Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1degltlss Structured version   Visualization version   GIF version

Theorem ply1degltlss 33611
Description: The space 𝑆 of the univariate polynomials of degree less than 𝑁 forms a vector subspace. (Contributed by Thierry Arnoux, 20-Feb-2025.)
Hypotheses
Ref Expression
ply1degltlss.p 𝑃 = (Poly1𝑅)
ply1degltlss.d 𝐷 = (deg1𝑅)
ply1degltlss.1 𝑆 = (𝐷 “ (-∞[,)𝑁))
ply1degltlss.3 (𝜑𝑁 ∈ ℕ0)
ply1degltlss.2 (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
ply1degltlss (𝜑𝑆 ∈ (LSubSp‘𝑃))

Proof of Theorem ply1degltlss
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ply1degltlss.2 . . 3 (𝜑𝑅 ∈ Ring)
2 ply1degltlss.p . . . 4 𝑃 = (Poly1𝑅)
32ply1sca 22193 . . 3 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
41, 3syl 17 . 2 (𝜑𝑅 = (Scalar‘𝑃))
5 eqidd 2737 . 2 (𝜑 → (Base‘𝑅) = (Base‘𝑅))
6 eqidd 2737 . 2 (𝜑 → (Base‘𝑃) = (Base‘𝑃))
7 eqidd 2737 . 2 (𝜑 → (+g𝑃) = (+g𝑃))
8 eqidd 2737 . 2 (𝜑 → ( ·𝑠𝑃) = ( ·𝑠𝑃))
9 eqidd 2737 . 2 (𝜑 → (LSubSp‘𝑃) = (LSubSp‘𝑃))
10 ply1degltlss.1 . . . . 5 𝑆 = (𝐷 “ (-∞[,)𝑁))
11 cnvimass 6074 . . . . 5 (𝐷 “ (-∞[,)𝑁)) ⊆ dom 𝐷
1210, 11eqsstri 4010 . . . 4 𝑆 ⊆ dom 𝐷
13 ply1degltlss.d . . . . . 6 𝐷 = (deg1𝑅)
14 eqid 2736 . . . . . 6 (Base‘𝑃) = (Base‘𝑃)
1513, 2, 14deg1xrf 26043 . . . . 5 𝐷:(Base‘𝑃)⟶ℝ*
1615fdmi 6722 . . . 4 dom 𝐷 = (Base‘𝑃)
1712, 16sseqtri 4012 . . 3 𝑆 ⊆ (Base‘𝑃)
1817a1i 11 . 2 (𝜑𝑆 ⊆ (Base‘𝑃))
1915a1i 11 . . . . . 6 (𝜑𝐷:(Base‘𝑃)⟶ℝ*)
2019ffnd 6712 . . . . 5 (𝜑𝐷 Fn (Base‘𝑃))
212ply1ring 22188 . . . . . 6 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
22 eqid 2736 . . . . . . 7 (0g𝑃) = (0g𝑃)
2314, 22ring0cl 20232 . . . . . 6 (𝑃 ∈ Ring → (0g𝑃) ∈ (Base‘𝑃))
241, 21, 233syl 18 . . . . 5 (𝜑 → (0g𝑃) ∈ (Base‘𝑃))
2513, 2, 22deg1z 26049 . . . . . . 7 (𝑅 ∈ Ring → (𝐷‘(0g𝑃)) = -∞)
261, 25syl 17 . . . . . 6 (𝜑 → (𝐷‘(0g𝑃)) = -∞)
27 mnfxr 11297 . . . . . . . 8 -∞ ∈ ℝ*
2827a1i 11 . . . . . . 7 (𝜑 → -∞ ∈ ℝ*)
29 ply1degltlss.3 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
3029nn0red 12568 . . . . . . . 8 (𝜑𝑁 ∈ ℝ)
3130rexrd 11290 . . . . . . 7 (𝜑𝑁 ∈ ℝ*)
3228xrleidd 13173 . . . . . . 7 (𝜑 → -∞ ≤ -∞)
3330mnfltd 13145 . . . . . . 7 (𝜑 → -∞ < 𝑁)
3428, 31, 28, 32, 33elicod 13417 . . . . . 6 (𝜑 → -∞ ∈ (-∞[,)𝑁))
3526, 34eqeltrd 2835 . . . . 5 (𝜑 → (𝐷‘(0g𝑃)) ∈ (-∞[,)𝑁))
3620, 24, 35elpreimad 7054 . . . 4 (𝜑 → (0g𝑃) ∈ (𝐷 “ (-∞[,)𝑁)))
3736, 10eleqtrrdi 2846 . . 3 (𝜑 → (0g𝑃) ∈ 𝑆)
3837ne0d 4322 . 2 (𝜑𝑆 ≠ ∅)
39 simpl 482 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → 𝜑)
40 eqid 2736 . . . 4 (+g𝑃) = (+g𝑃)
412ply1lmod 22192 . . . . . . 7 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
421, 41syl 17 . . . . . 6 (𝜑𝑃 ∈ LMod)
4342adantr 480 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → 𝑃 ∈ LMod)
4443lmodgrpd 20832 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → 𝑃 ∈ Grp)
45 simpr1 1195 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → 𝑥 ∈ (Base‘𝑅))
464fveq2d 6885 . . . . . . 7 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
4746adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
4845, 47eleqtrd 2837 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → 𝑥 ∈ (Base‘(Scalar‘𝑃)))
49 simpr2 1196 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → 𝑎𝑆)
5017, 49sselid 3961 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → 𝑎 ∈ (Base‘𝑃))
51 eqid 2736 . . . . . 6 (Scalar‘𝑃) = (Scalar‘𝑃)
52 eqid 2736 . . . . . 6 ( ·𝑠𝑃) = ( ·𝑠𝑃)
53 eqid 2736 . . . . . 6 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
5414, 51, 52, 53lmodvscl 20840 . . . . 5 ((𝑃 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎 ∈ (Base‘𝑃)) → (𝑥( ·𝑠𝑃)𝑎) ∈ (Base‘𝑃))
5543, 48, 50, 54syl3anc 1373 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → (𝑥( ·𝑠𝑃)𝑎) ∈ (Base‘𝑃))
56 simpr3 1197 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → 𝑏𝑆)
5717, 56sselid 3961 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → 𝑏 ∈ (Base‘𝑃))
5814, 40, 44, 55, 57grpcld 18935 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → ((𝑥( ·𝑠𝑃)𝑎)(+g𝑃)𝑏) ∈ (Base‘𝑃))
591adantr 480 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → 𝑅 ∈ Ring)
60 1red 11241 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
6130, 60resubcld 11670 . . . . . 6 (𝜑 → (𝑁 − 1) ∈ ℝ)
6261rexrd 11290 . . . . 5 (𝜑 → (𝑁 − 1) ∈ ℝ*)
6362adantr 480 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → (𝑁 − 1) ∈ ℝ*)
6415a1i 11 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → 𝐷:(Base‘𝑃)⟶ℝ*)
6564, 55ffvelcdmd 7080 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → (𝐷‘(𝑥( ·𝑠𝑃)𝑎)) ∈ ℝ*)
6664, 50ffvelcdmd 7080 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → (𝐷𝑎) ∈ ℝ*)
67 eqid 2736 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
682, 13, 59, 14, 67, 52, 45, 50deg1vscale 26066 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → (𝐷‘(𝑥( ·𝑠𝑃)𝑎)) ≤ (𝐷𝑎))
692, 13, 10, 29, 1, 14ply1degltel 33609 . . . . . . 7 (𝜑 → (𝑎𝑆 ↔ (𝑎 ∈ (Base‘𝑃) ∧ (𝐷𝑎) ≤ (𝑁 − 1))))
7069simplbda 499 . . . . . 6 ((𝜑𝑎𝑆) → (𝐷𝑎) ≤ (𝑁 − 1))
7149, 70syldan 591 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → (𝐷𝑎) ≤ (𝑁 − 1))
7265, 66, 63, 68, 71xrletrd 13183 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → (𝐷‘(𝑥( ·𝑠𝑃)𝑎)) ≤ (𝑁 − 1))
732, 13, 10, 29, 1, 14ply1degltel 33609 . . . . . 6 (𝜑 → (𝑏𝑆 ↔ (𝑏 ∈ (Base‘𝑃) ∧ (𝐷𝑏) ≤ (𝑁 − 1))))
7473simplbda 499 . . . . 5 ((𝜑𝑏𝑆) → (𝐷𝑏) ≤ (𝑁 − 1))
7556, 74syldan 591 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → (𝐷𝑏) ≤ (𝑁 − 1))
762, 13, 59, 14, 40, 55, 57, 63, 72, 75deg1addle2 26064 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → (𝐷‘((𝑥( ·𝑠𝑃)𝑎)(+g𝑃)𝑏)) ≤ (𝑁 − 1))
772, 13, 10, 29, 1, 14ply1degltel 33609 . . . 4 (𝜑 → (((𝑥( ·𝑠𝑃)𝑎)(+g𝑃)𝑏) ∈ 𝑆 ↔ (((𝑥( ·𝑠𝑃)𝑎)(+g𝑃)𝑏) ∈ (Base‘𝑃) ∧ (𝐷‘((𝑥( ·𝑠𝑃)𝑎)(+g𝑃)𝑏)) ≤ (𝑁 − 1))))
7877biimpar 477 . . 3 ((𝜑 ∧ (((𝑥( ·𝑠𝑃)𝑎)(+g𝑃)𝑏) ∈ (Base‘𝑃) ∧ (𝐷‘((𝑥( ·𝑠𝑃)𝑎)(+g𝑃)𝑏)) ≤ (𝑁 − 1))) → ((𝑥( ·𝑠𝑃)𝑎)(+g𝑃)𝑏) ∈ 𝑆)
7939, 58, 76, 78syl12anc 836 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → ((𝑥( ·𝑠𝑃)𝑎)(+g𝑃)𝑏) ∈ 𝑆)
804, 5, 6, 7, 8, 9, 18, 38, 79islssd 20897 1 (𝜑𝑆 ∈ (LSubSp‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3931   class class class wbr 5124  ccnv 5658  dom cdm 5659  cima 5662  wf 6532  cfv 6536  (class class class)co 7410  1c1 11135  -∞cmnf 11272  *cxr 11273  cle 11275  cmin 11471  0cn0 12506  [,)cico 13369  Basecbs 17233  +gcplusg 17276  Scalarcsca 17279   ·𝑠 cvsca 17280  0gc0g 17458  Ringcrg 20198  LModclmod 20822  LSubSpclss 20893  Poly1cpl1 22117  deg1cdg1 26016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-ofr 7677  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-sup 9459  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-ico 13373  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-0g 17460  df-gsum 17461  df-prds 17466  df-pws 17468  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-ghm 19201  df-cntz 19305  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-subrng 20511  df-subrg 20535  df-lmod 20824  df-lss 20894  df-cnfld 21321  df-psr 21874  df-mpl 21876  df-opsr 21878  df-psr1 22120  df-ply1 22122  df-mdeg 26017  df-deg1 26018
This theorem is referenced by:  ply1degltdimlem  33667  ply1degltdim  33668  algextdeglem8  33763
  Copyright terms: Public domain W3C validator