Step | Hyp | Ref
| Expression |
1 | | cnvimass 5989 |
. . . 4
⊢ (◡𝐹 “ 𝐽) ⊆ dom 𝐹 |
2 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝑅) =
(Base‘𝑅) |
3 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝑆) =
(Base‘𝑆) |
4 | 2, 3 | rhmf 19970 |
. . . 4
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆)) |
5 | 1, 4 | fssdm 6620 |
. . 3
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (◡𝐹 “ 𝐽) ⊆ (Base‘𝑅)) |
6 | 5 | adantr 481 |
. 2
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (◡𝐹 “ 𝐽) ⊆ (Base‘𝑅)) |
7 | 4 | adantr 481 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆)) |
8 | 7 | ffund 6604 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → Fun 𝐹) |
9 | | rhmrcl1 19963 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring) |
10 | 9 | adantr 481 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → 𝑅 ∈ Ring) |
11 | | eqid 2738 |
. . . . . . 7
⊢
(0g‘𝑅) = (0g‘𝑅) |
12 | 2, 11 | ring0cl 19808 |
. . . . . 6
⊢ (𝑅 ∈ Ring →
(0g‘𝑅)
∈ (Base‘𝑅)) |
13 | 10, 12 | syl 17 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (0g‘𝑅) ∈ (Base‘𝑅)) |
14 | 7 | fdmd 6611 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → dom 𝐹 = (Base‘𝑅)) |
15 | 13, 14 | eleqtrrd 2842 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (0g‘𝑅) ∈ dom 𝐹) |
16 | | rhmghm 19969 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
17 | | ghmmhm 18844 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝐹 ∈ (𝑅 MndHom 𝑆)) |
18 | | eqid 2738 |
. . . . . . . 8
⊢
(0g‘𝑆) = (0g‘𝑆) |
19 | 11, 18 | mhm0 18438 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 MndHom 𝑆) → (𝐹‘(0g‘𝑅)) = (0g‘𝑆)) |
20 | 16, 17, 19 | 3syl 18 |
. . . . . 6
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(0g‘𝑅)) = (0g‘𝑆)) |
21 | 20 | adantr 481 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (𝐹‘(0g‘𝑅)) = (0g‘𝑆)) |
22 | | rhmrcl2 19964 |
. . . . . 6
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring) |
23 | | eqid 2738 |
. . . . . . 7
⊢
(LIdeal‘𝑆) =
(LIdeal‘𝑆) |
24 | 23, 18 | lidl0cl 20483 |
. . . . . 6
⊢ ((𝑆 ∈ Ring ∧ 𝐽 ∈ (LIdeal‘𝑆)) →
(0g‘𝑆)
∈ 𝐽) |
25 | 22, 24 | sylan 580 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (0g‘𝑆) ∈ 𝐽) |
26 | 21, 25 | eqeltrd 2839 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (𝐹‘(0g‘𝑅)) ∈ 𝐽) |
27 | | fvimacnv 6930 |
. . . . 5
⊢ ((Fun
𝐹 ∧
(0g‘𝑅)
∈ dom 𝐹) →
((𝐹‘(0g‘𝑅)) ∈ 𝐽 ↔ (0g‘𝑅) ∈ (◡𝐹 “ 𝐽))) |
28 | 27 | biimpa 477 |
. . . 4
⊢ (((Fun
𝐹 ∧
(0g‘𝑅)
∈ dom 𝐹) ∧ (𝐹‘(0g‘𝑅)) ∈ 𝐽) → (0g‘𝑅) ∈ (◡𝐹 “ 𝐽)) |
29 | 8, 15, 26, 28 | syl21anc 835 |
. . 3
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (0g‘𝑅) ∈ (◡𝐹 “ 𝐽)) |
30 | 29 | ne0d 4269 |
. 2
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (◡𝐹 “ 𝐽) ≠ ∅) |
31 | 7 | ffnd 6601 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → 𝐹 Fn (Base‘𝑅)) |
32 | 31 | ad3antrrr 727 |
. . . . . 6
⊢
(((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽)) → 𝐹 Fn (Base‘𝑅)) |
33 | 10 | ad3antrrr 727 |
. . . . . . 7
⊢
(((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽)) → 𝑅 ∈ Ring) |
34 | | simpllr 773 |
. . . . . . . 8
⊢
(((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽)) → 𝑥 ∈ (Base‘𝑅)) |
35 | 5 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) → (◡𝐹 “ 𝐽) ⊆ (Base‘𝑅)) |
36 | 35 | sselda 3921 |
. . . . . . . . 9
⊢ ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) → 𝑎 ∈ (Base‘𝑅)) |
37 | 36 | adantr 481 |
. . . . . . . 8
⊢
(((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽)) → 𝑎 ∈ (Base‘𝑅)) |
38 | | eqid 2738 |
. . . . . . . . 9
⊢
(.r‘𝑅) = (.r‘𝑅) |
39 | 2, 38 | ringcl 19800 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ (Base‘𝑅)) → (𝑥(.r‘𝑅)𝑎) ∈ (Base‘𝑅)) |
40 | 33, 34, 37, 39 | syl3anc 1370 |
. . . . . . 7
⊢
(((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽)) → (𝑥(.r‘𝑅)𝑎) ∈ (Base‘𝑅)) |
41 | 35 | adantr 481 |
. . . . . . . 8
⊢ ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) → (◡𝐹 “ 𝐽) ⊆ (Base‘𝑅)) |
42 | 41 | sselda 3921 |
. . . . . . 7
⊢
(((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽)) → 𝑏 ∈ (Base‘𝑅)) |
43 | | eqid 2738 |
. . . . . . . 8
⊢
(+g‘𝑅) = (+g‘𝑅) |
44 | 2, 43 | ringacl 19817 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑥(.r‘𝑅)𝑎) ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅)) → ((𝑥(.r‘𝑅)𝑎)(+g‘𝑅)𝑏) ∈ (Base‘𝑅)) |
45 | 33, 40, 42, 44 | syl3anc 1370 |
. . . . . 6
⊢
(((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽)) → ((𝑥(.r‘𝑅)𝑎)(+g‘𝑅)𝑏) ∈ (Base‘𝑅)) |
46 | 16 | ad4antr 729 |
. . . . . . . 8
⊢
(((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽)) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
47 | | eqid 2738 |
. . . . . . . . 9
⊢
(+g‘𝑆) = (+g‘𝑆) |
48 | 2, 43, 47 | ghmlin 18839 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (𝑥(.r‘𝑅)𝑎) ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅)) → (𝐹‘((𝑥(.r‘𝑅)𝑎)(+g‘𝑅)𝑏)) = ((𝐹‘(𝑥(.r‘𝑅)𝑎))(+g‘𝑆)(𝐹‘𝑏))) |
49 | 46, 40, 42, 48 | syl3anc 1370 |
. . . . . . 7
⊢
(((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽)) → (𝐹‘((𝑥(.r‘𝑅)𝑎)(+g‘𝑅)𝑏)) = ((𝐹‘(𝑥(.r‘𝑅)𝑎))(+g‘𝑆)(𝐹‘𝑏))) |
50 | | simp-4l 780 |
. . . . . . . . 9
⊢
(((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽)) → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
51 | 50, 22 | syl 17 |
. . . . . . . 8
⊢
(((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽)) → 𝑆 ∈ Ring) |
52 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → 𝐽 ∈ (LIdeal‘𝑆)) |
53 | 52 | ad3antrrr 727 |
. . . . . . . 8
⊢
(((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽)) → 𝐽 ∈ (LIdeal‘𝑆)) |
54 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(.r‘𝑆) = (.r‘𝑆) |
55 | 2, 38, 54 | rhmmul 19971 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ (Base‘𝑅)) → (𝐹‘(𝑥(.r‘𝑅)𝑎)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑎))) |
56 | 50, 34, 37, 55 | syl3anc 1370 |
. . . . . . . . 9
⊢
(((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽)) → (𝐹‘(𝑥(.r‘𝑅)𝑎)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑎))) |
57 | 7 | ffvelrnda 6961 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐹‘𝑥) ∈ (Base‘𝑆)) |
58 | 57 | ad2antrr 723 |
. . . . . . . . . 10
⊢
(((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽)) → (𝐹‘𝑥) ∈ (Base‘𝑆)) |
59 | | simplr 766 |
. . . . . . . . . . 11
⊢
(((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽)) → 𝑎 ∈ (◡𝐹 “ 𝐽)) |
60 | | elpreima 6935 |
. . . . . . . . . . . 12
⊢ (𝐹 Fn (Base‘𝑅) → (𝑎 ∈ (◡𝐹 “ 𝐽) ↔ (𝑎 ∈ (Base‘𝑅) ∧ (𝐹‘𝑎) ∈ 𝐽))) |
61 | 60 | simplbda 500 |
. . . . . . . . . . 11
⊢ ((𝐹 Fn (Base‘𝑅) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) → (𝐹‘𝑎) ∈ 𝐽) |
62 | 32, 59, 61 | syl2anc 584 |
. . . . . . . . . 10
⊢
(((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽)) → (𝐹‘𝑎) ∈ 𝐽) |
63 | 23, 3, 54 | lidlmcl 20488 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ Ring ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ ((𝐹‘𝑥) ∈ (Base‘𝑆) ∧ (𝐹‘𝑎) ∈ 𝐽)) → ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑎)) ∈ 𝐽) |
64 | 51, 53, 58, 62, 63 | syl22anc 836 |
. . . . . . . . 9
⊢
(((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽)) → ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑎)) ∈ 𝐽) |
65 | 56, 64 | eqeltrd 2839 |
. . . . . . . 8
⊢
(((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽)) → (𝐹‘(𝑥(.r‘𝑅)𝑎)) ∈ 𝐽) |
66 | | simpr 485 |
. . . . . . . . 9
⊢
(((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽)) → 𝑏 ∈ (◡𝐹 “ 𝐽)) |
67 | | elpreima 6935 |
. . . . . . . . . 10
⊢ (𝐹 Fn (Base‘𝑅) → (𝑏 ∈ (◡𝐹 “ 𝐽) ↔ (𝑏 ∈ (Base‘𝑅) ∧ (𝐹‘𝑏) ∈ 𝐽))) |
68 | 67 | simplbda 500 |
. . . . . . . . 9
⊢ ((𝐹 Fn (Base‘𝑅) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽)) → (𝐹‘𝑏) ∈ 𝐽) |
69 | 32, 66, 68 | syl2anc 584 |
. . . . . . . 8
⊢
(((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽)) → (𝐹‘𝑏) ∈ 𝐽) |
70 | 23, 47 | lidlacl 20484 |
. . . . . . . 8
⊢ (((𝑆 ∈ Ring ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ ((𝐹‘(𝑥(.r‘𝑅)𝑎)) ∈ 𝐽 ∧ (𝐹‘𝑏) ∈ 𝐽)) → ((𝐹‘(𝑥(.r‘𝑅)𝑎))(+g‘𝑆)(𝐹‘𝑏)) ∈ 𝐽) |
71 | 51, 53, 65, 69, 70 | syl22anc 836 |
. . . . . . 7
⊢
(((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽)) → ((𝐹‘(𝑥(.r‘𝑅)𝑎))(+g‘𝑆)(𝐹‘𝑏)) ∈ 𝐽) |
72 | 49, 71 | eqeltrd 2839 |
. . . . . 6
⊢
(((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽)) → (𝐹‘((𝑥(.r‘𝑅)𝑎)(+g‘𝑅)𝑏)) ∈ 𝐽) |
73 | 32, 45, 72 | elpreimad 6936 |
. . . . 5
⊢
(((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽)) → ((𝑥(.r‘𝑅)𝑎)(+g‘𝑅)𝑏) ∈ (◡𝐹 “ 𝐽)) |
74 | 73 | anasss 467 |
. . . 4
⊢ ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ (𝑎 ∈ (◡𝐹 “ 𝐽) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽))) → ((𝑥(.r‘𝑅)𝑎)(+g‘𝑅)𝑏) ∈ (◡𝐹 “ 𝐽)) |
75 | 74 | ralrimivva 3123 |
. . 3
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) → ∀𝑎 ∈ (◡𝐹 “ 𝐽)∀𝑏 ∈ (◡𝐹 “ 𝐽)((𝑥(.r‘𝑅)𝑎)(+g‘𝑅)𝑏) ∈ (◡𝐹 “ 𝐽)) |
76 | 75 | ralrimiva 3103 |
. 2
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → ∀𝑥 ∈ (Base‘𝑅)∀𝑎 ∈ (◡𝐹 “ 𝐽)∀𝑏 ∈ (◡𝐹 “ 𝐽)((𝑥(.r‘𝑅)𝑎)(+g‘𝑅)𝑏) ∈ (◡𝐹 “ 𝐽)) |
77 | | rhmpreimaidl.i |
. . 3
⊢ 𝐼 = (LIdeal‘𝑅) |
78 | 77, 2, 43, 38 | islidl 20482 |
. 2
⊢ ((◡𝐹 “ 𝐽) ∈ 𝐼 ↔ ((◡𝐹 “ 𝐽) ⊆ (Base‘𝑅) ∧ (◡𝐹 “ 𝐽) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑎 ∈ (◡𝐹 “ 𝐽)∀𝑏 ∈ (◡𝐹 “ 𝐽)((𝑥(.r‘𝑅)𝑎)(+g‘𝑅)𝑏) ∈ (◡𝐹 “ 𝐽))) |
79 | 6, 30, 76, 78 | syl3anbrc 1342 |
1
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (◡𝐹 “ 𝐽) ∈ 𝐼) |