MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmpreimaidl Structured version   Visualization version   GIF version

Theorem rhmpreimaidl 21214
Description: The preimage of an ideal by a ring homomorphism is an ideal. (Contributed by Thierry Arnoux, 30-Jun-2024.)
Hypothesis
Ref Expression
rhmpreimaidl.i 𝐼 = (LIdeal‘𝑅)
Assertion
Ref Expression
rhmpreimaidl ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (𝐹𝐽) ∈ 𝐼)

Proof of Theorem rhmpreimaidl
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvimass 6030 . . . 4 (𝐹𝐽) ⊆ dom 𝐹
2 eqid 2731 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2731 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
42, 3rhmf 20402 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆))
51, 4fssdm 6670 . . 3 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹𝐽) ⊆ (Base‘𝑅))
65adantr 480 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (𝐹𝐽) ⊆ (Base‘𝑅))
74adantr 480 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆))
87ffund 6655 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → Fun 𝐹)
9 rhmrcl1 20394 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
109adantr 480 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → 𝑅 ∈ Ring)
11 eqid 2731 . . . . . . 7 (0g𝑅) = (0g𝑅)
122, 11ring0cl 20185 . . . . . 6 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
1310, 12syl 17 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (0g𝑅) ∈ (Base‘𝑅))
147fdmd 6661 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → dom 𝐹 = (Base‘𝑅))
1513, 14eleqtrrd 2834 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (0g𝑅) ∈ dom 𝐹)
16 rhmghm 20401 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
17 ghmmhm 19138 . . . . . . 7 (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝐹 ∈ (𝑅 MndHom 𝑆))
18 eqid 2731 . . . . . . . 8 (0g𝑆) = (0g𝑆)
1911, 18mhm0 18702 . . . . . . 7 (𝐹 ∈ (𝑅 MndHom 𝑆) → (𝐹‘(0g𝑅)) = (0g𝑆))
2016, 17, 193syl 18 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(0g𝑅)) = (0g𝑆))
2120adantr 480 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (𝐹‘(0g𝑅)) = (0g𝑆))
22 rhmrcl2 20395 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
23 eqid 2731 . . . . . . 7 (LIdeal‘𝑆) = (LIdeal‘𝑆)
2423, 18lidl0cl 21157 . . . . . 6 ((𝑆 ∈ Ring ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (0g𝑆) ∈ 𝐽)
2522, 24sylan 580 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (0g𝑆) ∈ 𝐽)
2621, 25eqeltrd 2831 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (𝐹‘(0g𝑅)) ∈ 𝐽)
27 fvimacnv 6986 . . . . 5 ((Fun 𝐹 ∧ (0g𝑅) ∈ dom 𝐹) → ((𝐹‘(0g𝑅)) ∈ 𝐽 ↔ (0g𝑅) ∈ (𝐹𝐽)))
2827biimpa 476 . . . 4 (((Fun 𝐹 ∧ (0g𝑅) ∈ dom 𝐹) ∧ (𝐹‘(0g𝑅)) ∈ 𝐽) → (0g𝑅) ∈ (𝐹𝐽))
298, 15, 26, 28syl21anc 837 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (0g𝑅) ∈ (𝐹𝐽))
3029ne0d 4289 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (𝐹𝐽) ≠ ∅)
317ffnd 6652 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → 𝐹 Fn (Base‘𝑅))
3231ad3antrrr 730 . . . . . 6 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → 𝐹 Fn (Base‘𝑅))
3310ad3antrrr 730 . . . . . . 7 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → 𝑅 ∈ Ring)
34 simpllr 775 . . . . . . . 8 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → 𝑥 ∈ (Base‘𝑅))
355ad2antrr 726 . . . . . . . . . 10 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐹𝐽) ⊆ (Base‘𝑅))
3635sselda 3929 . . . . . . . . 9 ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) → 𝑎 ∈ (Base‘𝑅))
3736adantr 480 . . . . . . . 8 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → 𝑎 ∈ (Base‘𝑅))
38 eqid 2731 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
392, 38ringcl 20168 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)𝑎) ∈ (Base‘𝑅))
4033, 34, 37, 39syl3anc 1373 . . . . . . 7 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → (𝑥(.r𝑅)𝑎) ∈ (Base‘𝑅))
4135adantr 480 . . . . . . . 8 ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) → (𝐹𝐽) ⊆ (Base‘𝑅))
4241sselda 3929 . . . . . . 7 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → 𝑏 ∈ (Base‘𝑅))
43 eqid 2731 . . . . . . . 8 (+g𝑅) = (+g𝑅)
442, 43ringacl 20196 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑥(.r𝑅)𝑎) ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ (Base‘𝑅))
4533, 40, 42, 44syl3anc 1373 . . . . . 6 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ (Base‘𝑅))
4616ad4antr 732 . . . . . . . 8 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
47 eqid 2731 . . . . . . . . 9 (+g𝑆) = (+g𝑆)
482, 43, 47ghmlin 19133 . . . . . . . 8 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (𝑥(.r𝑅)𝑎) ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅)) → (𝐹‘((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏)) = ((𝐹‘(𝑥(.r𝑅)𝑎))(+g𝑆)(𝐹𝑏)))
4946, 40, 42, 48syl3anc 1373 . . . . . . 7 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → (𝐹‘((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏)) = ((𝐹‘(𝑥(.r𝑅)𝑎))(+g𝑆)(𝐹𝑏)))
50 simp-4l 782 . . . . . . . . 9 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → 𝐹 ∈ (𝑅 RingHom 𝑆))
5150, 22syl 17 . . . . . . . 8 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → 𝑆 ∈ Ring)
52 simpr 484 . . . . . . . . 9 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → 𝐽 ∈ (LIdeal‘𝑆))
5352ad3antrrr 730 . . . . . . . 8 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → 𝐽 ∈ (LIdeal‘𝑆))
54 eqid 2731 . . . . . . . . . . 11 (.r𝑆) = (.r𝑆)
552, 38, 54rhmmul 20403 . . . . . . . . . 10 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ (Base‘𝑅)) → (𝐹‘(𝑥(.r𝑅)𝑎)) = ((𝐹𝑥)(.r𝑆)(𝐹𝑎)))
5650, 34, 37, 55syl3anc 1373 . . . . . . . . 9 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → (𝐹‘(𝑥(.r𝑅)𝑎)) = ((𝐹𝑥)(.r𝑆)(𝐹𝑎)))
577ffvelcdmda 7017 . . . . . . . . . . 11 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐹𝑥) ∈ (Base‘𝑆))
5857ad2antrr 726 . . . . . . . . . 10 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → (𝐹𝑥) ∈ (Base‘𝑆))
59 simplr 768 . . . . . . . . . . 11 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → 𝑎 ∈ (𝐹𝐽))
60 elpreima 6991 . . . . . . . . . . . 12 (𝐹 Fn (Base‘𝑅) → (𝑎 ∈ (𝐹𝐽) ↔ (𝑎 ∈ (Base‘𝑅) ∧ (𝐹𝑎) ∈ 𝐽)))
6160simplbda 499 . . . . . . . . . . 11 ((𝐹 Fn (Base‘𝑅) ∧ 𝑎 ∈ (𝐹𝐽)) → (𝐹𝑎) ∈ 𝐽)
6232, 59, 61syl2anc 584 . . . . . . . . . 10 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → (𝐹𝑎) ∈ 𝐽)
6323, 3, 54lidlmcl 21162 . . . . . . . . . 10 (((𝑆 ∈ Ring ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ ((𝐹𝑥) ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝐽)) → ((𝐹𝑥)(.r𝑆)(𝐹𝑎)) ∈ 𝐽)
6451, 53, 58, 62, 63syl22anc 838 . . . . . . . . 9 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → ((𝐹𝑥)(.r𝑆)(𝐹𝑎)) ∈ 𝐽)
6556, 64eqeltrd 2831 . . . . . . . 8 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → (𝐹‘(𝑥(.r𝑅)𝑎)) ∈ 𝐽)
66 simpr 484 . . . . . . . . 9 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → 𝑏 ∈ (𝐹𝐽))
67 elpreima 6991 . . . . . . . . . 10 (𝐹 Fn (Base‘𝑅) → (𝑏 ∈ (𝐹𝐽) ↔ (𝑏 ∈ (Base‘𝑅) ∧ (𝐹𝑏) ∈ 𝐽)))
6867simplbda 499 . . . . . . . . 9 ((𝐹 Fn (Base‘𝑅) ∧ 𝑏 ∈ (𝐹𝐽)) → (𝐹𝑏) ∈ 𝐽)
6932, 66, 68syl2anc 584 . . . . . . . 8 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → (𝐹𝑏) ∈ 𝐽)
7023, 47lidlacl 21158 . . . . . . . 8 (((𝑆 ∈ Ring ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ ((𝐹‘(𝑥(.r𝑅)𝑎)) ∈ 𝐽 ∧ (𝐹𝑏) ∈ 𝐽)) → ((𝐹‘(𝑥(.r𝑅)𝑎))(+g𝑆)(𝐹𝑏)) ∈ 𝐽)
7151, 53, 65, 69, 70syl22anc 838 . . . . . . 7 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → ((𝐹‘(𝑥(.r𝑅)𝑎))(+g𝑆)(𝐹𝑏)) ∈ 𝐽)
7249, 71eqeltrd 2831 . . . . . 6 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → (𝐹‘((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏)) ∈ 𝐽)
7332, 45, 72elpreimad 6992 . . . . 5 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ (𝐹𝐽))
7473anasss 466 . . . 4 ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ (𝑎 ∈ (𝐹𝐽) ∧ 𝑏 ∈ (𝐹𝐽))) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ (𝐹𝐽))
7574ralrimivva 3175 . . 3 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) → ∀𝑎 ∈ (𝐹𝐽)∀𝑏 ∈ (𝐹𝐽)((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ (𝐹𝐽))
7675ralrimiva 3124 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → ∀𝑥 ∈ (Base‘𝑅)∀𝑎 ∈ (𝐹𝐽)∀𝑏 ∈ (𝐹𝐽)((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ (𝐹𝐽))
77 rhmpreimaidl.i . . 3 𝐼 = (LIdeal‘𝑅)
7877, 2, 43, 38islidl 21152 . 2 ((𝐹𝐽) ∈ 𝐼 ↔ ((𝐹𝐽) ⊆ (Base‘𝑅) ∧ (𝐹𝐽) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑎 ∈ (𝐹𝐽)∀𝑏 ∈ (𝐹𝐽)((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ (𝐹𝐽)))
796, 30, 76, 78syl3anbrc 1344 1 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (𝐹𝐽) ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wss 3897  c0 4280  ccnv 5613  dom cdm 5614  cima 5617  Fun wfun 6475   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  .rcmulr 17162  0gc0g 17343   MndHom cmhm 18689   GrpHom cghm 19124  Ringcrg 20151   RingHom crh 20387  LIdealclidl 21143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-ghm 19125  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-rhm 20390  df-subrg 20485  df-lmod 20795  df-lss 20865  df-sra 21107  df-rgmod 21108  df-lidl 21145
This theorem is referenced by:  kerlidl  21215  rhmpreimaprmidl  33416  ply1annidl  33715
  Copyright terms: Public domain W3C validator