Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1degltlss Structured version   Visualization version   GIF version

Theorem ply1degltlss 33618
Description: The space 𝑆 of the univariate polynomials of degree less than 𝑁 forms a vector subspace. (Contributed by Thierry Arnoux, 20-Feb-2025.)
Hypotheses
Ref Expression
ply1degltlss.p 𝑃 = (Poly1𝑅)
ply1degltlss.d 𝐷 = (deg1𝑅)
ply1degltlss.1 𝑆 = (𝐷 “ (-∞[,)𝑁))
ply1degltlss.3 (𝜑𝑁 ∈ ℕ0)
ply1degltlss.2 (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
ply1degltlss (𝜑𝑆 ∈ (LSubSp‘𝑃))

Proof of Theorem ply1degltlss
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ply1degltlss.2 . . 3 (𝜑𝑅 ∈ Ring)
2 ply1degltlss.p . . . 4 𝑃 = (Poly1𝑅)
32ply1sca 22255 . . 3 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
41, 3syl 17 . 2 (𝜑𝑅 = (Scalar‘𝑃))
5 eqidd 2737 . 2 (𝜑 → (Base‘𝑅) = (Base‘𝑅))
6 eqidd 2737 . 2 (𝜑 → (Base‘𝑃) = (Base‘𝑃))
7 eqidd 2737 . 2 (𝜑 → (+g𝑃) = (+g𝑃))
8 eqidd 2737 . 2 (𝜑 → ( ·𝑠𝑃) = ( ·𝑠𝑃))
9 eqidd 2737 . 2 (𝜑 → (LSubSp‘𝑃) = (LSubSp‘𝑃))
10 ply1degltlss.1 . . . . 5 𝑆 = (𝐷 “ (-∞[,)𝑁))
11 cnvimass 6099 . . . . 5 (𝐷 “ (-∞[,)𝑁)) ⊆ dom 𝐷
1210, 11eqsstri 4029 . . . 4 𝑆 ⊆ dom 𝐷
13 ply1degltlss.d . . . . . 6 𝐷 = (deg1𝑅)
14 eqid 2736 . . . . . 6 (Base‘𝑃) = (Base‘𝑃)
1513, 2, 14deg1xrf 26121 . . . . 5 𝐷:(Base‘𝑃)⟶ℝ*
1615fdmi 6746 . . . 4 dom 𝐷 = (Base‘𝑃)
1712, 16sseqtri 4031 . . 3 𝑆 ⊆ (Base‘𝑃)
1817a1i 11 . 2 (𝜑𝑆 ⊆ (Base‘𝑃))
1915a1i 11 . . . . . 6 (𝜑𝐷:(Base‘𝑃)⟶ℝ*)
2019ffnd 6736 . . . . 5 (𝜑𝐷 Fn (Base‘𝑃))
212ply1ring 22250 . . . . . 6 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
22 eqid 2736 . . . . . . 7 (0g𝑃) = (0g𝑃)
2314, 22ring0cl 20265 . . . . . 6 (𝑃 ∈ Ring → (0g𝑃) ∈ (Base‘𝑃))
241, 21, 233syl 18 . . . . 5 (𝜑 → (0g𝑃) ∈ (Base‘𝑃))
2513, 2, 22deg1z 26127 . . . . . . 7 (𝑅 ∈ Ring → (𝐷‘(0g𝑃)) = -∞)
261, 25syl 17 . . . . . 6 (𝜑 → (𝐷‘(0g𝑃)) = -∞)
27 mnfxr 11319 . . . . . . . 8 -∞ ∈ ℝ*
2827a1i 11 . . . . . . 7 (𝜑 → -∞ ∈ ℝ*)
29 ply1degltlss.3 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
3029nn0red 12590 . . . . . . . 8 (𝜑𝑁 ∈ ℝ)
3130rexrd 11312 . . . . . . 7 (𝜑𝑁 ∈ ℝ*)
3228xrleidd 13195 . . . . . . 7 (𝜑 → -∞ ≤ -∞)
3330mnfltd 13167 . . . . . . 7 (𝜑 → -∞ < 𝑁)
3428, 31, 28, 32, 33elicod 13438 . . . . . 6 (𝜑 → -∞ ∈ (-∞[,)𝑁))
3526, 34eqeltrd 2840 . . . . 5 (𝜑 → (𝐷‘(0g𝑃)) ∈ (-∞[,)𝑁))
3620, 24, 35elpreimad 7078 . . . 4 (𝜑 → (0g𝑃) ∈ (𝐷 “ (-∞[,)𝑁)))
3736, 10eleqtrrdi 2851 . . 3 (𝜑 → (0g𝑃) ∈ 𝑆)
3837ne0d 4341 . 2 (𝜑𝑆 ≠ ∅)
39 simpl 482 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → 𝜑)
40 eqid 2736 . . . 4 (+g𝑃) = (+g𝑃)
412ply1lmod 22254 . . . . . . 7 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
421, 41syl 17 . . . . . 6 (𝜑𝑃 ∈ LMod)
4342adantr 480 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → 𝑃 ∈ LMod)
4443lmodgrpd 20869 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → 𝑃 ∈ Grp)
45 simpr1 1194 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → 𝑥 ∈ (Base‘𝑅))
464fveq2d 6909 . . . . . . 7 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
4746adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
4845, 47eleqtrd 2842 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → 𝑥 ∈ (Base‘(Scalar‘𝑃)))
49 simpr2 1195 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → 𝑎𝑆)
5017, 49sselid 3980 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → 𝑎 ∈ (Base‘𝑃))
51 eqid 2736 . . . . . 6 (Scalar‘𝑃) = (Scalar‘𝑃)
52 eqid 2736 . . . . . 6 ( ·𝑠𝑃) = ( ·𝑠𝑃)
53 eqid 2736 . . . . . 6 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
5414, 51, 52, 53lmodvscl 20877 . . . . 5 ((𝑃 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎 ∈ (Base‘𝑃)) → (𝑥( ·𝑠𝑃)𝑎) ∈ (Base‘𝑃))
5543, 48, 50, 54syl3anc 1372 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → (𝑥( ·𝑠𝑃)𝑎) ∈ (Base‘𝑃))
56 simpr3 1196 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → 𝑏𝑆)
5717, 56sselid 3980 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → 𝑏 ∈ (Base‘𝑃))
5814, 40, 44, 55, 57grpcld 18966 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → ((𝑥( ·𝑠𝑃)𝑎)(+g𝑃)𝑏) ∈ (Base‘𝑃))
591adantr 480 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → 𝑅 ∈ Ring)
60 1red 11263 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
6130, 60resubcld 11692 . . . . . 6 (𝜑 → (𝑁 − 1) ∈ ℝ)
6261rexrd 11312 . . . . 5 (𝜑 → (𝑁 − 1) ∈ ℝ*)
6362adantr 480 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → (𝑁 − 1) ∈ ℝ*)
6415a1i 11 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → 𝐷:(Base‘𝑃)⟶ℝ*)
6564, 55ffvelcdmd 7104 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → (𝐷‘(𝑥( ·𝑠𝑃)𝑎)) ∈ ℝ*)
6664, 50ffvelcdmd 7104 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → (𝐷𝑎) ∈ ℝ*)
67 eqid 2736 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
682, 13, 59, 14, 67, 52, 45, 50deg1vscale 26144 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → (𝐷‘(𝑥( ·𝑠𝑃)𝑎)) ≤ (𝐷𝑎))
692, 13, 10, 29, 1, 14ply1degltel 33616 . . . . . . 7 (𝜑 → (𝑎𝑆 ↔ (𝑎 ∈ (Base‘𝑃) ∧ (𝐷𝑎) ≤ (𝑁 − 1))))
7069simplbda 499 . . . . . 6 ((𝜑𝑎𝑆) → (𝐷𝑎) ≤ (𝑁 − 1))
7149, 70syldan 591 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → (𝐷𝑎) ≤ (𝑁 − 1))
7265, 66, 63, 68, 71xrletrd 13205 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → (𝐷‘(𝑥( ·𝑠𝑃)𝑎)) ≤ (𝑁 − 1))
732, 13, 10, 29, 1, 14ply1degltel 33616 . . . . . 6 (𝜑 → (𝑏𝑆 ↔ (𝑏 ∈ (Base‘𝑃) ∧ (𝐷𝑏) ≤ (𝑁 − 1))))
7473simplbda 499 . . . . 5 ((𝜑𝑏𝑆) → (𝐷𝑏) ≤ (𝑁 − 1))
7556, 74syldan 591 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → (𝐷𝑏) ≤ (𝑁 − 1))
762, 13, 59, 14, 40, 55, 57, 63, 72, 75deg1addle2 26142 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → (𝐷‘((𝑥( ·𝑠𝑃)𝑎)(+g𝑃)𝑏)) ≤ (𝑁 − 1))
772, 13, 10, 29, 1, 14ply1degltel 33616 . . . 4 (𝜑 → (((𝑥( ·𝑠𝑃)𝑎)(+g𝑃)𝑏) ∈ 𝑆 ↔ (((𝑥( ·𝑠𝑃)𝑎)(+g𝑃)𝑏) ∈ (Base‘𝑃) ∧ (𝐷‘((𝑥( ·𝑠𝑃)𝑎)(+g𝑃)𝑏)) ≤ (𝑁 − 1))))
7877biimpar 477 . . 3 ((𝜑 ∧ (((𝑥( ·𝑠𝑃)𝑎)(+g𝑃)𝑏) ∈ (Base‘𝑃) ∧ (𝐷‘((𝑥( ·𝑠𝑃)𝑎)(+g𝑃)𝑏)) ≤ (𝑁 − 1))) → ((𝑥( ·𝑠𝑃)𝑎)(+g𝑃)𝑏) ∈ 𝑆)
7939, 58, 76, 78syl12anc 836 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → ((𝑥( ·𝑠𝑃)𝑎)(+g𝑃)𝑏) ∈ 𝑆)
804, 5, 6, 7, 8, 9, 18, 38, 79islssd 20934 1 (𝜑𝑆 ∈ (LSubSp‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wss 3950   class class class wbr 5142  ccnv 5683  dom cdm 5684  cima 5687  wf 6556  cfv 6560  (class class class)co 7432  1c1 11157  -∞cmnf 11294  *cxr 11295  cle 11297  cmin 11493  0cn0 12528  [,)cico 13390  Basecbs 17248  +gcplusg 17298  Scalarcsca 17301   ·𝑠 cvsca 17302  0gc0g 17485  Ringcrg 20231  LModclmod 20859  LSubSpclss 20930  Poly1cpl1 22179  deg1cdg1 26094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-ofr 7699  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-sup 9483  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-ico 13394  df-fz 13549  df-fzo 13696  df-seq 14044  df-hash 14371  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-0g 17487  df-gsum 17488  df-prds 17493  df-pws 17495  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-mhm 18797  df-submnd 18798  df-grp 18955  df-minusg 18956  df-sbg 18957  df-mulg 19087  df-subg 19142  df-ghm 19232  df-cntz 19336  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-ring 20233  df-cring 20234  df-subrng 20547  df-subrg 20571  df-lmod 20861  df-lss 20931  df-cnfld 21366  df-psr 21930  df-mpl 21932  df-opsr 21934  df-psr1 22182  df-ply1 22184  df-mdeg 26095  df-deg1 26096
This theorem is referenced by:  ply1degltdimlem  33674  ply1degltdim  33675  algextdeglem8  33766
  Copyright terms: Public domain W3C validator