Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1degltlss Structured version   Visualization version   GIF version

Theorem ply1degltlss 33569
Description: The space 𝑆 of the univariate polynomials of degree less than 𝑁 forms a vector subspace. (Contributed by Thierry Arnoux, 20-Feb-2025.)
Hypotheses
Ref Expression
ply1degltlss.p 𝑃 = (Poly1𝑅)
ply1degltlss.d 𝐷 = (deg1𝑅)
ply1degltlss.1 𝑆 = (𝐷 “ (-∞[,)𝑁))
ply1degltlss.3 (𝜑𝑁 ∈ ℕ0)
ply1degltlss.2 (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
ply1degltlss (𝜑𝑆 ∈ (LSubSp‘𝑃))

Proof of Theorem ply1degltlss
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ply1degltlss.2 . . 3 (𝜑𝑅 ∈ Ring)
2 ply1degltlss.p . . . 4 𝑃 = (Poly1𝑅)
32ply1sca 22144 . . 3 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
41, 3syl 17 . 2 (𝜑𝑅 = (Scalar‘𝑃))
5 eqidd 2731 . 2 (𝜑 → (Base‘𝑅) = (Base‘𝑅))
6 eqidd 2731 . 2 (𝜑 → (Base‘𝑃) = (Base‘𝑃))
7 eqidd 2731 . 2 (𝜑 → (+g𝑃) = (+g𝑃))
8 eqidd 2731 . 2 (𝜑 → ( ·𝑠𝑃) = ( ·𝑠𝑃))
9 eqidd 2731 . 2 (𝜑 → (LSubSp‘𝑃) = (LSubSp‘𝑃))
10 ply1degltlss.1 . . . . 5 𝑆 = (𝐷 “ (-∞[,)𝑁))
11 cnvimass 6056 . . . . 5 (𝐷 “ (-∞[,)𝑁)) ⊆ dom 𝐷
1210, 11eqsstri 3996 . . . 4 𝑆 ⊆ dom 𝐷
13 ply1degltlss.d . . . . . 6 𝐷 = (deg1𝑅)
14 eqid 2730 . . . . . 6 (Base‘𝑃) = (Base‘𝑃)
1513, 2, 14deg1xrf 25993 . . . . 5 𝐷:(Base‘𝑃)⟶ℝ*
1615fdmi 6702 . . . 4 dom 𝐷 = (Base‘𝑃)
1712, 16sseqtri 3998 . . 3 𝑆 ⊆ (Base‘𝑃)
1817a1i 11 . 2 (𝜑𝑆 ⊆ (Base‘𝑃))
1915a1i 11 . . . . . 6 (𝜑𝐷:(Base‘𝑃)⟶ℝ*)
2019ffnd 6692 . . . . 5 (𝜑𝐷 Fn (Base‘𝑃))
212ply1ring 22139 . . . . . 6 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
22 eqid 2730 . . . . . . 7 (0g𝑃) = (0g𝑃)
2314, 22ring0cl 20183 . . . . . 6 (𝑃 ∈ Ring → (0g𝑃) ∈ (Base‘𝑃))
241, 21, 233syl 18 . . . . 5 (𝜑 → (0g𝑃) ∈ (Base‘𝑃))
2513, 2, 22deg1z 25999 . . . . . . 7 (𝑅 ∈ Ring → (𝐷‘(0g𝑃)) = -∞)
261, 25syl 17 . . . . . 6 (𝜑 → (𝐷‘(0g𝑃)) = -∞)
27 mnfxr 11238 . . . . . . . 8 -∞ ∈ ℝ*
2827a1i 11 . . . . . . 7 (𝜑 → -∞ ∈ ℝ*)
29 ply1degltlss.3 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
3029nn0red 12511 . . . . . . . 8 (𝜑𝑁 ∈ ℝ)
3130rexrd 11231 . . . . . . 7 (𝜑𝑁 ∈ ℝ*)
3228xrleidd 13119 . . . . . . 7 (𝜑 → -∞ ≤ -∞)
3330mnfltd 13091 . . . . . . 7 (𝜑 → -∞ < 𝑁)
3428, 31, 28, 32, 33elicod 13363 . . . . . 6 (𝜑 → -∞ ∈ (-∞[,)𝑁))
3526, 34eqeltrd 2829 . . . . 5 (𝜑 → (𝐷‘(0g𝑃)) ∈ (-∞[,)𝑁))
3620, 24, 35elpreimad 7034 . . . 4 (𝜑 → (0g𝑃) ∈ (𝐷 “ (-∞[,)𝑁)))
3736, 10eleqtrrdi 2840 . . 3 (𝜑 → (0g𝑃) ∈ 𝑆)
3837ne0d 4308 . 2 (𝜑𝑆 ≠ ∅)
39 simpl 482 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → 𝜑)
40 eqid 2730 . . . 4 (+g𝑃) = (+g𝑃)
412ply1lmod 22143 . . . . . . 7 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
421, 41syl 17 . . . . . 6 (𝜑𝑃 ∈ LMod)
4342adantr 480 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → 𝑃 ∈ LMod)
4443lmodgrpd 20783 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → 𝑃 ∈ Grp)
45 simpr1 1195 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → 𝑥 ∈ (Base‘𝑅))
464fveq2d 6865 . . . . . . 7 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
4746adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
4845, 47eleqtrd 2831 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → 𝑥 ∈ (Base‘(Scalar‘𝑃)))
49 simpr2 1196 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → 𝑎𝑆)
5017, 49sselid 3947 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → 𝑎 ∈ (Base‘𝑃))
51 eqid 2730 . . . . . 6 (Scalar‘𝑃) = (Scalar‘𝑃)
52 eqid 2730 . . . . . 6 ( ·𝑠𝑃) = ( ·𝑠𝑃)
53 eqid 2730 . . . . . 6 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
5414, 51, 52, 53lmodvscl 20791 . . . . 5 ((𝑃 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎 ∈ (Base‘𝑃)) → (𝑥( ·𝑠𝑃)𝑎) ∈ (Base‘𝑃))
5543, 48, 50, 54syl3anc 1373 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → (𝑥( ·𝑠𝑃)𝑎) ∈ (Base‘𝑃))
56 simpr3 1197 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → 𝑏𝑆)
5717, 56sselid 3947 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → 𝑏 ∈ (Base‘𝑃))
5814, 40, 44, 55, 57grpcld 18886 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → ((𝑥( ·𝑠𝑃)𝑎)(+g𝑃)𝑏) ∈ (Base‘𝑃))
591adantr 480 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → 𝑅 ∈ Ring)
60 1red 11182 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
6130, 60resubcld 11613 . . . . . 6 (𝜑 → (𝑁 − 1) ∈ ℝ)
6261rexrd 11231 . . . . 5 (𝜑 → (𝑁 − 1) ∈ ℝ*)
6362adantr 480 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → (𝑁 − 1) ∈ ℝ*)
6415a1i 11 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → 𝐷:(Base‘𝑃)⟶ℝ*)
6564, 55ffvelcdmd 7060 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → (𝐷‘(𝑥( ·𝑠𝑃)𝑎)) ∈ ℝ*)
6664, 50ffvelcdmd 7060 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → (𝐷𝑎) ∈ ℝ*)
67 eqid 2730 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
682, 13, 59, 14, 67, 52, 45, 50deg1vscale 26016 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → (𝐷‘(𝑥( ·𝑠𝑃)𝑎)) ≤ (𝐷𝑎))
692, 13, 10, 29, 1, 14ply1degltel 33567 . . . . . . 7 (𝜑 → (𝑎𝑆 ↔ (𝑎 ∈ (Base‘𝑃) ∧ (𝐷𝑎) ≤ (𝑁 − 1))))
7069simplbda 499 . . . . . 6 ((𝜑𝑎𝑆) → (𝐷𝑎) ≤ (𝑁 − 1))
7149, 70syldan 591 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → (𝐷𝑎) ≤ (𝑁 − 1))
7265, 66, 63, 68, 71xrletrd 13129 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → (𝐷‘(𝑥( ·𝑠𝑃)𝑎)) ≤ (𝑁 − 1))
732, 13, 10, 29, 1, 14ply1degltel 33567 . . . . . 6 (𝜑 → (𝑏𝑆 ↔ (𝑏 ∈ (Base‘𝑃) ∧ (𝐷𝑏) ≤ (𝑁 − 1))))
7473simplbda 499 . . . . 5 ((𝜑𝑏𝑆) → (𝐷𝑏) ≤ (𝑁 − 1))
7556, 74syldan 591 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → (𝐷𝑏) ≤ (𝑁 − 1))
762, 13, 59, 14, 40, 55, 57, 63, 72, 75deg1addle2 26014 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → (𝐷‘((𝑥( ·𝑠𝑃)𝑎)(+g𝑃)𝑏)) ≤ (𝑁 − 1))
772, 13, 10, 29, 1, 14ply1degltel 33567 . . . 4 (𝜑 → (((𝑥( ·𝑠𝑃)𝑎)(+g𝑃)𝑏) ∈ 𝑆 ↔ (((𝑥( ·𝑠𝑃)𝑎)(+g𝑃)𝑏) ∈ (Base‘𝑃) ∧ (𝐷‘((𝑥( ·𝑠𝑃)𝑎)(+g𝑃)𝑏)) ≤ (𝑁 − 1))))
7877biimpar 477 . . 3 ((𝜑 ∧ (((𝑥( ·𝑠𝑃)𝑎)(+g𝑃)𝑏) ∈ (Base‘𝑃) ∧ (𝐷‘((𝑥( ·𝑠𝑃)𝑎)(+g𝑃)𝑏)) ≤ (𝑁 − 1))) → ((𝑥( ·𝑠𝑃)𝑎)(+g𝑃)𝑏) ∈ 𝑆)
7939, 58, 76, 78syl12anc 836 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → ((𝑥( ·𝑠𝑃)𝑎)(+g𝑃)𝑏) ∈ 𝑆)
804, 5, 6, 7, 8, 9, 18, 38, 79islssd 20848 1 (𝜑𝑆 ∈ (LSubSp‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3917   class class class wbr 5110  ccnv 5640  dom cdm 5641  cima 5644  wf 6510  cfv 6514  (class class class)co 7390  1c1 11076  -∞cmnf 11213  *cxr 11214  cle 11216  cmin 11412  0cn0 12449  [,)cico 13315  Basecbs 17186  +gcplusg 17227  Scalarcsca 17230   ·𝑠 cvsca 17231  0gc0g 17409  Ringcrg 20149  LModclmod 20773  LSubSpclss 20844  Poly1cpl1 22068  deg1cdg1 25966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-ico 13319  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-subrng 20462  df-subrg 20486  df-lmod 20775  df-lss 20845  df-cnfld 21272  df-psr 21825  df-mpl 21827  df-opsr 21829  df-psr1 22071  df-ply1 22073  df-mdeg 25967  df-deg1 25968
This theorem is referenced by:  ply1degltdimlem  33625  ply1degltdim  33626  algextdeglem8  33721
  Copyright terms: Public domain W3C validator