Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1degltel Structured version   Visualization version   GIF version

Theorem ply1degltel 33555
Description: Characterize elementhood in the set 𝑆 of polynomials of degree less than 𝑁. (Contributed by Thierry Arnoux, 20-Feb-2025.)
Hypotheses
Ref Expression
ply1degltlss.p 𝑃 = (Poly1𝑅)
ply1degltlss.d 𝐷 = (deg1𝑅)
ply1degltlss.1 𝑆 = (𝐷 “ (-∞[,)𝑁))
ply1degltlss.3 (𝜑𝑁 ∈ ℕ0)
ply1degltlss.2 (𝜑𝑅 ∈ Ring)
ply1degltel.1 𝐵 = (Base‘𝑃)
Assertion
Ref Expression
ply1degltel (𝜑 → (𝐹𝑆 ↔ (𝐹𝐵 ∧ (𝐷𝐹) ≤ (𝑁 − 1))))

Proof of Theorem ply1degltel
StepHypRef Expression
1 simpr 484 . . . 4 ((𝜑𝐹 = (0g𝑃)) → 𝐹 = (0g𝑃))
2 ply1degltlss.d . . . . . . . . . 10 𝐷 = (deg1𝑅)
3 ply1degltlss.p . . . . . . . . . 10 𝑃 = (Poly1𝑅)
4 ply1degltel.1 . . . . . . . . . 10 𝐵 = (Base‘𝑃)
52, 3, 4deg1xrf 26057 . . . . . . . . 9 𝐷:𝐵⟶ℝ*
65a1i 11 . . . . . . . 8 (𝜑𝐷:𝐵⟶ℝ*)
76ffnd 6717 . . . . . . 7 (𝜑𝐷 Fn 𝐵)
8 ply1degltlss.2 . . . . . . . 8 (𝜑𝑅 ∈ Ring)
93ply1ring 22198 . . . . . . . 8 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
10 eqid 2734 . . . . . . . . 9 (0g𝑃) = (0g𝑃)
114, 10ring0cl 20233 . . . . . . . 8 (𝑃 ∈ Ring → (0g𝑃) ∈ 𝐵)
128, 9, 113syl 18 . . . . . . 7 (𝜑 → (0g𝑃) ∈ 𝐵)
132, 3, 10deg1z 26063 . . . . . . . . 9 (𝑅 ∈ Ring → (𝐷‘(0g𝑃)) = -∞)
148, 13syl 17 . . . . . . . 8 (𝜑 → (𝐷‘(0g𝑃)) = -∞)
15 mnfxr 11300 . . . . . . . . . 10 -∞ ∈ ℝ*
1615a1i 11 . . . . . . . . 9 (𝜑 → -∞ ∈ ℝ*)
17 ply1degltlss.3 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
1817nn0red 12571 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ)
1918rexrd 11293 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ*)
2016xrleidd 13176 . . . . . . . . 9 (𝜑 → -∞ ≤ -∞)
2118mnfltd 13148 . . . . . . . . 9 (𝜑 → -∞ < 𝑁)
2216, 19, 16, 20, 21elicod 13419 . . . . . . . 8 (𝜑 → -∞ ∈ (-∞[,)𝑁))
2314, 22eqeltrd 2833 . . . . . . 7 (𝜑 → (𝐷‘(0g𝑃)) ∈ (-∞[,)𝑁))
247, 12, 23elpreimad 7059 . . . . . 6 (𝜑 → (0g𝑃) ∈ (𝐷 “ (-∞[,)𝑁)))
25 ply1degltlss.1 . . . . . 6 𝑆 = (𝐷 “ (-∞[,)𝑁))
2624, 25eleqtrrdi 2844 . . . . 5 (𝜑 → (0g𝑃) ∈ 𝑆)
2726adantr 480 . . . 4 ((𝜑𝐹 = (0g𝑃)) → (0g𝑃) ∈ 𝑆)
281, 27eqeltrd 2833 . . 3 ((𝜑𝐹 = (0g𝑃)) → 𝐹𝑆)
29 cnvimass 6080 . . . . . 6 (𝐷 “ (-∞[,)𝑁)) ⊆ dom 𝐷
3025, 29eqsstri 4010 . . . . 5 𝑆 ⊆ dom 𝐷
315fdmi 6727 . . . . 5 dom 𝐷 = 𝐵
3230, 31sseqtri 4012 . . . 4 𝑆𝐵
3332, 28sselid 3961 . . 3 ((𝜑𝐹 = (0g𝑃)) → 𝐹𝐵)
341fveq2d 6890 . . . . 5 ((𝜑𝐹 = (0g𝑃)) → (𝐷𝐹) = (𝐷‘(0g𝑃)))
3514adantr 480 . . . . 5 ((𝜑𝐹 = (0g𝑃)) → (𝐷‘(0g𝑃)) = -∞)
3634, 35eqtrd 2769 . . . 4 ((𝜑𝐹 = (0g𝑃)) → (𝐷𝐹) = -∞)
37 1red 11244 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
3818, 37resubcld 11673 . . . . . . 7 (𝜑 → (𝑁 − 1) ∈ ℝ)
3938rexrd 11293 . . . . . 6 (𝜑 → (𝑁 − 1) ∈ ℝ*)
4039adantr 480 . . . . 5 ((𝜑𝐹 = (0g𝑃)) → (𝑁 − 1) ∈ ℝ*)
4140mnfled 13160 . . . 4 ((𝜑𝐹 = (0g𝑃)) → -∞ ≤ (𝑁 − 1))
4236, 41eqbrtrd 5145 . . 3 ((𝜑𝐹 = (0g𝑃)) → (𝐷𝐹) ≤ (𝑁 − 1))
43 pm5.1 823 . . 3 ((𝐹𝑆 ∧ (𝐹𝐵 ∧ (𝐷𝐹) ≤ (𝑁 − 1))) → (𝐹𝑆 ↔ (𝐹𝐵 ∧ (𝐷𝐹) ≤ (𝑁 − 1))))
4428, 33, 42, 43syl12anc 836 . 2 ((𝜑𝐹 = (0g𝑃)) → (𝐹𝑆 ↔ (𝐹𝐵 ∧ (𝐷𝐹) ≤ (𝑁 − 1))))
4525eleq2i 2825 . . . 4 (𝐹𝑆𝐹 ∈ (𝐷 “ (-∞[,)𝑁)))
467adantr 480 . . . . 5 ((𝜑𝐹 ≠ (0g𝑃)) → 𝐷 Fn 𝐵)
47 elpreima 7058 . . . . 5 (𝐷 Fn 𝐵 → (𝐹 ∈ (𝐷 “ (-∞[,)𝑁)) ↔ (𝐹𝐵 ∧ (𝐷𝐹) ∈ (-∞[,)𝑁))))
4846, 47syl 17 . . . 4 ((𝜑𝐹 ≠ (0g𝑃)) → (𝐹 ∈ (𝐷 “ (-∞[,)𝑁)) ↔ (𝐹𝐵 ∧ (𝐷𝐹) ∈ (-∞[,)𝑁))))
4945, 48bitrid 283 . . 3 ((𝜑𝐹 ≠ (0g𝑃)) → (𝐹𝑆 ↔ (𝐹𝐵 ∧ (𝐷𝐹) ∈ (-∞[,)𝑁))))
5015a1i 11 . . . . . . 7 (((𝜑𝐹 ≠ (0g𝑃)) ∧ 𝐹𝐵) → -∞ ∈ ℝ*)
5119ad2antrr 726 . . . . . . 7 (((𝜑𝐹 ≠ (0g𝑃)) ∧ 𝐹𝐵) → 𝑁 ∈ ℝ*)
52 elico1 13412 . . . . . . 7 ((-∞ ∈ ℝ*𝑁 ∈ ℝ*) → ((𝐷𝐹) ∈ (-∞[,)𝑁) ↔ ((𝐷𝐹) ∈ ℝ* ∧ -∞ ≤ (𝐷𝐹) ∧ (𝐷𝐹) < 𝑁)))
5350, 51, 52syl2anc 584 . . . . . 6 (((𝜑𝐹 ≠ (0g𝑃)) ∧ 𝐹𝐵) → ((𝐷𝐹) ∈ (-∞[,)𝑁) ↔ ((𝐷𝐹) ∈ ℝ* ∧ -∞ ≤ (𝐷𝐹) ∧ (𝐷𝐹) < 𝑁)))
54 df-3an 1088 . . . . . 6 (((𝐷𝐹) ∈ ℝ* ∧ -∞ ≤ (𝐷𝐹) ∧ (𝐷𝐹) < 𝑁) ↔ (((𝐷𝐹) ∈ ℝ* ∧ -∞ ≤ (𝐷𝐹)) ∧ (𝐷𝐹) < 𝑁))
5553, 54bitrdi 287 . . . . 5 (((𝜑𝐹 ≠ (0g𝑃)) ∧ 𝐹𝐵) → ((𝐷𝐹) ∈ (-∞[,)𝑁) ↔ (((𝐷𝐹) ∈ ℝ* ∧ -∞ ≤ (𝐷𝐹)) ∧ (𝐷𝐹) < 𝑁)))
568ad2antrr 726 . . . . . . . . . 10 (((𝜑𝐹 ≠ (0g𝑃)) ∧ 𝐹𝐵) → 𝑅 ∈ Ring)
57 simpr 484 . . . . . . . . . 10 (((𝜑𝐹 ≠ (0g𝑃)) ∧ 𝐹𝐵) → 𝐹𝐵)
58 simplr 768 . . . . . . . . . 10 (((𝜑𝐹 ≠ (0g𝑃)) ∧ 𝐹𝐵) → 𝐹 ≠ (0g𝑃))
592, 3, 10, 4deg1nn0cl 26064 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹 ≠ (0g𝑃)) → (𝐷𝐹) ∈ ℕ0)
6056, 57, 58, 59syl3anc 1372 . . . . . . . . 9 (((𝜑𝐹 ≠ (0g𝑃)) ∧ 𝐹𝐵) → (𝐷𝐹) ∈ ℕ0)
6160nn0red 12571 . . . . . . . 8 (((𝜑𝐹 ≠ (0g𝑃)) ∧ 𝐹𝐵) → (𝐷𝐹) ∈ ℝ)
6261rexrd 11293 . . . . . . 7 (((𝜑𝐹 ≠ (0g𝑃)) ∧ 𝐹𝐵) → (𝐷𝐹) ∈ ℝ*)
6362mnfled 13160 . . . . . . 7 (((𝜑𝐹 ≠ (0g𝑃)) ∧ 𝐹𝐵) → -∞ ≤ (𝐷𝐹))
6462, 63jca 511 . . . . . 6 (((𝜑𝐹 ≠ (0g𝑃)) ∧ 𝐹𝐵) → ((𝐷𝐹) ∈ ℝ* ∧ -∞ ≤ (𝐷𝐹)))
6564biantrurd 532 . . . . 5 (((𝜑𝐹 ≠ (0g𝑃)) ∧ 𝐹𝐵) → ((𝐷𝐹) < 𝑁 ↔ (((𝐷𝐹) ∈ ℝ* ∧ -∞ ≤ (𝐷𝐹)) ∧ (𝐷𝐹) < 𝑁)))
6660nn0zd 12622 . . . . . 6 (((𝜑𝐹 ≠ (0g𝑃)) ∧ 𝐹𝐵) → (𝐷𝐹) ∈ ℤ)
6717nn0zd 12622 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
6867ad2antrr 726 . . . . . 6 (((𝜑𝐹 ≠ (0g𝑃)) ∧ 𝐹𝐵) → 𝑁 ∈ ℤ)
69 zltlem1 12653 . . . . . 6 (((𝐷𝐹) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐷𝐹) < 𝑁 ↔ (𝐷𝐹) ≤ (𝑁 − 1)))
7066, 68, 69syl2anc 584 . . . . 5 (((𝜑𝐹 ≠ (0g𝑃)) ∧ 𝐹𝐵) → ((𝐷𝐹) < 𝑁 ↔ (𝐷𝐹) ≤ (𝑁 − 1)))
7155, 65, 703bitr2d 307 . . . 4 (((𝜑𝐹 ≠ (0g𝑃)) ∧ 𝐹𝐵) → ((𝐷𝐹) ∈ (-∞[,)𝑁) ↔ (𝐷𝐹) ≤ (𝑁 − 1)))
7271pm5.32da 579 . . 3 ((𝜑𝐹 ≠ (0g𝑃)) → ((𝐹𝐵 ∧ (𝐷𝐹) ∈ (-∞[,)𝑁)) ↔ (𝐹𝐵 ∧ (𝐷𝐹) ≤ (𝑁 − 1))))
7349, 72bitrd 279 . 2 ((𝜑𝐹 ≠ (0g𝑃)) → (𝐹𝑆 ↔ (𝐹𝐵 ∧ (𝐷𝐹) ≤ (𝑁 − 1))))
7444, 73pm2.61dane 3018 1 (𝜑 → (𝐹𝑆 ↔ (𝐹𝐵 ∧ (𝐷𝐹) ≤ (𝑁 − 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2931   class class class wbr 5123  ccnv 5664  dom cdm 5665  cima 5668   Fn wfn 6536  wf 6537  cfv 6541  (class class class)co 7413  1c1 11138  -∞cmnf 11275  *cxr 11276   < clt 11277  cle 11278  cmin 11474  0cn0 12509  cz 12596  [,)cico 13371  Basecbs 17230  0gc0g 17456  Ringcrg 20199  Poly1cpl1 22127  deg1cdg1 26030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215  ax-addf 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-ofr 7680  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-map 8850  df-pm 8851  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-sup 9464  df-oi 9532  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-ico 13375  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14353  df-struct 17167  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17254  df-plusg 17287  df-mulr 17288  df-starv 17289  df-sca 17290  df-vsca 17291  df-ip 17292  df-tset 17293  df-ple 17294  df-ds 17296  df-unif 17297  df-hom 17298  df-cco 17299  df-0g 17458  df-gsum 17459  df-prds 17464  df-pws 17466  df-mre 17601  df-mrc 17602  df-acs 17604  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-mulg 19056  df-subg 19111  df-ghm 19201  df-cntz 19305  df-cmn 19769  df-abl 19770  df-mgp 20107  df-rng 20119  df-ur 20148  df-ring 20201  df-cring 20202  df-subrng 20515  df-subrg 20539  df-cnfld 21328  df-psr 21884  df-mpl 21886  df-opsr 21888  df-psr1 22130  df-ply1 22132  df-mdeg 26031  df-deg1 26032
This theorem is referenced by:  ply1degltlss  33557  algextdeglem8  33709
  Copyright terms: Public domain W3C validator