Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1degleel Structured version   Visualization version   GIF version

Theorem ply1degleel 32956
Description: Characterize elementhood in the set 𝑆 of polynomials of degree less than 𝑁. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
ply1degltlss.p 𝑃 = (Poly1𝑅)
ply1degltlss.d 𝐷 = ( deg1𝑅)
ply1degltlss.1 𝑆 = (𝐷 “ (-∞[,)𝑁))
ply1degltlss.3 (𝜑𝑁 ∈ ℕ0)
ply1degltlss.2 (𝜑𝑅 ∈ Ring)
ply1degltel.1 𝐵 = (Base‘𝑃)
Assertion
Ref Expression
ply1degleel (𝜑 → (𝐹𝑆 ↔ (𝐹𝐵 ∧ (𝐷𝐹) < 𝑁)))

Proof of Theorem ply1degleel
StepHypRef Expression
1 simpr 484 . . . 4 ((𝜑𝐹 = (0g𝑃)) → 𝐹 = (0g𝑃))
2 ply1degltlss.d . . . . . . . . . 10 𝐷 = ( deg1𝑅)
3 ply1degltlss.p . . . . . . . . . 10 𝑃 = (Poly1𝑅)
4 ply1degltel.1 . . . . . . . . . 10 𝐵 = (Base‘𝑃)
52, 3, 4deg1xrf 25848 . . . . . . . . 9 𝐷:𝐵⟶ℝ*
65a1i 11 . . . . . . . 8 (𝜑𝐷:𝐵⟶ℝ*)
76ffnd 6718 . . . . . . 7 (𝜑𝐷 Fn 𝐵)
8 ply1degltlss.2 . . . . . . . 8 (𝜑𝑅 ∈ Ring)
93ply1ring 22003 . . . . . . . 8 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
10 eqid 2731 . . . . . . . . 9 (0g𝑃) = (0g𝑃)
114, 10ring0cl 20159 . . . . . . . 8 (𝑃 ∈ Ring → (0g𝑃) ∈ 𝐵)
128, 9, 113syl 18 . . . . . . 7 (𝜑 → (0g𝑃) ∈ 𝐵)
132, 3, 10deg1z 25854 . . . . . . . . 9 (𝑅 ∈ Ring → (𝐷‘(0g𝑃)) = -∞)
148, 13syl 17 . . . . . . . 8 (𝜑 → (𝐷‘(0g𝑃)) = -∞)
15 mnfxr 11278 . . . . . . . . . 10 -∞ ∈ ℝ*
1615a1i 11 . . . . . . . . 9 (𝜑 → -∞ ∈ ℝ*)
17 ply1degltlss.3 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
1817nn0red 12540 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ)
1918rexrd 11271 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ*)
2016xrleidd 13138 . . . . . . . . 9 (𝜑 → -∞ ≤ -∞)
2118mnfltd 13111 . . . . . . . . 9 (𝜑 → -∞ < 𝑁)
2216, 19, 16, 20, 21elicod 13381 . . . . . . . 8 (𝜑 → -∞ ∈ (-∞[,)𝑁))
2314, 22eqeltrd 2832 . . . . . . 7 (𝜑 → (𝐷‘(0g𝑃)) ∈ (-∞[,)𝑁))
247, 12, 23elpreimad 7060 . . . . . 6 (𝜑 → (0g𝑃) ∈ (𝐷 “ (-∞[,)𝑁)))
25 ply1degltlss.1 . . . . . 6 𝑆 = (𝐷 “ (-∞[,)𝑁))
2624, 25eleqtrrdi 2843 . . . . 5 (𝜑 → (0g𝑃) ∈ 𝑆)
2726adantr 480 . . . 4 ((𝜑𝐹 = (0g𝑃)) → (0g𝑃) ∈ 𝑆)
281, 27eqeltrd 2832 . . 3 ((𝜑𝐹 = (0g𝑃)) → 𝐹𝑆)
29 cnvimass 6080 . . . . . 6 (𝐷 “ (-∞[,)𝑁)) ⊆ dom 𝐷
3025, 29eqsstri 4016 . . . . 5 𝑆 ⊆ dom 𝐷
315fdmi 6729 . . . . 5 dom 𝐷 = 𝐵
3230, 31sseqtri 4018 . . . 4 𝑆𝐵
3332, 28sselid 3980 . . 3 ((𝜑𝐹 = (0g𝑃)) → 𝐹𝐵)
341fveq2d 6895 . . . . 5 ((𝜑𝐹 = (0g𝑃)) → (𝐷𝐹) = (𝐷‘(0g𝑃)))
3514adantr 480 . . . . 5 ((𝜑𝐹 = (0g𝑃)) → (𝐷‘(0g𝑃)) = -∞)
3634, 35eqtrd 2771 . . . 4 ((𝜑𝐹 = (0g𝑃)) → (𝐷𝐹) = -∞)
3718adantr 480 . . . . 5 ((𝜑𝐹 = (0g𝑃)) → 𝑁 ∈ ℝ)
3837mnfltd 13111 . . . 4 ((𝜑𝐹 = (0g𝑃)) → -∞ < 𝑁)
3936, 38eqbrtrd 5170 . . 3 ((𝜑𝐹 = (0g𝑃)) → (𝐷𝐹) < 𝑁)
40 pm5.1 821 . . 3 ((𝐹𝑆 ∧ (𝐹𝐵 ∧ (𝐷𝐹) < 𝑁)) → (𝐹𝑆 ↔ (𝐹𝐵 ∧ (𝐷𝐹) < 𝑁)))
4128, 33, 39, 40syl12anc 834 . 2 ((𝜑𝐹 = (0g𝑃)) → (𝐹𝑆 ↔ (𝐹𝐵 ∧ (𝐷𝐹) < 𝑁)))
4225eleq2i 2824 . . . 4 (𝐹𝑆𝐹 ∈ (𝐷 “ (-∞[,)𝑁)))
437adantr 480 . . . . 5 ((𝜑𝐹 ≠ (0g𝑃)) → 𝐷 Fn 𝐵)
44 elpreima 7059 . . . . 5 (𝐷 Fn 𝐵 → (𝐹 ∈ (𝐷 “ (-∞[,)𝑁)) ↔ (𝐹𝐵 ∧ (𝐷𝐹) ∈ (-∞[,)𝑁))))
4543, 44syl 17 . . . 4 ((𝜑𝐹 ≠ (0g𝑃)) → (𝐹 ∈ (𝐷 “ (-∞[,)𝑁)) ↔ (𝐹𝐵 ∧ (𝐷𝐹) ∈ (-∞[,)𝑁))))
4642, 45bitrid 283 . . 3 ((𝜑𝐹 ≠ (0g𝑃)) → (𝐹𝑆 ↔ (𝐹𝐵 ∧ (𝐷𝐹) ∈ (-∞[,)𝑁))))
478ad2antrr 723 . . . . . . . . 9 (((𝜑𝐹 ≠ (0g𝑃)) ∧ 𝐹𝐵) → 𝑅 ∈ Ring)
48 simpr 484 . . . . . . . . 9 (((𝜑𝐹 ≠ (0g𝑃)) ∧ 𝐹𝐵) → 𝐹𝐵)
49 simplr 766 . . . . . . . . 9 (((𝜑𝐹 ≠ (0g𝑃)) ∧ 𝐹𝐵) → 𝐹 ≠ (0g𝑃))
502, 3, 10, 4deg1nn0cl 25855 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹 ≠ (0g𝑃)) → (𝐷𝐹) ∈ ℕ0)
5147, 48, 49, 50syl3anc 1370 . . . . . . . 8 (((𝜑𝐹 ≠ (0g𝑃)) ∧ 𝐹𝐵) → (𝐷𝐹) ∈ ℕ0)
5251nn0red 12540 . . . . . . 7 (((𝜑𝐹 ≠ (0g𝑃)) ∧ 𝐹𝐵) → (𝐷𝐹) ∈ ℝ)
5352rexrd 11271 . . . . . 6 (((𝜑𝐹 ≠ (0g𝑃)) ∧ 𝐹𝐵) → (𝐷𝐹) ∈ ℝ*)
5453mnfled 13122 . . . . . 6 (((𝜑𝐹 ≠ (0g𝑃)) ∧ 𝐹𝐵) → -∞ ≤ (𝐷𝐹))
5553, 54jca 511 . . . . 5 (((𝜑𝐹 ≠ (0g𝑃)) ∧ 𝐹𝐵) → ((𝐷𝐹) ∈ ℝ* ∧ -∞ ≤ (𝐷𝐹)))
5619ad2antrr 723 . . . . . . 7 (((𝜑𝐹 ≠ (0g𝑃)) ∧ 𝐹𝐵) → 𝑁 ∈ ℝ*)
57 elico1 13374 . . . . . . 7 ((-∞ ∈ ℝ*𝑁 ∈ ℝ*) → ((𝐷𝐹) ∈ (-∞[,)𝑁) ↔ ((𝐷𝐹) ∈ ℝ* ∧ -∞ ≤ (𝐷𝐹) ∧ (𝐷𝐹) < 𝑁)))
5815, 56, 57sylancr 586 . . . . . 6 (((𝜑𝐹 ≠ (0g𝑃)) ∧ 𝐹𝐵) → ((𝐷𝐹) ∈ (-∞[,)𝑁) ↔ ((𝐷𝐹) ∈ ℝ* ∧ -∞ ≤ (𝐷𝐹) ∧ (𝐷𝐹) < 𝑁)))
59 df-3an 1088 . . . . . 6 (((𝐷𝐹) ∈ ℝ* ∧ -∞ ≤ (𝐷𝐹) ∧ (𝐷𝐹) < 𝑁) ↔ (((𝐷𝐹) ∈ ℝ* ∧ -∞ ≤ (𝐷𝐹)) ∧ (𝐷𝐹) < 𝑁))
6058, 59bitrdi 287 . . . . 5 (((𝜑𝐹 ≠ (0g𝑃)) ∧ 𝐹𝐵) → ((𝐷𝐹) ∈ (-∞[,)𝑁) ↔ (((𝐷𝐹) ∈ ℝ* ∧ -∞ ≤ (𝐷𝐹)) ∧ (𝐷𝐹) < 𝑁)))
6155, 60mpbirand 704 . . . 4 (((𝜑𝐹 ≠ (0g𝑃)) ∧ 𝐹𝐵) → ((𝐷𝐹) ∈ (-∞[,)𝑁) ↔ (𝐷𝐹) < 𝑁))
6261pm5.32da 578 . . 3 ((𝜑𝐹 ≠ (0g𝑃)) → ((𝐹𝐵 ∧ (𝐷𝐹) ∈ (-∞[,)𝑁)) ↔ (𝐹𝐵 ∧ (𝐷𝐹) < 𝑁)))
6346, 62bitrd 279 . 2 ((𝜑𝐹 ≠ (0g𝑃)) → (𝐹𝑆 ↔ (𝐹𝐵 ∧ (𝐷𝐹) < 𝑁)))
6441, 63pm2.61dane 3028 1 (𝜑 → (𝐹𝑆 ↔ (𝐹𝐵 ∧ (𝐷𝐹) < 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  wne 2939   class class class wbr 5148  ccnv 5675  dom cdm 5676  cima 5679   Fn wfn 6538  wf 6539  cfv 6543  (class class class)co 7412  cr 11115  -∞cmnf 11253  *cxr 11254   < clt 11255  cle 11256  0cn0 12479  [,)cico 13333  Basecbs 17151  0gc0g 17392  Ringcrg 20131  Poly1cpl1 21933   deg1 cdg1 25818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194  ax-addf 11195  ax-mulf 11196
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-ofr 7675  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8152  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-er 8709  df-map 8828  df-pm 8829  df-ixp 8898  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-fsupp 9368  df-sup 9443  df-oi 9511  df-card 9940  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-z 12566  df-dec 12685  df-uz 12830  df-ico 13337  df-fz 13492  df-fzo 13635  df-seq 13974  df-hash 14298  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-mulr 17218  df-starv 17219  df-sca 17220  df-vsca 17221  df-ip 17222  df-tset 17223  df-ple 17224  df-ds 17226  df-unif 17227  df-hom 17228  df-cco 17229  df-0g 17394  df-gsum 17395  df-prds 17400  df-pws 17402  df-mre 17537  df-mrc 17538  df-acs 17540  df-mgm 18568  df-sgrp 18647  df-mnd 18663  df-mhm 18708  df-submnd 18709  df-grp 18861  df-minusg 18862  df-mulg 18991  df-subg 19043  df-ghm 19132  df-cntz 19226  df-cmn 19695  df-abl 19696  df-mgp 20033  df-rng 20051  df-ur 20080  df-ring 20133  df-cring 20134  df-subrng 20438  df-subrg 20463  df-cnfld 21149  df-psr 21685  df-mpl 21687  df-opsr 21689  df-psr1 21936  df-ply1 21938  df-mdeg 25819  df-deg1 25820
This theorem is referenced by:  algextdeglem7  33083  algextdeglem8  33084
  Copyright terms: Public domain W3C validator