| Step | Hyp | Ref
| Expression |
| 1 | | ply1degltlss.2 |
. . 3
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 2 | | ply1degltlss.p |
. . . 4
⊢ 𝑃 = (Poly1‘𝑅) |
| 3 | 2 | ply1sca 22193 |
. . 3
⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃)) |
| 4 | 1, 3 | syl 17 |
. 2
⊢ (𝜑 → 𝑅 = (Scalar‘𝑃)) |
| 5 | | eqidd 2737 |
. 2
⊢ (𝜑 → (Base‘𝑅) = (Base‘𝑅)) |
| 6 | | eqidd 2737 |
. 2
⊢ (𝜑 → (Base‘𝑃) = (Base‘𝑃)) |
| 7 | | eqidd 2737 |
. 2
⊢ (𝜑 → (+g‘𝑃) = (+g‘𝑃)) |
| 8 | | eqidd 2737 |
. 2
⊢ (𝜑 → (
·𝑠 ‘𝑃) = ( ·𝑠
‘𝑃)) |
| 9 | | eqidd 2737 |
. 2
⊢ (𝜑 → (LSubSp‘𝑃) = (LSubSp‘𝑃)) |
| 10 | | ply1degltlss.1 |
. . . . 5
⊢ 𝑆 = (◡𝐷 “ (-∞[,)𝑁)) |
| 11 | | cnvimass 6074 |
. . . . 5
⊢ (◡𝐷 “ (-∞[,)𝑁)) ⊆ dom 𝐷 |
| 12 | 10, 11 | eqsstri 4010 |
. . . 4
⊢ 𝑆 ⊆ dom 𝐷 |
| 13 | | ply1degltlss.d |
. . . . . 6
⊢ 𝐷 = (deg1‘𝑅) |
| 14 | | eqid 2736 |
. . . . . 6
⊢
(Base‘𝑃) =
(Base‘𝑃) |
| 15 | 13, 2, 14 | deg1xrf 26043 |
. . . . 5
⊢ 𝐷:(Base‘𝑃)⟶ℝ* |
| 16 | 15 | fdmi 6722 |
. . . 4
⊢ dom 𝐷 = (Base‘𝑃) |
| 17 | 12, 16 | sseqtri 4012 |
. . 3
⊢ 𝑆 ⊆ (Base‘𝑃) |
| 18 | 17 | a1i 11 |
. 2
⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑃)) |
| 19 | 15 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 𝐷:(Base‘𝑃)⟶ℝ*) |
| 20 | 19 | ffnd 6712 |
. . . . 5
⊢ (𝜑 → 𝐷 Fn (Base‘𝑃)) |
| 21 | 2 | ply1ring 22188 |
. . . . . 6
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
| 22 | | eqid 2736 |
. . . . . . 7
⊢
(0g‘𝑃) = (0g‘𝑃) |
| 23 | 14, 22 | ring0cl 20232 |
. . . . . 6
⊢ (𝑃 ∈ Ring →
(0g‘𝑃)
∈ (Base‘𝑃)) |
| 24 | 1, 21, 23 | 3syl 18 |
. . . . 5
⊢ (𝜑 → (0g‘𝑃) ∈ (Base‘𝑃)) |
| 25 | 13, 2, 22 | deg1z 26049 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → (𝐷‘(0g‘𝑃)) = -∞) |
| 26 | 1, 25 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐷‘(0g‘𝑃)) = -∞) |
| 27 | | mnfxr 11297 |
. . . . . . . 8
⊢ -∞
∈ ℝ* |
| 28 | 27 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → -∞ ∈
ℝ*) |
| 29 | | ply1degltlss.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 30 | 29 | nn0red 12568 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 31 | 30 | rexrd 11290 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈
ℝ*) |
| 32 | 28 | xrleidd 13173 |
. . . . . . 7
⊢ (𝜑 → -∞ ≤
-∞) |
| 33 | 30 | mnfltd 13145 |
. . . . . . 7
⊢ (𝜑 → -∞ < 𝑁) |
| 34 | 28, 31, 28, 32, 33 | elicod 13417 |
. . . . . 6
⊢ (𝜑 → -∞ ∈
(-∞[,)𝑁)) |
| 35 | 26, 34 | eqeltrd 2835 |
. . . . 5
⊢ (𝜑 → (𝐷‘(0g‘𝑃)) ∈ (-∞[,)𝑁)) |
| 36 | 20, 24, 35 | elpreimad 7054 |
. . . 4
⊢ (𝜑 → (0g‘𝑃) ∈ (◡𝐷 “ (-∞[,)𝑁))) |
| 37 | 36, 10 | eleqtrrdi 2846 |
. . 3
⊢ (𝜑 → (0g‘𝑃) ∈ 𝑆) |
| 38 | 37 | ne0d 4322 |
. 2
⊢ (𝜑 → 𝑆 ≠ ∅) |
| 39 | | simpl 482 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → 𝜑) |
| 40 | | eqid 2736 |
. . . 4
⊢
(+g‘𝑃) = (+g‘𝑃) |
| 41 | 2 | ply1lmod 22192 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑃 ∈ LMod) |
| 42 | 1, 41 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑃 ∈ LMod) |
| 43 | 42 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → 𝑃 ∈ LMod) |
| 44 | 43 | lmodgrpd 20832 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → 𝑃 ∈ Grp) |
| 45 | | simpr1 1195 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → 𝑥 ∈ (Base‘𝑅)) |
| 46 | 4 | fveq2d 6885 |
. . . . . . 7
⊢ (𝜑 → (Base‘𝑅) =
(Base‘(Scalar‘𝑃))) |
| 47 | 46 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (Base‘𝑅) = (Base‘(Scalar‘𝑃))) |
| 48 | 45, 47 | eleqtrd 2837 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → 𝑥 ∈ (Base‘(Scalar‘𝑃))) |
| 49 | | simpr2 1196 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → 𝑎 ∈ 𝑆) |
| 50 | 17, 49 | sselid 3961 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → 𝑎 ∈ (Base‘𝑃)) |
| 51 | | eqid 2736 |
. . . . . 6
⊢
(Scalar‘𝑃) =
(Scalar‘𝑃) |
| 52 | | eqid 2736 |
. . . . . 6
⊢ (
·𝑠 ‘𝑃) = ( ·𝑠
‘𝑃) |
| 53 | | eqid 2736 |
. . . . . 6
⊢
(Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) |
| 54 | 14, 51, 52, 53 | lmodvscl 20840 |
. . . . 5
⊢ ((𝑃 ∈ LMod ∧ 𝑥 ∈
(Base‘(Scalar‘𝑃)) ∧ 𝑎 ∈ (Base‘𝑃)) → (𝑥( ·𝑠
‘𝑃)𝑎) ∈ (Base‘𝑃)) |
| 55 | 43, 48, 50, 54 | syl3anc 1373 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝑥( ·𝑠
‘𝑃)𝑎) ∈ (Base‘𝑃)) |
| 56 | | simpr3 1197 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → 𝑏 ∈ 𝑆) |
| 57 | 17, 56 | sselid 3961 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → 𝑏 ∈ (Base‘𝑃)) |
| 58 | 14, 40, 44, 55, 57 | grpcld 18935 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → ((𝑥( ·𝑠
‘𝑃)𝑎)(+g‘𝑃)𝑏) ∈ (Base‘𝑃)) |
| 59 | 1 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → 𝑅 ∈ Ring) |
| 60 | | 1red 11241 |
. . . . . . 7
⊢ (𝜑 → 1 ∈
ℝ) |
| 61 | 30, 60 | resubcld 11670 |
. . . . . 6
⊢ (𝜑 → (𝑁 − 1) ∈ ℝ) |
| 62 | 61 | rexrd 11290 |
. . . . 5
⊢ (𝜑 → (𝑁 − 1) ∈
ℝ*) |
| 63 | 62 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝑁 − 1) ∈
ℝ*) |
| 64 | 15 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → 𝐷:(Base‘𝑃)⟶ℝ*) |
| 65 | 64, 55 | ffvelcdmd 7080 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝐷‘(𝑥( ·𝑠
‘𝑃)𝑎)) ∈
ℝ*) |
| 66 | 64, 50 | ffvelcdmd 7080 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝐷‘𝑎) ∈
ℝ*) |
| 67 | | eqid 2736 |
. . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 68 | 2, 13, 59, 14, 67, 52, 45, 50 | deg1vscale 26066 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝐷‘(𝑥( ·𝑠
‘𝑃)𝑎)) ≤ (𝐷‘𝑎)) |
| 69 | 2, 13, 10, 29, 1, 14 | ply1degltel 33609 |
. . . . . . 7
⊢ (𝜑 → (𝑎 ∈ 𝑆 ↔ (𝑎 ∈ (Base‘𝑃) ∧ (𝐷‘𝑎) ≤ (𝑁 − 1)))) |
| 70 | 69 | simplbda 499 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝐷‘𝑎) ≤ (𝑁 − 1)) |
| 71 | 49, 70 | syldan 591 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝐷‘𝑎) ≤ (𝑁 − 1)) |
| 72 | 65, 66, 63, 68, 71 | xrletrd 13183 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝐷‘(𝑥( ·𝑠
‘𝑃)𝑎)) ≤ (𝑁 − 1)) |
| 73 | 2, 13, 10, 29, 1, 14 | ply1degltel 33609 |
. . . . . 6
⊢ (𝜑 → (𝑏 ∈ 𝑆 ↔ (𝑏 ∈ (Base‘𝑃) ∧ (𝐷‘𝑏) ≤ (𝑁 − 1)))) |
| 74 | 73 | simplbda 499 |
. . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ 𝑆) → (𝐷‘𝑏) ≤ (𝑁 − 1)) |
| 75 | 56, 74 | syldan 591 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝐷‘𝑏) ≤ (𝑁 − 1)) |
| 76 | 2, 13, 59, 14, 40, 55, 57, 63, 72, 75 | deg1addle2 26064 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝐷‘((𝑥( ·𝑠
‘𝑃)𝑎)(+g‘𝑃)𝑏)) ≤ (𝑁 − 1)) |
| 77 | 2, 13, 10, 29, 1, 14 | ply1degltel 33609 |
. . . 4
⊢ (𝜑 → (((𝑥( ·𝑠
‘𝑃)𝑎)(+g‘𝑃)𝑏) ∈ 𝑆 ↔ (((𝑥( ·𝑠
‘𝑃)𝑎)(+g‘𝑃)𝑏) ∈ (Base‘𝑃) ∧ (𝐷‘((𝑥( ·𝑠
‘𝑃)𝑎)(+g‘𝑃)𝑏)) ≤ (𝑁 − 1)))) |
| 78 | 77 | biimpar 477 |
. . 3
⊢ ((𝜑 ∧ (((𝑥( ·𝑠
‘𝑃)𝑎)(+g‘𝑃)𝑏) ∈ (Base‘𝑃) ∧ (𝐷‘((𝑥( ·𝑠
‘𝑃)𝑎)(+g‘𝑃)𝑏)) ≤ (𝑁 − 1))) → ((𝑥( ·𝑠
‘𝑃)𝑎)(+g‘𝑃)𝑏) ∈ 𝑆) |
| 79 | 39, 58, 76, 78 | syl12anc 836 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → ((𝑥( ·𝑠
‘𝑃)𝑎)(+g‘𝑃)𝑏) ∈ 𝑆) |
| 80 | 4, 5, 6, 7, 8, 9, 18, 38, 79 | islssd 20897 |
1
⊢ (𝜑 → 𝑆 ∈ (LSubSp‘𝑃)) |