| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ply1degltlss.2 | . . 3
⊢ (𝜑 → 𝑅 ∈ Ring) | 
| 2 |  | ply1degltlss.p | . . . 4
⊢ 𝑃 = (Poly1‘𝑅) | 
| 3 | 2 | ply1sca 22255 | . . 3
⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃)) | 
| 4 | 1, 3 | syl 17 | . 2
⊢ (𝜑 → 𝑅 = (Scalar‘𝑃)) | 
| 5 |  | eqidd 2737 | . 2
⊢ (𝜑 → (Base‘𝑅) = (Base‘𝑅)) | 
| 6 |  | eqidd 2737 | . 2
⊢ (𝜑 → (Base‘𝑃) = (Base‘𝑃)) | 
| 7 |  | eqidd 2737 | . 2
⊢ (𝜑 → (+g‘𝑃) = (+g‘𝑃)) | 
| 8 |  | eqidd 2737 | . 2
⊢ (𝜑 → (
·𝑠 ‘𝑃) = ( ·𝑠
‘𝑃)) | 
| 9 |  | eqidd 2737 | . 2
⊢ (𝜑 → (LSubSp‘𝑃) = (LSubSp‘𝑃)) | 
| 10 |  | ply1degltlss.1 | . . . . 5
⊢ 𝑆 = (◡𝐷 “ (-∞[,)𝑁)) | 
| 11 |  | cnvimass 6099 | . . . . 5
⊢ (◡𝐷 “ (-∞[,)𝑁)) ⊆ dom 𝐷 | 
| 12 | 10, 11 | eqsstri 4029 | . . . 4
⊢ 𝑆 ⊆ dom 𝐷 | 
| 13 |  | ply1degltlss.d | . . . . . 6
⊢ 𝐷 = (deg1‘𝑅) | 
| 14 |  | eqid 2736 | . . . . . 6
⊢
(Base‘𝑃) =
(Base‘𝑃) | 
| 15 | 13, 2, 14 | deg1xrf 26121 | . . . . 5
⊢ 𝐷:(Base‘𝑃)⟶ℝ* | 
| 16 | 15 | fdmi 6746 | . . . 4
⊢ dom 𝐷 = (Base‘𝑃) | 
| 17 | 12, 16 | sseqtri 4031 | . . 3
⊢ 𝑆 ⊆ (Base‘𝑃) | 
| 18 | 17 | a1i 11 | . 2
⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑃)) | 
| 19 | 15 | a1i 11 | . . . . . 6
⊢ (𝜑 → 𝐷:(Base‘𝑃)⟶ℝ*) | 
| 20 | 19 | ffnd 6736 | . . . . 5
⊢ (𝜑 → 𝐷 Fn (Base‘𝑃)) | 
| 21 | 2 | ply1ring 22250 | . . . . . 6
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) | 
| 22 |  | eqid 2736 | . . . . . . 7
⊢
(0g‘𝑃) = (0g‘𝑃) | 
| 23 | 14, 22 | ring0cl 20265 | . . . . . 6
⊢ (𝑃 ∈ Ring →
(0g‘𝑃)
∈ (Base‘𝑃)) | 
| 24 | 1, 21, 23 | 3syl 18 | . . . . 5
⊢ (𝜑 → (0g‘𝑃) ∈ (Base‘𝑃)) | 
| 25 | 13, 2, 22 | deg1z 26127 | . . . . . . 7
⊢ (𝑅 ∈ Ring → (𝐷‘(0g‘𝑃)) = -∞) | 
| 26 | 1, 25 | syl 17 | . . . . . 6
⊢ (𝜑 → (𝐷‘(0g‘𝑃)) = -∞) | 
| 27 |  | mnfxr 11319 | . . . . . . . 8
⊢ -∞
∈ ℝ* | 
| 28 | 27 | a1i 11 | . . . . . . 7
⊢ (𝜑 → -∞ ∈
ℝ*) | 
| 29 |  | ply1degltlss.3 | . . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈
ℕ0) | 
| 30 | 29 | nn0red 12590 | . . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ ℝ) | 
| 31 | 30 | rexrd 11312 | . . . . . . 7
⊢ (𝜑 → 𝑁 ∈
ℝ*) | 
| 32 | 28 | xrleidd 13195 | . . . . . . 7
⊢ (𝜑 → -∞ ≤
-∞) | 
| 33 | 30 | mnfltd 13167 | . . . . . . 7
⊢ (𝜑 → -∞ < 𝑁) | 
| 34 | 28, 31, 28, 32, 33 | elicod 13438 | . . . . . 6
⊢ (𝜑 → -∞ ∈
(-∞[,)𝑁)) | 
| 35 | 26, 34 | eqeltrd 2840 | . . . . 5
⊢ (𝜑 → (𝐷‘(0g‘𝑃)) ∈ (-∞[,)𝑁)) | 
| 36 | 20, 24, 35 | elpreimad 7078 | . . . 4
⊢ (𝜑 → (0g‘𝑃) ∈ (◡𝐷 “ (-∞[,)𝑁))) | 
| 37 | 36, 10 | eleqtrrdi 2851 | . . 3
⊢ (𝜑 → (0g‘𝑃) ∈ 𝑆) | 
| 38 | 37 | ne0d 4341 | . 2
⊢ (𝜑 → 𝑆 ≠ ∅) | 
| 39 |  | simpl 482 | . . 3
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → 𝜑) | 
| 40 |  | eqid 2736 | . . . 4
⊢
(+g‘𝑃) = (+g‘𝑃) | 
| 41 | 2 | ply1lmod 22254 | . . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑃 ∈ LMod) | 
| 42 | 1, 41 | syl 17 | . . . . . 6
⊢ (𝜑 → 𝑃 ∈ LMod) | 
| 43 | 42 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → 𝑃 ∈ LMod) | 
| 44 | 43 | lmodgrpd 20869 | . . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → 𝑃 ∈ Grp) | 
| 45 |  | simpr1 1194 | . . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → 𝑥 ∈ (Base‘𝑅)) | 
| 46 | 4 | fveq2d 6909 | . . . . . . 7
⊢ (𝜑 → (Base‘𝑅) =
(Base‘(Scalar‘𝑃))) | 
| 47 | 46 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (Base‘𝑅) = (Base‘(Scalar‘𝑃))) | 
| 48 | 45, 47 | eleqtrd 2842 | . . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → 𝑥 ∈ (Base‘(Scalar‘𝑃))) | 
| 49 |  | simpr2 1195 | . . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → 𝑎 ∈ 𝑆) | 
| 50 | 17, 49 | sselid 3980 | . . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → 𝑎 ∈ (Base‘𝑃)) | 
| 51 |  | eqid 2736 | . . . . . 6
⊢
(Scalar‘𝑃) =
(Scalar‘𝑃) | 
| 52 |  | eqid 2736 | . . . . . 6
⊢ (
·𝑠 ‘𝑃) = ( ·𝑠
‘𝑃) | 
| 53 |  | eqid 2736 | . . . . . 6
⊢
(Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) | 
| 54 | 14, 51, 52, 53 | lmodvscl 20877 | . . . . 5
⊢ ((𝑃 ∈ LMod ∧ 𝑥 ∈
(Base‘(Scalar‘𝑃)) ∧ 𝑎 ∈ (Base‘𝑃)) → (𝑥( ·𝑠
‘𝑃)𝑎) ∈ (Base‘𝑃)) | 
| 55 | 43, 48, 50, 54 | syl3anc 1372 | . . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝑥( ·𝑠
‘𝑃)𝑎) ∈ (Base‘𝑃)) | 
| 56 |  | simpr3 1196 | . . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → 𝑏 ∈ 𝑆) | 
| 57 | 17, 56 | sselid 3980 | . . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → 𝑏 ∈ (Base‘𝑃)) | 
| 58 | 14, 40, 44, 55, 57 | grpcld 18966 | . . 3
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → ((𝑥( ·𝑠
‘𝑃)𝑎)(+g‘𝑃)𝑏) ∈ (Base‘𝑃)) | 
| 59 | 1 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → 𝑅 ∈ Ring) | 
| 60 |  | 1red 11263 | . . . . . . 7
⊢ (𝜑 → 1 ∈
ℝ) | 
| 61 | 30, 60 | resubcld 11692 | . . . . . 6
⊢ (𝜑 → (𝑁 − 1) ∈ ℝ) | 
| 62 | 61 | rexrd 11312 | . . . . 5
⊢ (𝜑 → (𝑁 − 1) ∈
ℝ*) | 
| 63 | 62 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝑁 − 1) ∈
ℝ*) | 
| 64 | 15 | a1i 11 | . . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → 𝐷:(Base‘𝑃)⟶ℝ*) | 
| 65 | 64, 55 | ffvelcdmd 7104 | . . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝐷‘(𝑥( ·𝑠
‘𝑃)𝑎)) ∈
ℝ*) | 
| 66 | 64, 50 | ffvelcdmd 7104 | . . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝐷‘𝑎) ∈
ℝ*) | 
| 67 |  | eqid 2736 | . . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) | 
| 68 | 2, 13, 59, 14, 67, 52, 45, 50 | deg1vscale 26144 | . . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝐷‘(𝑥( ·𝑠
‘𝑃)𝑎)) ≤ (𝐷‘𝑎)) | 
| 69 | 2, 13, 10, 29, 1, 14 | ply1degltel 33616 | . . . . . . 7
⊢ (𝜑 → (𝑎 ∈ 𝑆 ↔ (𝑎 ∈ (Base‘𝑃) ∧ (𝐷‘𝑎) ≤ (𝑁 − 1)))) | 
| 70 | 69 | simplbda 499 | . . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝐷‘𝑎) ≤ (𝑁 − 1)) | 
| 71 | 49, 70 | syldan 591 | . . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝐷‘𝑎) ≤ (𝑁 − 1)) | 
| 72 | 65, 66, 63, 68, 71 | xrletrd 13205 | . . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝐷‘(𝑥( ·𝑠
‘𝑃)𝑎)) ≤ (𝑁 − 1)) | 
| 73 | 2, 13, 10, 29, 1, 14 | ply1degltel 33616 | . . . . . 6
⊢ (𝜑 → (𝑏 ∈ 𝑆 ↔ (𝑏 ∈ (Base‘𝑃) ∧ (𝐷‘𝑏) ≤ (𝑁 − 1)))) | 
| 74 | 73 | simplbda 499 | . . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ 𝑆) → (𝐷‘𝑏) ≤ (𝑁 − 1)) | 
| 75 | 56, 74 | syldan 591 | . . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝐷‘𝑏) ≤ (𝑁 − 1)) | 
| 76 | 2, 13, 59, 14, 40, 55, 57, 63, 72, 75 | deg1addle2 26142 | . . 3
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝐷‘((𝑥( ·𝑠
‘𝑃)𝑎)(+g‘𝑃)𝑏)) ≤ (𝑁 − 1)) | 
| 77 | 2, 13, 10, 29, 1, 14 | ply1degltel 33616 | . . . 4
⊢ (𝜑 → (((𝑥( ·𝑠
‘𝑃)𝑎)(+g‘𝑃)𝑏) ∈ 𝑆 ↔ (((𝑥( ·𝑠
‘𝑃)𝑎)(+g‘𝑃)𝑏) ∈ (Base‘𝑃) ∧ (𝐷‘((𝑥( ·𝑠
‘𝑃)𝑎)(+g‘𝑃)𝑏)) ≤ (𝑁 − 1)))) | 
| 78 | 77 | biimpar 477 | . . 3
⊢ ((𝜑 ∧ (((𝑥( ·𝑠
‘𝑃)𝑎)(+g‘𝑃)𝑏) ∈ (Base‘𝑃) ∧ (𝐷‘((𝑥( ·𝑠
‘𝑃)𝑎)(+g‘𝑃)𝑏)) ≤ (𝑁 − 1))) → ((𝑥( ·𝑠
‘𝑃)𝑎)(+g‘𝑃)𝑏) ∈ 𝑆) | 
| 79 | 39, 58, 76, 78 | syl12anc 836 | . 2
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → ((𝑥( ·𝑠
‘𝑃)𝑎)(+g‘𝑃)𝑏) ∈ 𝑆) | 
| 80 | 4, 5, 6, 7, 8, 9, 18, 38, 79 | islssd 20934 | 1
⊢ (𝜑 → 𝑆 ∈ (LSubSp‘𝑃)) |