Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmpreimaidl Structured version   Visualization version   GIF version

Theorem rhmpreimaidl 31289
Description: The preimage of an ideal by a ring homomorphism is an ideal. (Contributed by Thierry Arnoux, 30-Jun-2024.)
Hypothesis
Ref Expression
rhmpreimaidl.i 𝐼 = (LIdeal‘𝑅)
Assertion
Ref Expression
rhmpreimaidl ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (𝐹𝐽) ∈ 𝐼)

Proof of Theorem rhmpreimaidl
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvimass 5938 . . . 4 (𝐹𝐽) ⊆ dom 𝐹
2 eqid 2734 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2734 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
42, 3rhmf 19718 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆))
51, 4fssdm 6554 . . 3 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹𝐽) ⊆ (Base‘𝑅))
65adantr 484 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (𝐹𝐽) ⊆ (Base‘𝑅))
74adantr 484 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆))
87ffund 6538 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → Fun 𝐹)
9 rhmrcl1 19711 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
109adantr 484 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → 𝑅 ∈ Ring)
11 eqid 2734 . . . . . . 7 (0g𝑅) = (0g𝑅)
122, 11ring0cl 19559 . . . . . 6 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
1310, 12syl 17 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (0g𝑅) ∈ (Base‘𝑅))
147fdmd 6545 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → dom 𝐹 = (Base‘𝑅))
1513, 14eleqtrrd 2837 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (0g𝑅) ∈ dom 𝐹)
16 rhmghm 19717 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
17 ghmmhm 18604 . . . . . . 7 (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝐹 ∈ (𝑅 MndHom 𝑆))
18 eqid 2734 . . . . . . . 8 (0g𝑆) = (0g𝑆)
1911, 18mhm0 18198 . . . . . . 7 (𝐹 ∈ (𝑅 MndHom 𝑆) → (𝐹‘(0g𝑅)) = (0g𝑆))
2016, 17, 193syl 18 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(0g𝑅)) = (0g𝑆))
2120adantr 484 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (𝐹‘(0g𝑅)) = (0g𝑆))
22 rhmrcl2 19712 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
23 eqid 2734 . . . . . . 7 (LIdeal‘𝑆) = (LIdeal‘𝑆)
2423, 18lidl0cl 20222 . . . . . 6 ((𝑆 ∈ Ring ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (0g𝑆) ∈ 𝐽)
2522, 24sylan 583 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (0g𝑆) ∈ 𝐽)
2621, 25eqeltrd 2834 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (𝐹‘(0g𝑅)) ∈ 𝐽)
27 fvimacnv 6862 . . . . 5 ((Fun 𝐹 ∧ (0g𝑅) ∈ dom 𝐹) → ((𝐹‘(0g𝑅)) ∈ 𝐽 ↔ (0g𝑅) ∈ (𝐹𝐽)))
2827biimpa 480 . . . 4 (((Fun 𝐹 ∧ (0g𝑅) ∈ dom 𝐹) ∧ (𝐹‘(0g𝑅)) ∈ 𝐽) → (0g𝑅) ∈ (𝐹𝐽))
298, 15, 26, 28syl21anc 838 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (0g𝑅) ∈ (𝐹𝐽))
3029ne0d 4240 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (𝐹𝐽) ≠ ∅)
317ffnd 6535 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → 𝐹 Fn (Base‘𝑅))
3231ad3antrrr 730 . . . . . 6 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → 𝐹 Fn (Base‘𝑅))
3310ad3antrrr 730 . . . . . . 7 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → 𝑅 ∈ Ring)
34 simpllr 776 . . . . . . . 8 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → 𝑥 ∈ (Base‘𝑅))
355ad2antrr 726 . . . . . . . . . 10 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐹𝐽) ⊆ (Base‘𝑅))
3635sselda 3891 . . . . . . . . 9 ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) → 𝑎 ∈ (Base‘𝑅))
3736adantr 484 . . . . . . . 8 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → 𝑎 ∈ (Base‘𝑅))
38 eqid 2734 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
392, 38ringcl 19551 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)𝑎) ∈ (Base‘𝑅))
4033, 34, 37, 39syl3anc 1373 . . . . . . 7 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → (𝑥(.r𝑅)𝑎) ∈ (Base‘𝑅))
4135adantr 484 . . . . . . . 8 ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) → (𝐹𝐽) ⊆ (Base‘𝑅))
4241sselda 3891 . . . . . . 7 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → 𝑏 ∈ (Base‘𝑅))
43 eqid 2734 . . . . . . . 8 (+g𝑅) = (+g𝑅)
442, 43ringacl 19568 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑥(.r𝑅)𝑎) ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ (Base‘𝑅))
4533, 40, 42, 44syl3anc 1373 . . . . . 6 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ (Base‘𝑅))
4616ad4antr 732 . . . . . . . 8 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
47 eqid 2734 . . . . . . . . 9 (+g𝑆) = (+g𝑆)
482, 43, 47ghmlin 18599 . . . . . . . 8 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (𝑥(.r𝑅)𝑎) ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅)) → (𝐹‘((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏)) = ((𝐹‘(𝑥(.r𝑅)𝑎))(+g𝑆)(𝐹𝑏)))
4946, 40, 42, 48syl3anc 1373 . . . . . . 7 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → (𝐹‘((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏)) = ((𝐹‘(𝑥(.r𝑅)𝑎))(+g𝑆)(𝐹𝑏)))
50 simp-4l 783 . . . . . . . . 9 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → 𝐹 ∈ (𝑅 RingHom 𝑆))
5150, 22syl 17 . . . . . . . 8 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → 𝑆 ∈ Ring)
52 simpr 488 . . . . . . . . 9 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → 𝐽 ∈ (LIdeal‘𝑆))
5352ad3antrrr 730 . . . . . . . 8 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → 𝐽 ∈ (LIdeal‘𝑆))
54 eqid 2734 . . . . . . . . . . 11 (.r𝑆) = (.r𝑆)
552, 38, 54rhmmul 19719 . . . . . . . . . 10 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ (Base‘𝑅)) → (𝐹‘(𝑥(.r𝑅)𝑎)) = ((𝐹𝑥)(.r𝑆)(𝐹𝑎)))
5650, 34, 37, 55syl3anc 1373 . . . . . . . . 9 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → (𝐹‘(𝑥(.r𝑅)𝑎)) = ((𝐹𝑥)(.r𝑆)(𝐹𝑎)))
577ffvelrnda 6893 . . . . . . . . . . 11 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐹𝑥) ∈ (Base‘𝑆))
5857ad2antrr 726 . . . . . . . . . 10 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → (𝐹𝑥) ∈ (Base‘𝑆))
59 simplr 769 . . . . . . . . . . 11 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → 𝑎 ∈ (𝐹𝐽))
60 elpreima 6867 . . . . . . . . . . . 12 (𝐹 Fn (Base‘𝑅) → (𝑎 ∈ (𝐹𝐽) ↔ (𝑎 ∈ (Base‘𝑅) ∧ (𝐹𝑎) ∈ 𝐽)))
6160simplbda 503 . . . . . . . . . . 11 ((𝐹 Fn (Base‘𝑅) ∧ 𝑎 ∈ (𝐹𝐽)) → (𝐹𝑎) ∈ 𝐽)
6232, 59, 61syl2anc 587 . . . . . . . . . 10 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → (𝐹𝑎) ∈ 𝐽)
6323, 3, 54lidlmcl 20227 . . . . . . . . . 10 (((𝑆 ∈ Ring ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ ((𝐹𝑥) ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝐽)) → ((𝐹𝑥)(.r𝑆)(𝐹𝑎)) ∈ 𝐽)
6451, 53, 58, 62, 63syl22anc 839 . . . . . . . . 9 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → ((𝐹𝑥)(.r𝑆)(𝐹𝑎)) ∈ 𝐽)
6556, 64eqeltrd 2834 . . . . . . . 8 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → (𝐹‘(𝑥(.r𝑅)𝑎)) ∈ 𝐽)
66 simpr 488 . . . . . . . . 9 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → 𝑏 ∈ (𝐹𝐽))
67 elpreima 6867 . . . . . . . . . 10 (𝐹 Fn (Base‘𝑅) → (𝑏 ∈ (𝐹𝐽) ↔ (𝑏 ∈ (Base‘𝑅) ∧ (𝐹𝑏) ∈ 𝐽)))
6867simplbda 503 . . . . . . . . 9 ((𝐹 Fn (Base‘𝑅) ∧ 𝑏 ∈ (𝐹𝐽)) → (𝐹𝑏) ∈ 𝐽)
6932, 66, 68syl2anc 587 . . . . . . . 8 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → (𝐹𝑏) ∈ 𝐽)
7023, 47lidlacl 20223 . . . . . . . 8 (((𝑆 ∈ Ring ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ ((𝐹‘(𝑥(.r𝑅)𝑎)) ∈ 𝐽 ∧ (𝐹𝑏) ∈ 𝐽)) → ((𝐹‘(𝑥(.r𝑅)𝑎))(+g𝑆)(𝐹𝑏)) ∈ 𝐽)
7151, 53, 65, 69, 70syl22anc 839 . . . . . . 7 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → ((𝐹‘(𝑥(.r𝑅)𝑎))(+g𝑆)(𝐹𝑏)) ∈ 𝐽)
7249, 71eqeltrd 2834 . . . . . 6 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → (𝐹‘((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏)) ∈ 𝐽)
7332, 45, 72elpreimad 6868 . . . . 5 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ (𝐹𝐽)) ∧ 𝑏 ∈ (𝐹𝐽)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ (𝐹𝐽))
7473anasss 470 . . . 4 ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ (𝑎 ∈ (𝐹𝐽) ∧ 𝑏 ∈ (𝐹𝐽))) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ (𝐹𝐽))
7574ralrimivva 3105 . . 3 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) → ∀𝑎 ∈ (𝐹𝐽)∀𝑏 ∈ (𝐹𝐽)((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ (𝐹𝐽))
7675ralrimiva 3098 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → ∀𝑥 ∈ (Base‘𝑅)∀𝑎 ∈ (𝐹𝐽)∀𝑏 ∈ (𝐹𝐽)((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ (𝐹𝐽))
77 rhmpreimaidl.i . . 3 𝐼 = (LIdeal‘𝑅)
7877, 2, 43, 38islidl 20221 . 2 ((𝐹𝐽) ∈ 𝐼 ↔ ((𝐹𝐽) ⊆ (Base‘𝑅) ∧ (𝐹𝐽) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑎 ∈ (𝐹𝐽)∀𝑏 ∈ (𝐹𝐽)((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ (𝐹𝐽)))
796, 30, 76, 78syl3anbrc 1345 1 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (𝐹𝐽) ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wne 2935  wral 3054  wss 3857  c0 4227  ccnv 5539  dom cdm 5540  cima 5543  Fun wfun 6363   Fn wfn 6364  wf 6365  cfv 6369  (class class class)co 7202  Basecbs 16684  +gcplusg 16767  .rcmulr 16768  0gc0g 16916   MndHom cmhm 18188   GrpHom cghm 18591  Ringcrg 19534   RingHom crh 19704  LIdealclidl 20179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-er 8380  df-map 8499  df-en 8616  df-dom 8617  df-sdom 8618  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-2 11876  df-3 11877  df-4 11878  df-5 11879  df-6 11880  df-7 11881  df-8 11882  df-ndx 16687  df-slot 16688  df-base 16690  df-sets 16691  df-ress 16692  df-plusg 16780  df-mulr 16781  df-sca 16783  df-vsca 16784  df-ip 16785  df-0g 16918  df-mgm 18086  df-sgrp 18135  df-mnd 18146  df-mhm 18190  df-grp 18340  df-minusg 18341  df-sbg 18342  df-subg 18512  df-ghm 18592  df-mgp 19477  df-ur 19489  df-ring 19536  df-rnghom 19707  df-subrg 19770  df-lmod 19873  df-lss 19941  df-sra 20181  df-rgmod 20182  df-lidl 20183
This theorem is referenced by:  kerlidl  31290  rhmpreimaprmidl  31313
  Copyright terms: Public domain W3C validator