Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1degltlss Structured version   Visualization version   GIF version

Theorem ply1degltlss 33555
Description: The space 𝑆 of the univariate polynomials of degree less than 𝑁 forms a vector subspace. (Contributed by Thierry Arnoux, 20-Feb-2025.)
Hypotheses
Ref Expression
ply1degltlss.p 𝑃 = (Poly1𝑅)
ply1degltlss.d 𝐷 = (deg1𝑅)
ply1degltlss.1 𝑆 = (𝐷 “ (-∞[,)𝑁))
ply1degltlss.3 (𝜑𝑁 ∈ ℕ0)
ply1degltlss.2 (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
ply1degltlss (𝜑𝑆 ∈ (LSubSp‘𝑃))

Proof of Theorem ply1degltlss
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ply1degltlss.2 . . 3 (𝜑𝑅 ∈ Ring)
2 ply1degltlss.p . . . 4 𝑃 = (Poly1𝑅)
32ply1sca 22170 . . 3 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
41, 3syl 17 . 2 (𝜑𝑅 = (Scalar‘𝑃))
5 eqidd 2730 . 2 (𝜑 → (Base‘𝑅) = (Base‘𝑅))
6 eqidd 2730 . 2 (𝜑 → (Base‘𝑃) = (Base‘𝑃))
7 eqidd 2730 . 2 (𝜑 → (+g𝑃) = (+g𝑃))
8 eqidd 2730 . 2 (𝜑 → ( ·𝑠𝑃) = ( ·𝑠𝑃))
9 eqidd 2730 . 2 (𝜑 → (LSubSp‘𝑃) = (LSubSp‘𝑃))
10 ply1degltlss.1 . . . . 5 𝑆 = (𝐷 “ (-∞[,)𝑁))
11 cnvimass 6042 . . . . 5 (𝐷 “ (-∞[,)𝑁)) ⊆ dom 𝐷
1210, 11eqsstri 3990 . . . 4 𝑆 ⊆ dom 𝐷
13 ply1degltlss.d . . . . . 6 𝐷 = (deg1𝑅)
14 eqid 2729 . . . . . 6 (Base‘𝑃) = (Base‘𝑃)
1513, 2, 14deg1xrf 26019 . . . . 5 𝐷:(Base‘𝑃)⟶ℝ*
1615fdmi 6681 . . . 4 dom 𝐷 = (Base‘𝑃)
1712, 16sseqtri 3992 . . 3 𝑆 ⊆ (Base‘𝑃)
1817a1i 11 . 2 (𝜑𝑆 ⊆ (Base‘𝑃))
1915a1i 11 . . . . . 6 (𝜑𝐷:(Base‘𝑃)⟶ℝ*)
2019ffnd 6671 . . . . 5 (𝜑𝐷 Fn (Base‘𝑃))
212ply1ring 22165 . . . . . 6 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
22 eqid 2729 . . . . . . 7 (0g𝑃) = (0g𝑃)
2314, 22ring0cl 20187 . . . . . 6 (𝑃 ∈ Ring → (0g𝑃) ∈ (Base‘𝑃))
241, 21, 233syl 18 . . . . 5 (𝜑 → (0g𝑃) ∈ (Base‘𝑃))
2513, 2, 22deg1z 26025 . . . . . . 7 (𝑅 ∈ Ring → (𝐷‘(0g𝑃)) = -∞)
261, 25syl 17 . . . . . 6 (𝜑 → (𝐷‘(0g𝑃)) = -∞)
27 mnfxr 11207 . . . . . . . 8 -∞ ∈ ℝ*
2827a1i 11 . . . . . . 7 (𝜑 → -∞ ∈ ℝ*)
29 ply1degltlss.3 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
3029nn0red 12480 . . . . . . . 8 (𝜑𝑁 ∈ ℝ)
3130rexrd 11200 . . . . . . 7 (𝜑𝑁 ∈ ℝ*)
3228xrleidd 13088 . . . . . . 7 (𝜑 → -∞ ≤ -∞)
3330mnfltd 13060 . . . . . . 7 (𝜑 → -∞ < 𝑁)
3428, 31, 28, 32, 33elicod 13332 . . . . . 6 (𝜑 → -∞ ∈ (-∞[,)𝑁))
3526, 34eqeltrd 2828 . . . . 5 (𝜑 → (𝐷‘(0g𝑃)) ∈ (-∞[,)𝑁))
3620, 24, 35elpreimad 7013 . . . 4 (𝜑 → (0g𝑃) ∈ (𝐷 “ (-∞[,)𝑁)))
3736, 10eleqtrrdi 2839 . . 3 (𝜑 → (0g𝑃) ∈ 𝑆)
3837ne0d 4301 . 2 (𝜑𝑆 ≠ ∅)
39 simpl 482 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → 𝜑)
40 eqid 2729 . . . 4 (+g𝑃) = (+g𝑃)
412ply1lmod 22169 . . . . . . 7 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
421, 41syl 17 . . . . . 6 (𝜑𝑃 ∈ LMod)
4342adantr 480 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → 𝑃 ∈ LMod)
4443lmodgrpd 20808 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → 𝑃 ∈ Grp)
45 simpr1 1195 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → 𝑥 ∈ (Base‘𝑅))
464fveq2d 6844 . . . . . . 7 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
4746adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
4845, 47eleqtrd 2830 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → 𝑥 ∈ (Base‘(Scalar‘𝑃)))
49 simpr2 1196 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → 𝑎𝑆)
5017, 49sselid 3941 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → 𝑎 ∈ (Base‘𝑃))
51 eqid 2729 . . . . . 6 (Scalar‘𝑃) = (Scalar‘𝑃)
52 eqid 2729 . . . . . 6 ( ·𝑠𝑃) = ( ·𝑠𝑃)
53 eqid 2729 . . . . . 6 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
5414, 51, 52, 53lmodvscl 20816 . . . . 5 ((𝑃 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎 ∈ (Base‘𝑃)) → (𝑥( ·𝑠𝑃)𝑎) ∈ (Base‘𝑃))
5543, 48, 50, 54syl3anc 1373 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → (𝑥( ·𝑠𝑃)𝑎) ∈ (Base‘𝑃))
56 simpr3 1197 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → 𝑏𝑆)
5717, 56sselid 3941 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → 𝑏 ∈ (Base‘𝑃))
5814, 40, 44, 55, 57grpcld 18861 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → ((𝑥( ·𝑠𝑃)𝑎)(+g𝑃)𝑏) ∈ (Base‘𝑃))
591adantr 480 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → 𝑅 ∈ Ring)
60 1red 11151 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
6130, 60resubcld 11582 . . . . . 6 (𝜑 → (𝑁 − 1) ∈ ℝ)
6261rexrd 11200 . . . . 5 (𝜑 → (𝑁 − 1) ∈ ℝ*)
6362adantr 480 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → (𝑁 − 1) ∈ ℝ*)
6415a1i 11 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → 𝐷:(Base‘𝑃)⟶ℝ*)
6564, 55ffvelcdmd 7039 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → (𝐷‘(𝑥( ·𝑠𝑃)𝑎)) ∈ ℝ*)
6664, 50ffvelcdmd 7039 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → (𝐷𝑎) ∈ ℝ*)
67 eqid 2729 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
682, 13, 59, 14, 67, 52, 45, 50deg1vscale 26042 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → (𝐷‘(𝑥( ·𝑠𝑃)𝑎)) ≤ (𝐷𝑎))
692, 13, 10, 29, 1, 14ply1degltel 33553 . . . . . . 7 (𝜑 → (𝑎𝑆 ↔ (𝑎 ∈ (Base‘𝑃) ∧ (𝐷𝑎) ≤ (𝑁 − 1))))
7069simplbda 499 . . . . . 6 ((𝜑𝑎𝑆) → (𝐷𝑎) ≤ (𝑁 − 1))
7149, 70syldan 591 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → (𝐷𝑎) ≤ (𝑁 − 1))
7265, 66, 63, 68, 71xrletrd 13098 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → (𝐷‘(𝑥( ·𝑠𝑃)𝑎)) ≤ (𝑁 − 1))
732, 13, 10, 29, 1, 14ply1degltel 33553 . . . . . 6 (𝜑 → (𝑏𝑆 ↔ (𝑏 ∈ (Base‘𝑃) ∧ (𝐷𝑏) ≤ (𝑁 − 1))))
7473simplbda 499 . . . . 5 ((𝜑𝑏𝑆) → (𝐷𝑏) ≤ (𝑁 − 1))
7556, 74syldan 591 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → (𝐷𝑏) ≤ (𝑁 − 1))
762, 13, 59, 14, 40, 55, 57, 63, 72, 75deg1addle2 26040 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → (𝐷‘((𝑥( ·𝑠𝑃)𝑎)(+g𝑃)𝑏)) ≤ (𝑁 − 1))
772, 13, 10, 29, 1, 14ply1degltel 33553 . . . 4 (𝜑 → (((𝑥( ·𝑠𝑃)𝑎)(+g𝑃)𝑏) ∈ 𝑆 ↔ (((𝑥( ·𝑠𝑃)𝑎)(+g𝑃)𝑏) ∈ (Base‘𝑃) ∧ (𝐷‘((𝑥( ·𝑠𝑃)𝑎)(+g𝑃)𝑏)) ≤ (𝑁 − 1))))
7877biimpar 477 . . 3 ((𝜑 ∧ (((𝑥( ·𝑠𝑃)𝑎)(+g𝑃)𝑏) ∈ (Base‘𝑃) ∧ (𝐷‘((𝑥( ·𝑠𝑃)𝑎)(+g𝑃)𝑏)) ≤ (𝑁 − 1))) → ((𝑥( ·𝑠𝑃)𝑎)(+g𝑃)𝑏) ∈ 𝑆)
7939, 58, 76, 78syl12anc 836 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑆𝑏𝑆)) → ((𝑥( ·𝑠𝑃)𝑎)(+g𝑃)𝑏) ∈ 𝑆)
804, 5, 6, 7, 8, 9, 18, 38, 79islssd 20873 1 (𝜑𝑆 ∈ (LSubSp‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3911   class class class wbr 5102  ccnv 5630  dom cdm 5631  cima 5634  wf 6495  cfv 6499  (class class class)co 7369  1c1 11045  -∞cmnf 11182  *cxr 11183  cle 11185  cmin 11381  0cn0 12418  [,)cico 13284  Basecbs 17155  +gcplusg 17196  Scalarcsca 17199   ·𝑠 cvsca 17200  0gc0g 17378  Ringcrg 20153  LModclmod 20798  LSubSpclss 20869  Poly1cpl1 22094  deg1cdg1 25992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-ico 13288  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-mulg 18982  df-subg 19037  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-subrng 20466  df-subrg 20490  df-lmod 20800  df-lss 20870  df-cnfld 21297  df-psr 21851  df-mpl 21853  df-opsr 21855  df-psr1 22097  df-ply1 22099  df-mdeg 25993  df-deg1 25994
This theorem is referenced by:  ply1degltdimlem  33611  ply1degltdim  33612  algextdeglem8  33707
  Copyright terms: Public domain W3C validator