𝑅))
3231ad3antrrr 726 . . . . . 6 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → 𝐹 Fn (Base‘𝑅))
3310ad3antrrr 726 . . . . . . 7 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → 𝑅 ∈ Ring)
34 simpllr 772 . . . . . . . 8 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → 𝑥 ∈ (Base‘𝑅))
355ad2antrr 722 . . . . . . . . . 10 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐹𝐽) ⊆ (Base‘𝑅))
3635sselda 3917 . . . . . . . . 9 ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) → 𝑎 ∈ (Base‘𝑅))
3736adantr 480 . . . . . . . 8 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → 𝑎 ∈ (Base‘𝑅))
38 eqid 2738 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
392, 38ringcl 19715 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)𝑎) ∈ (Base‘𝑅))
4033, 34, 37, 39syl3anc 1369 . . . . . . 7 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → (𝑥(.r𝑅)𝑎) ∈ (Base‘𝑅))
4135adantr 480 . . . . . . . 8 ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) → (𝐹𝐽) ⊆ (Base‘𝑅))
4241sselda 3917 . . . . . . 7 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → 𝑏 ∈ (Base‘𝑅))
43 eqid 2738 . . . . . . . 8 (+g𝑅) = (+g𝑅)
442, 43ringacl 19732 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑥(.r𝑅)𝑎) ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ (Base‘𝑅))
4533, 40, 42, 44syl3anc 1369 . . . . . 6 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ (Base‘𝑅))
4616ad4antr 728 . . . . . . . 8 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
47 eqid 2738 . . . . . . . . 9 (+g𝑆) = (+g𝑆)
482, 43, 47ghmlin 18754 . . . . . . . 8 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (𝑥(.r𝑅)𝑎) ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅)) → (𝐹‘((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏)) = ((𝐹‘(𝑥(.r𝑅)𝑎))(+g𝑆)(𝐹𝑏)))
4946, 40, 42, 48syl3anc 1369 . . . . . . 7 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → (𝐹‘((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏)) = ((𝐹‘(𝑥(.r𝑅)𝑎))(+g𝑆)(𝐹𝑏)))
50 simp-4l 779 . . . . . . . . 9 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → 𝐹 ∈ (𝑅 RingHom 𝑆))
5150, 22syl 17 . . . . . . . 8 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → 𝑆 ∈ Ring)
52 simpr 484 . . . . . . . . 9 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → 𝐽 ∈ (LIdeal‘𝑆))
5352ad3antrrr 726 . . . . . . . 8 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → 𝐽 ∈ (LIdeal‘𝑆))
54 eqid 2738 . . . . . . . . . . 11 (.r𝑆) = (.r𝑆)
552, 38, 54rhmmul 19886 . . . . . . . . . 10 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ (Base‘𝑅)) → (𝐹‘(𝑥(.r𝑅)𝑎)) = ((𝐹𝑥)(.r𝑆)(𝐹𝑎)))
5650, 34, 37, 55syl3anc 1369 . . . . . . . . 9 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → (𝐹‘(𝑥(.r𝑅)𝑎)) = ((𝐹𝑥)(.r𝑆)(𝐹𝑎)))
577ffvelrnda 6943 . . . . . . . . . . 11 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐹𝑥) ∈ (Base‘𝑆))
5857ad2antrr 722 . . . . . . . . . 10 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → (𝐹𝑥) ∈ (Base‘𝑆))
59 simplr 765 . . . . . . . . . . 11 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → 𝑎 ∈ (𝐹𝐽))
60 elpreima 6917 . . . . . . . . . . . 12 (𝐹 Fn (Base‘𝑅) → (𝑎 ∈ (𝐹𝐽) ↔ (𝑎 ∈ (Base‘𝑅) ∧ (𝐹𝑎) ∈ 𝐽)))
6160simplbda 499 . . . . . . . . . . 11 ((𝐹 Fn (Base‘𝑅) ∧ 𝑎 ∈ (𝐹𝐽)) → (𝐹𝑎) ∈ 𝐽)
6232, 59, 61syl2anc 583 . . . . . . . . . 10 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → (𝐹𝑎) ∈ 𝐽)
6323, 3, 54lidlmcl 20401 . . . . . . . . . 10 (((𝑆 ∈ Ring ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ ((𝐹𝑥) ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝐽)) → ((𝐹𝑥)(.r𝑆)(𝐹𝑎)) ∈ 𝐽)
6451, 53, 58, 62, 63syl22anc 835 . . . . . . . . 9 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → ((𝐹𝑥)(.r𝑆)(𝐹𝑎)) ∈ 𝐽)
6556, 64eqeltrd 2839 . . . . . . . 8 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → (𝐹‘(𝑥(.r𝑅)𝑎)) ∈ 𝐽)
66 simpr 484 . . . . . . . . 9 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → 𝑏 ∈ (𝐹𝐽))
67 elpreima 6917 . . . . . . . . . 10 (𝐹 Fn (Base‘𝑅) → (𝑏 ∈ (𝐹𝐽) ↔ (𝑏 ∈ (Base‘𝑅) ∧ (𝐹𝑏) ∈ 𝐽)))
6867simplbda 499 . . . . . . . . 9 ((𝐹 Fn (Base‘𝑅) ∧ 𝑏 ∈ (𝐹𝐽)) → (𝐹𝑏) ∈ 𝐽)
6932, 66, 68syl2anc 583 . . . . . . . 8 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → (𝐹𝑏) ∈ 𝐽)
7023, 47lidlacl 20397 . . . . . . . 8 (((𝑆 ∈ Ring ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ ((𝐹‘(𝑥(.r𝑅)𝑎)) ∈ 𝐽 ∧ (𝐹𝑏) ∈ 𝐽)) → ((𝐹‘(𝑥(.r𝑅)𝑎))(+g𝑆)(𝐹𝑏)) ∈ 𝐽)
7151, 53, 65, 69, 70syl22anc 835 . . . . . . 7 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → ((𝐹‘(𝑥(.r𝑅)𝑎))(+g𝑆)(𝐹𝑏)) ∈ 𝐽)
7249, 71eqeltrd 2839 . . . . . 6 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → (𝐹‘((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏)) ∈ 𝐽)
7332, 45, 72elpreimad 6918 . . . . 5 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ (𝐹𝐽))
7473anasss 466 . . . 4 ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ (𝑎 ∈ (𝐹𝐽) ∧ 𝑏 ∈ (𝐹𝐽))) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ (𝐹𝐽))
7574ralrimivva 3114 . . 3 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) → ∀𝑎 ∈ (𝐹𝐽)∀𝑏 ∈ (𝐹𝐽)((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ (𝐹𝐽))
7675ralrimiva 3107 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → ∀𝑥 ∈ (Base‘𝑅)∀𝑎 ∈ (𝐹𝐽)∀𝑏 ∈ (𝐹𝐽)((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ (𝐹𝐽))
77 rhmpreimaidl.i . . 3 𝐼 = (LIdeal‘𝑅)
7877, 2, 43, 38islidl 20395 . 2 ((𝐹𝐽) ∈ 𝐼 ↔ ((𝐹𝐽) ⊆ (Base‘𝑅) ∧ (𝐹𝐽) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑎 ∈ (𝐹𝐽)∀𝑏 ∈ (𝐹𝐽)((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ (𝐹𝐽)))
796, 30, 76, 78syl3anbrc 1341 1 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (𝐹𝐽) ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  wss 3883  c0 4253  ccnv 5579  dom cdm 5580  cima 5583  Fun wfun 6412   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  .rcmulr 16889  0gc0g 17067   MndHom cmhm 18343   GrpHom cghm 18746  Ringcrg 19698   RingHom crh 19871  LIdealclidl 20347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-ghm 18747  df-mgp 19636  df-ur 19653  df-ring 19700  df-rnghom 19874  df-subrg 19937  df-lmod 20040  df-lss 20109  df-sra 20349  df-rgmod 20350  df-lidl 20351
This theorem is referenced by:  kerlidl  31506  rhmpreimaprmidl  31529
  Copyright terms: Public domain W3C validator