MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmpreimaidl Structured version   Visualization version   GIF version

Theorem rhmpreimaidl 21220
Description: The preimage of an ideal by a ring homomorphism is an ideal. (Contributed by Thierry Arnoux, 30-Jun-2024.)
Hypothesis
Ref Expression
rhmpreimaidl.i 𝐼 = (LIdeal‘𝑅)
Assertion
Ref Expression
rhmpreimaidl ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (𝐹𝐽) ∈ 𝐼)

Proof of Theorem rhmpreimaidl
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvimass 6042 . . . 4 (𝐹𝐽) ⊆ dom 𝐹
2 eqid 2729 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2729 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
42, 3rhmf 20406 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆))
51, 4fssdm 6689 . . 3 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹𝐽) ⊆ (Base‘𝑅))
65adantr 480 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (𝐹𝐽) ⊆ (Base‘𝑅))
74adantr 480 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆))
87ffund 6674 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → Fun 𝐹)
9 rhmrcl1 20397 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
109adantr 480 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → 𝑅 ∈ Ring)
11 eqid 2729 . . . . . . 7 (0g𝑅) = (0g𝑅)
122, 11ring0cl 20188 . . . . . 6 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
1310, 12syl 17 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (0g𝑅) ∈ (Base‘𝑅))
147fdmd 6680 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → dom 𝐹 = (Base‘𝑅))
1513, 14eleqtrrd 2831 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (0g𝑅) ∈ dom 𝐹)
16 rhmghm 20405 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
17 ghmmhm 19141 . . . . . . 7 (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝐹 ∈ (𝑅 MndHom 𝑆))
18 eqid 2729 . . . . . . . 8 (0g𝑆) = (0g𝑆)
1911, 18mhm0 18704 . . . . . . 7 (𝐹 ∈ (𝑅 MndHom 𝑆) → (𝐹‘(0g𝑅)) = (0g𝑆))
2016, 17, 193syl 18 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(0g𝑅)) = (0g𝑆))
2120adantr 480 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (𝐹‘(0g𝑅)) = (0g𝑆))
22 rhmrcl2 20398 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
23 eqid 2729 . . . . . . 7 (LIdeal‘𝑆) = (LIdeal‘𝑆)
2423, 18lidl0cl 21163 . . . . . 6 ((𝑆 ∈ Ring ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (0g𝑆) ∈ 𝐽)
2522, 24sylan 580 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (0g𝑆) ∈ 𝐽)
2621, 25eqeltrd 2828 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (𝐹‘(0g𝑅)) ∈ 𝐽)
27 fvimacnv 7007 . . . . 5 ((Fun 𝐹 ∧ (0g𝑅) ∈ dom 𝐹) → ((𝐹‘(0g𝑅)) ∈ 𝐽 ↔ (0g𝑅) ∈ (𝐹𝐽)))
2827biimpa 476 . . . 4 (((Fun 𝐹 ∧ (0g𝑅) ∈ dom 𝐹) ∧ (𝐹‘(0g𝑅)) ∈ 𝐽) → (0g𝑅) ∈ (𝐹𝐽))
298, 15, 26, 28syl21anc 837 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (0g𝑅) ∈ (𝐹𝐽))
3029ne0d 4301 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (𝐹𝐽) ≠ ∅)
317ffnd 6671 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → 𝐹 Fn (Base‘𝑅))
3231ad3antrrr 730 . . . . . 6 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → 𝐹 Fn (Base‘𝑅))
3310ad3antrrr 730 . . . . . . 7 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → 𝑅 ∈ Ring)
34 simpllr 775 . . . . . . . 8 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → 𝑥 ∈ (Base‘𝑅))
355ad2antrr 726 . . . . . . . . . 10 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐹𝐽) ⊆ (Base‘𝑅))
3635sselda 3943 . . . . . . . . 9 ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) → 𝑎 ∈ (Base‘𝑅))
3736adantr 480 . . . . . . . 8 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → 𝑎 ∈ (Base‘𝑅))
38 eqid 2729 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
392, 38ringcl 20171 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)𝑎) ∈ (Base‘𝑅))
4033, 34, 37, 39syl3anc 1373 . . . . . . 7 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → (𝑥(.r𝑅)𝑎) ∈ (Base‘𝑅))
4135adantr 480 . . . . . . . 8 ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) → (𝐹𝐽) ⊆ (Base‘𝑅))
4241sselda 3943 . . . . . . 7 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → 𝑏 ∈ (Base‘𝑅))
43 eqid 2729 . . . . . . . 8 (+g𝑅) = (+g𝑅)
442, 43ringacl 20199 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑥(.r𝑅)𝑎) ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ (Base‘𝑅))
4533, 40, 42, 44syl3anc 1373 . . . . . 6 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ (Base‘𝑅))
4616ad4antr 732 . . . . . . . 8 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
47 eqid 2729 . . . . . . . . 9 (+g𝑆) = (+g𝑆)
482, 43, 47ghmlin 19136 . . . . . . . 8 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (𝑥(.r𝑅)𝑎) ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅)) → (𝐹‘((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏)) = ((𝐹‘(𝑥(.r𝑅)𝑎))(+g𝑆)(𝐹𝑏)))
4946, 40, 42, 48syl3anc 1373 . . . . . . 7 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → (𝐹‘((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏)) = ((𝐹‘(𝑥(.r𝑅)𝑎))(+g𝑆)(𝐹𝑏)))
50 simp-4l 782 . . . . . . . . 9 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → 𝐹 ∈ (𝑅 RingHom 𝑆))
5150, 22syl 17 . . . . . . . 8 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → 𝑆 ∈ Ring)
52 simpr 484 . . . . . . . . 9 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → 𝐽 ∈ (LIdeal‘𝑆))
5352ad3antrrr 730 . . . . . . . 8 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → 𝐽 ∈ (LIdeal‘𝑆))
54 eqid 2729 . . . . . . . . . . 11 (.r𝑆) = (.r𝑆)
552, 38, 54rhmmul 20407 . . . . . . . . . 10 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ (Base‘𝑅)) → (𝐹‘(𝑥(.r𝑅)𝑎)) = ((𝐹𝑥)(.r𝑆)(𝐹𝑎)))
5650, 34, 37, 55syl3anc 1373 . . . . . . . . 9 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → (𝐹‘(𝑥(.r𝑅)𝑎)) = ((𝐹𝑥)(.r𝑆)(𝐹𝑎)))
577ffvelcdmda 7038 . . . . . . . . . . 11 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐹𝑥) ∈ (Base‘𝑆))
5857ad2antrr 726 . . . . . . . . . 10 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → (𝐹𝑥) ∈ (Base‘𝑆))
59 simplr 768 . . . . . . . . . . 11 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → 𝑎 ∈ (𝐹𝐽))
60 elpreima 7012 . . . . . . . . . . . 12 (𝐹 Fn (Base‘𝑅) → (𝑎 ∈ (𝐹𝐽) ↔ (𝑎 ∈ (Base‘𝑅) ∧ (𝐹𝑎) ∈ 𝐽)))
6160simplbda 499 . . . . . . . . . . 11 ((𝐹 Fn (Base‘𝑅) ∧ 𝑎 ∈ (𝐹𝐽)) → (𝐹𝑎) ∈ 𝐽)
6232, 59, 61syl2anc 584 . . . . . . . . . 10 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → (𝐹𝑎) ∈ 𝐽)
6323, 3, 54lidlmcl 21168 . . . . . . . . . 10 (((𝑆 ∈ Ring ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ ((𝐹𝑥) ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝐽)) → ((𝐹𝑥)(.r𝑆)(𝐹𝑎)) ∈ 𝐽)
6451, 53, 58, 62, 63syl22anc 838 . . . . . . . . 9 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → ((𝐹𝑥)(.r𝑆)(𝐹𝑎)) ∈ 𝐽)
6556, 64eqeltrd 2828 . . . . . . . 8 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → (𝐹‘(𝑥(.r𝑅)𝑎)) ∈ 𝐽)
66 simpr 484 . . . . . . . . 9 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → 𝑏 ∈ (𝐹𝐽))
67 elpreima 7012 . . . . . . . . . 10 (𝐹 Fn (Base‘𝑅) → (𝑏 ∈ (𝐹𝐽) ↔ (𝑏 ∈ (Base‘𝑅) ∧ (𝐹𝑏) ∈ 𝐽)))
6867simplbda 499 . . . . . . . . 9 ((𝐹 Fn (Base‘𝑅) ∧ 𝑏 ∈ (𝐹𝐽)) → (𝐹𝑏) ∈ 𝐽)
6932, 66, 68syl2anc 584 . . . . . . . 8 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → (𝐹𝑏) ∈ 𝐽)
7023, 47lidlacl 21164 . . . . . . . 8 (((𝑆 ∈ Ring ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ ((𝐹‘(𝑥(.r𝑅)𝑎)) ∈ 𝐽 ∧ (𝐹𝑏) ∈ 𝐽)) → ((𝐹‘(𝑥(.r𝑅)𝑎))(+g𝑆)(𝐹𝑏)) ∈ 𝐽)
7151, 53, 65, 69, 70syl22anc 838 . . . . . . 7 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → ((𝐹‘(𝑥(.r𝑅)𝑎))(+g𝑆)(𝐹𝑏)) ∈ 𝐽)
7249, 71eqeltrd 2828 . . . . . 6 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → (𝐹‘((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏)) ∈ 𝐽)
7332, 45, 72elpreimad 7013 . . . . 5 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ (𝐹𝐽))
7473anasss 466 . . . 4 ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ (𝑎 ∈ (𝐹𝐽) ∧ 𝑏 ∈ (𝐹𝐽))) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ (𝐹𝐽))
7574ralrimivva 3178 . . 3 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) → ∀𝑎 ∈ (𝐹𝐽)∀𝑏 ∈ (𝐹𝐽)((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ (𝐹𝐽))
7675ralrimiva 3125 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → ∀𝑥 ∈ (Base‘𝑅)∀𝑎 ∈ (𝐹𝐽)∀𝑏 ∈ (𝐹𝐽)((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ (𝐹𝐽))
77 rhmpreimaidl.i . . 3 𝐼 = (LIdeal‘𝑅)
7877, 2, 43, 38islidl 21158 . 2 ((𝐹𝐽) ∈ 𝐼 ↔ ((𝐹𝐽) ⊆ (Base‘𝑅) ∧ (𝐹𝐽) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑎 ∈ (𝐹𝐽)∀𝑏 ∈ (𝐹𝐽)((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ (𝐹𝐽)))
796, 30, 76, 78syl3anbrc 1344 1 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (𝐹𝐽) ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wss 3911  c0 4292  ccnv 5630  dom cdm 5631  cima 5634  Fun wfun 6493   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  Basecbs 17156  +gcplusg 17197  .rcmulr 17198  0gc0g 17379   MndHom cmhm 18691   GrpHom cghm 19127  Ringcrg 20154   RingHom crh 20390  LIdealclidl 21149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-nn 12165  df-2 12227  df-3 12228  df-4 12229  df-5 12230  df-6 12231  df-7 12232  df-8 12233  df-sets 17111  df-slot 17129  df-ndx 17141  df-base 17157  df-ress 17178  df-plusg 17210  df-mulr 17211  df-sca 17213  df-vsca 17214  df-ip 17215  df-0g 17381  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-mhm 18693  df-grp 18851  df-minusg 18852  df-sbg 18853  df-subg 19038  df-ghm 19128  df-cmn 19697  df-abl 19698  df-mgp 20062  df-rng 20074  df-ur 20103  df-ring 20156  df-rhm 20393  df-subrg 20491  df-lmod 20801  df-lss 20871  df-sra 21113  df-rgmod 21114  df-lidl 21151
This theorem is referenced by:  kerlidl  21221  rhmpreimaprmidl  33416  ply1annidl  33686
  Copyright terms: Public domain W3C validator