| Step | Hyp | Ref
| Expression |
| 1 | | cnvimass 6074 |
. . . 4
⊢ (◡𝐹 “ 𝐽) ⊆ dom 𝐹 |
| 2 | | eqid 2736 |
. . . . 5
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 3 | | eqid 2736 |
. . . . 5
⊢
(Base‘𝑆) =
(Base‘𝑆) |
| 4 | 2, 3 | rhmf 20450 |
. . . 4
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆)) |
| 5 | 1, 4 | fssdm 6730 |
. . 3
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (◡𝐹 “ 𝐽) ⊆ (Base‘𝑅)) |
| 6 | 5 | adantr 480 |
. 2
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (◡𝐹 “ 𝐽) ⊆ (Base‘𝑅)) |
| 7 | 4 | adantr 480 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆)) |
| 8 | 7 | ffund 6715 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → Fun 𝐹) |
| 9 | | rhmrcl1 20441 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring) |
| 10 | 9 | adantr 480 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → 𝑅 ∈ Ring) |
| 11 | | eqid 2736 |
. . . . . . 7
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 12 | 2, 11 | ring0cl 20232 |
. . . . . 6
⊢ (𝑅 ∈ Ring →
(0g‘𝑅)
∈ (Base‘𝑅)) |
| 13 | 10, 12 | syl 17 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (0g‘𝑅) ∈ (Base‘𝑅)) |
| 14 | 7 | fdmd 6721 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → dom 𝐹 = (Base‘𝑅)) |
| 15 | 13, 14 | eleqtrrd 2838 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (0g‘𝑅) ∈ dom 𝐹) |
| 16 | | rhmghm 20449 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
| 17 | | ghmmhm 19214 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝐹 ∈ (𝑅 MndHom 𝑆)) |
| 18 | | eqid 2736 |
. . . . . . . 8
⊢
(0g‘𝑆) = (0g‘𝑆) |
| 19 | 11, 18 | mhm0 18777 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 MndHom 𝑆) → (𝐹‘(0g‘𝑅)) = (0g‘𝑆)) |
| 20 | 16, 17, 19 | 3syl 18 |
. . . . . 6
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(0g‘𝑅)) = (0g‘𝑆)) |
| 21 | 20 | adantr 480 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (𝐹‘(0g‘𝑅)) = (0g‘𝑆)) |
| 22 | | rhmrcl2 20442 |
. . . . . 6
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring) |
| 23 | | eqid 2736 |
. . . . . . 7
⊢
(LIdeal‘𝑆) =
(LIdeal‘𝑆) |
| 24 | 23, 18 | lidl0cl 21186 |
. . . . . 6
⊢ ((𝑆 ∈ Ring ∧ 𝐽 ∈ (LIdeal‘𝑆)) →
(0g‘𝑆)
∈ 𝐽) |
| 25 | 22, 24 | sylan 580 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (0g‘𝑆) ∈ 𝐽) |
| 26 | 21, 25 | eqeltrd 2835 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (𝐹‘(0g‘𝑅)) ∈ 𝐽) |
| 27 | | fvimacnv 7048 |
. . . . 5
⊢ ((Fun
𝐹 ∧
(0g‘𝑅)
∈ dom 𝐹) →
((𝐹‘(0g‘𝑅)) ∈ 𝐽 ↔ (0g‘𝑅) ∈ (◡𝐹 “ 𝐽))) |
| 28 | 27 | biimpa 476 |
. . . 4
⊢ (((Fun
𝐹 ∧
(0g‘𝑅)
∈ dom 𝐹) ∧ (𝐹‘(0g‘𝑅)) ∈ 𝐽) → (0g‘𝑅) ∈ (◡𝐹 “ 𝐽)) |
| 29 | 8, 15, 26, 28 | syl21anc 837 |
. . 3
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (0g‘𝑅) ∈ (◡𝐹 “ 𝐽)) |
| 30 | 29 | ne0d 4322 |
. 2
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (◡𝐹 “ 𝐽) ≠ ∅) |
| 31 | 7 | ffnd 6712 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → 𝐹 Fn (Base‘𝑅)) |
| 32 | 31 | ad3antrrr 730 |
. . . . . 6
⊢
(((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽)) → 𝐹 Fn (Base‘𝑅)) |
| 33 | 10 | ad3antrrr 730 |
. . . . . . 7
⊢
(((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽)) → 𝑅 ∈ Ring) |
| 34 | | simpllr 775 |
. . . . . . . 8
⊢
(((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽)) → 𝑥 ∈ (Base‘𝑅)) |
| 35 | 5 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) → (◡𝐹 “ 𝐽) ⊆ (Base‘𝑅)) |
| 36 | 35 | sselda 3963 |
. . . . . . . . 9
⊢ ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) → 𝑎 ∈ (Base‘𝑅)) |
| 37 | 36 | adantr 480 |
. . . . . . . 8
⊢
(((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽)) → 𝑎 ∈ (Base‘𝑅)) |
| 38 | | eqid 2736 |
. . . . . . . . 9
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 39 | 2, 38 | ringcl 20215 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ (Base‘𝑅)) → (𝑥(.r‘𝑅)𝑎) ∈ (Base‘𝑅)) |
| 40 | 33, 34, 37, 39 | syl3anc 1373 |
. . . . . . 7
⊢
(((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽)) → (𝑥(.r‘𝑅)𝑎) ∈ (Base‘𝑅)) |
| 41 | 35 | adantr 480 |
. . . . . . . 8
⊢ ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) → (◡𝐹 “ 𝐽) ⊆ (Base‘𝑅)) |
| 42 | 41 | sselda 3963 |
. . . . . . 7
⊢
(((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽)) → 𝑏 ∈ (Base‘𝑅)) |
| 43 | | eqid 2736 |
. . . . . . . 8
⊢
(+g‘𝑅) = (+g‘𝑅) |
| 44 | 2, 43 | ringacl 20243 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑥(.r‘𝑅)𝑎) ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅)) → ((𝑥(.r‘𝑅)𝑎)(+g‘𝑅)𝑏) ∈ (Base‘𝑅)) |
| 45 | 33, 40, 42, 44 | syl3anc 1373 |
. . . . . 6
⊢
(((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽)) → ((𝑥(.r‘𝑅)𝑎)(+g‘𝑅)𝑏) ∈ (Base‘𝑅)) |
| 46 | 16 | ad4antr 732 |
. . . . . . . 8
⊢
(((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽)) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
| 47 | | eqid 2736 |
. . . . . . . . 9
⊢
(+g‘𝑆) = (+g‘𝑆) |
| 48 | 2, 43, 47 | ghmlin 19209 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (𝑥(.r‘𝑅)𝑎) ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅)) → (𝐹‘((𝑥(.r‘𝑅)𝑎)(+g‘𝑅)𝑏)) = ((𝐹‘(𝑥(.r‘𝑅)𝑎))(+g‘𝑆)(𝐹‘𝑏))) |
| 49 | 46, 40, 42, 48 | syl3anc 1373 |
. . . . . . 7
⊢
(((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽)) → (𝐹‘((𝑥(.r‘𝑅)𝑎)(+g‘𝑅)𝑏)) = ((𝐹‘(𝑥(.r‘𝑅)𝑎))(+g‘𝑆)(𝐹‘𝑏))) |
| 50 | | simp-4l 782 |
. . . . . . . . 9
⊢
(((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽)) → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
| 51 | 50, 22 | syl 17 |
. . . . . . . 8
⊢
(((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽)) → 𝑆 ∈ Ring) |
| 52 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → 𝐽 ∈ (LIdeal‘𝑆)) |
| 53 | 52 | ad3antrrr 730 |
. . . . . . . 8
⊢
(((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽)) → 𝐽 ∈ (LIdeal‘𝑆)) |
| 54 | | eqid 2736 |
. . . . . . . . . . 11
⊢
(.r‘𝑆) = (.r‘𝑆) |
| 55 | 2, 38, 54 | rhmmul 20451 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ (Base‘𝑅)) → (𝐹‘(𝑥(.r‘𝑅)𝑎)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑎))) |
| 56 | 50, 34, 37, 55 | syl3anc 1373 |
. . . . . . . . 9
⊢
(((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽)) → (𝐹‘(𝑥(.r‘𝑅)𝑎)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑎))) |
| 57 | 7 | ffvelcdmda 7079 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐹‘𝑥) ∈ (Base‘𝑆)) |
| 58 | 57 | ad2antrr 726 |
. . . . . . . . . 10
⊢
(((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽)) → (𝐹‘𝑥) ∈ (Base‘𝑆)) |
| 59 | | simplr 768 |
. . . . . . . . . . 11
⊢
(((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽)) → 𝑎 ∈ (◡𝐹 “ 𝐽)) |
| 60 | | elpreima 7053 |
. . . . . . . . . . . 12
⊢ (𝐹 Fn (Base‘𝑅) → (𝑎 ∈ (◡𝐹 “ 𝐽) ↔ (𝑎 ∈ (Base‘𝑅) ∧ (𝐹‘𝑎) ∈ 𝐽))) |
| 61 | 60 | simplbda 499 |
. . . . . . . . . . 11
⊢ ((𝐹 Fn (Base‘𝑅) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) → (𝐹‘𝑎) ∈ 𝐽) |
| 62 | 32, 59, 61 | syl2anc 584 |
. . . . . . . . . 10
⊢
(((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽)) → (𝐹‘𝑎) ∈ 𝐽) |
| 63 | 23, 3, 54 | lidlmcl 21191 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ Ring ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ ((𝐹‘𝑥) ∈ (Base‘𝑆) ∧ (𝐹‘𝑎) ∈ 𝐽)) → ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑎)) ∈ 𝐽) |
| 64 | 51, 53, 58, 62, 63 | syl22anc 838 |
. . . . . . . . 9
⊢
(((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽)) → ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑎)) ∈ 𝐽) |
| 65 | 56, 64 | eqeltrd 2835 |
. . . . . . . 8
⊢
(((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽)) → (𝐹‘(𝑥(.r‘𝑅)𝑎)) ∈ 𝐽) |
| 66 | | simpr 484 |
. . . . . . . . 9
⊢
(((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽)) → 𝑏 ∈ (◡𝐹 “ 𝐽)) |
| 67 | | elpreima 7053 |
. . . . . . . . . 10
⊢ (𝐹 Fn (Base‘𝑅) → (𝑏 ∈ (◡𝐹 “ 𝐽) ↔ (𝑏 ∈ (Base‘𝑅) ∧ (𝐹‘𝑏) ∈ 𝐽))) |
| 68 | 67 | simplbda 499 |
. . . . . . . . 9
⊢ ((𝐹 Fn (Base‘𝑅) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽)) → (𝐹‘𝑏) ∈ 𝐽) |
| 69 | 32, 66, 68 | syl2anc 584 |
. . . . . . . 8
⊢
(((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽)) → (𝐹‘𝑏) ∈ 𝐽) |
| 70 | 23, 47 | lidlacl 21187 |
. . . . . . . 8
⊢ (((𝑆 ∈ Ring ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ ((𝐹‘(𝑥(.r‘𝑅)𝑎)) ∈ 𝐽 ∧ (𝐹‘𝑏) ∈ 𝐽)) → ((𝐹‘(𝑥(.r‘𝑅)𝑎))(+g‘𝑆)(𝐹‘𝑏)) ∈ 𝐽) |
| 71 | 51, 53, 65, 69, 70 | syl22anc 838 |
. . . . . . 7
⊢
(((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽)) → ((𝐹‘(𝑥(.r‘𝑅)𝑎))(+g‘𝑆)(𝐹‘𝑏)) ∈ 𝐽) |
| 72 | 49, 71 | eqeltrd 2835 |
. . . . . 6
⊢
(((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽)) → (𝐹‘((𝑥(.r‘𝑅)𝑎)(+g‘𝑅)𝑏)) ∈ 𝐽) |
| 73 | 32, 45, 72 | elpreimad 7054 |
. . . . 5
⊢
(((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (◡𝐹 “ 𝐽)) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽)) → ((𝑥(.r‘𝑅)𝑎)(+g‘𝑅)𝑏) ∈ (◡𝐹 “ 𝐽)) |
| 74 | 73 | anasss 466 |
. . . 4
⊢ ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ (𝑎 ∈ (◡𝐹 “ 𝐽) ∧ 𝑏 ∈ (◡𝐹 “ 𝐽))) → ((𝑥(.r‘𝑅)𝑎)(+g‘𝑅)𝑏) ∈ (◡𝐹 “ 𝐽)) |
| 75 | 74 | ralrimivva 3188 |
. . 3
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) → ∀𝑎 ∈ (◡𝐹 “ 𝐽)∀𝑏 ∈ (◡𝐹 “ 𝐽)((𝑥(.r‘𝑅)𝑎)(+g‘𝑅)𝑏) ∈ (◡𝐹 “ 𝐽)) |
| 76 | 75 | ralrimiva 3133 |
. 2
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → ∀𝑥 ∈ (Base‘𝑅)∀𝑎 ∈ (◡𝐹 “ 𝐽)∀𝑏 ∈ (◡𝐹 “ 𝐽)((𝑥(.r‘𝑅)𝑎)(+g‘𝑅)𝑏) ∈ (◡𝐹 “ 𝐽)) |
| 77 | | rhmpreimaidl.i |
. . 3
⊢ 𝐼 = (LIdeal‘𝑅) |
| 78 | 77, 2, 43, 38 | islidl 21181 |
. 2
⊢ ((◡𝐹 “ 𝐽) ∈ 𝐼 ↔ ((◡𝐹 “ 𝐽) ⊆ (Base‘𝑅) ∧ (◡𝐹 “ 𝐽) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑎 ∈ (◡𝐹 “ 𝐽)∀𝑏 ∈ (◡𝐹 “ 𝐽)((𝑥(.r‘𝑅)𝑎)(+g‘𝑅)𝑏) ∈ (◡𝐹 “ 𝐽))) |
| 79 | 6, 30, 76, 78 | syl3anbrc 1344 |
1
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (◡𝐹 “ 𝐽) ∈ 𝐼) |