Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1degleel Structured version   Visualization version   GIF version

Theorem ply1degleel 33617
Description: Characterize elementhood in the set 𝑆 of polynomials of degree less than 𝑁. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
ply1degltlss.p 𝑃 = (Poly1𝑅)
ply1degltlss.d 𝐷 = (deg1𝑅)
ply1degltlss.1 𝑆 = (𝐷 “ (-∞[,)𝑁))
ply1degltlss.3 (𝜑𝑁 ∈ ℕ0)
ply1degltlss.2 (𝜑𝑅 ∈ Ring)
ply1degltel.1 𝐵 = (Base‘𝑃)
Assertion
Ref Expression
ply1degleel (𝜑 → (𝐹𝑆 ↔ (𝐹𝐵 ∧ (𝐷𝐹) < 𝑁)))

Proof of Theorem ply1degleel
StepHypRef Expression
1 simpr 484 . . . 4 ((𝜑𝐹 = (0g𝑃)) → 𝐹 = (0g𝑃))
2 ply1degltlss.d . . . . . . . . . 10 𝐷 = (deg1𝑅)
3 ply1degltlss.p . . . . . . . . . 10 𝑃 = (Poly1𝑅)
4 ply1degltel.1 . . . . . . . . . 10 𝐵 = (Base‘𝑃)
52, 3, 4deg1xrf 26121 . . . . . . . . 9 𝐷:𝐵⟶ℝ*
65a1i 11 . . . . . . . 8 (𝜑𝐷:𝐵⟶ℝ*)
76ffnd 6736 . . . . . . 7 (𝜑𝐷 Fn 𝐵)
8 ply1degltlss.2 . . . . . . . 8 (𝜑𝑅 ∈ Ring)
93ply1ring 22250 . . . . . . . 8 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
10 eqid 2736 . . . . . . . . 9 (0g𝑃) = (0g𝑃)
114, 10ring0cl 20265 . . . . . . . 8 (𝑃 ∈ Ring → (0g𝑃) ∈ 𝐵)
128, 9, 113syl 18 . . . . . . 7 (𝜑 → (0g𝑃) ∈ 𝐵)
132, 3, 10deg1z 26127 . . . . . . . . 9 (𝑅 ∈ Ring → (𝐷‘(0g𝑃)) = -∞)
148, 13syl 17 . . . . . . . 8 (𝜑 → (𝐷‘(0g𝑃)) = -∞)
15 mnfxr 11319 . . . . . . . . . 10 -∞ ∈ ℝ*
1615a1i 11 . . . . . . . . 9 (𝜑 → -∞ ∈ ℝ*)
17 ply1degltlss.3 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
1817nn0red 12590 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ)
1918rexrd 11312 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ*)
2016xrleidd 13195 . . . . . . . . 9 (𝜑 → -∞ ≤ -∞)
2118mnfltd 13167 . . . . . . . . 9 (𝜑 → -∞ < 𝑁)
2216, 19, 16, 20, 21elicod 13438 . . . . . . . 8 (𝜑 → -∞ ∈ (-∞[,)𝑁))
2314, 22eqeltrd 2840 . . . . . . 7 (𝜑 → (𝐷‘(0g𝑃)) ∈ (-∞[,)𝑁))
247, 12, 23elpreimad 7078 . . . . . 6 (𝜑 → (0g𝑃) ∈ (𝐷 “ (-∞[,)𝑁)))
25 ply1degltlss.1 . . . . . 6 𝑆 = (𝐷 “ (-∞[,)𝑁))
2624, 25eleqtrrdi 2851 . . . . 5 (𝜑 → (0g𝑃) ∈ 𝑆)
2726adantr 480 . . . 4 ((𝜑𝐹 = (0g𝑃)) → (0g𝑃) ∈ 𝑆)
281, 27eqeltrd 2840 . . 3 ((𝜑𝐹 = (0g𝑃)) → 𝐹𝑆)
29 cnvimass 6099 . . . . . 6 (𝐷 “ (-∞[,)𝑁)) ⊆ dom 𝐷
3025, 29eqsstri 4029 . . . . 5 𝑆 ⊆ dom 𝐷
315fdmi 6746 . . . . 5 dom 𝐷 = 𝐵
3230, 31sseqtri 4031 . . . 4 𝑆𝐵
3332, 28sselid 3980 . . 3 ((𝜑𝐹 = (0g𝑃)) → 𝐹𝐵)
341fveq2d 6909 . . . . 5 ((𝜑𝐹 = (0g𝑃)) → (𝐷𝐹) = (𝐷‘(0g𝑃)))
3514adantr 480 . . . . 5 ((𝜑𝐹 = (0g𝑃)) → (𝐷‘(0g𝑃)) = -∞)
3634, 35eqtrd 2776 . . . 4 ((𝜑𝐹 = (0g𝑃)) → (𝐷𝐹) = -∞)
3718adantr 480 . . . . 5 ((𝜑𝐹 = (0g𝑃)) → 𝑁 ∈ ℝ)
3837mnfltd 13167 . . . 4 ((𝜑𝐹 = (0g𝑃)) → -∞ < 𝑁)
3936, 38eqbrtrd 5164 . . 3 ((𝜑𝐹 = (0g𝑃)) → (𝐷𝐹) < 𝑁)
40 pm5.1 823 . . 3 ((𝐹𝑆 ∧ (𝐹𝐵 ∧ (𝐷𝐹) < 𝑁)) → (𝐹𝑆 ↔ (𝐹𝐵 ∧ (𝐷𝐹) < 𝑁)))
4128, 33, 39, 40syl12anc 836 . 2 ((𝜑𝐹 = (0g𝑃)) → (𝐹𝑆 ↔ (𝐹𝐵 ∧ (𝐷𝐹) < 𝑁)))
4225eleq2i 2832 . . . 4 (𝐹𝑆𝐹 ∈ (𝐷 “ (-∞[,)𝑁)))
437adantr 480 . . . . 5 ((𝜑𝐹 ≠ (0g𝑃)) → 𝐷 Fn 𝐵)
44 elpreima 7077 . . . . 5 (𝐷 Fn 𝐵 → (𝐹 ∈ (𝐷 “ (-∞[,)𝑁)) ↔ (𝐹𝐵 ∧ (𝐷𝐹) ∈ (-∞[,)𝑁))))
4543, 44syl 17 . . . 4 ((𝜑𝐹 ≠ (0g𝑃)) → (𝐹 ∈ (𝐷 “ (-∞[,)𝑁)) ↔ (𝐹𝐵 ∧ (𝐷𝐹) ∈ (-∞[,)𝑁))))
4642, 45bitrid 283 . . 3 ((𝜑𝐹 ≠ (0g𝑃)) → (𝐹𝑆 ↔ (𝐹𝐵 ∧ (𝐷𝐹) ∈ (-∞[,)𝑁))))
478ad2antrr 726 . . . . . . . . 9 (((𝜑𝐹 ≠ (0g𝑃)) ∧ 𝐹𝐵) → 𝑅 ∈ Ring)
48 simpr 484 . . . . . . . . 9 (((𝜑𝐹 ≠ (0g𝑃)) ∧ 𝐹𝐵) → 𝐹𝐵)
49 simplr 768 . . . . . . . . 9 (((𝜑𝐹 ≠ (0g𝑃)) ∧ 𝐹𝐵) → 𝐹 ≠ (0g𝑃))
502, 3, 10, 4deg1nn0cl 26128 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹 ≠ (0g𝑃)) → (𝐷𝐹) ∈ ℕ0)
5147, 48, 49, 50syl3anc 1372 . . . . . . . 8 (((𝜑𝐹 ≠ (0g𝑃)) ∧ 𝐹𝐵) → (𝐷𝐹) ∈ ℕ0)
5251nn0red 12590 . . . . . . 7 (((𝜑𝐹 ≠ (0g𝑃)) ∧ 𝐹𝐵) → (𝐷𝐹) ∈ ℝ)
5352rexrd 11312 . . . . . 6 (((𝜑𝐹 ≠ (0g𝑃)) ∧ 𝐹𝐵) → (𝐷𝐹) ∈ ℝ*)
5453mnfled 13179 . . . . . 6 (((𝜑𝐹 ≠ (0g𝑃)) ∧ 𝐹𝐵) → -∞ ≤ (𝐷𝐹))
5553, 54jca 511 . . . . 5 (((𝜑𝐹 ≠ (0g𝑃)) ∧ 𝐹𝐵) → ((𝐷𝐹) ∈ ℝ* ∧ -∞ ≤ (𝐷𝐹)))
5619ad2antrr 726 . . . . . . 7 (((𝜑𝐹 ≠ (0g𝑃)) ∧ 𝐹𝐵) → 𝑁 ∈ ℝ*)
57 elico1 13431 . . . . . . 7 ((-∞ ∈ ℝ*𝑁 ∈ ℝ*) → ((𝐷𝐹) ∈ (-∞[,)𝑁) ↔ ((𝐷𝐹) ∈ ℝ* ∧ -∞ ≤ (𝐷𝐹) ∧ (𝐷𝐹) < 𝑁)))
5815, 56, 57sylancr 587 . . . . . 6 (((𝜑𝐹 ≠ (0g𝑃)) ∧ 𝐹𝐵) → ((𝐷𝐹) ∈ (-∞[,)𝑁) ↔ ((𝐷𝐹) ∈ ℝ* ∧ -∞ ≤ (𝐷𝐹) ∧ (𝐷𝐹) < 𝑁)))
59 df-3an 1088 . . . . . 6 (((𝐷𝐹) ∈ ℝ* ∧ -∞ ≤ (𝐷𝐹) ∧ (𝐷𝐹) < 𝑁) ↔ (((𝐷𝐹) ∈ ℝ* ∧ -∞ ≤ (𝐷𝐹)) ∧ (𝐷𝐹) < 𝑁))
6058, 59bitrdi 287 . . . . 5 (((𝜑𝐹 ≠ (0g𝑃)) ∧ 𝐹𝐵) → ((𝐷𝐹) ∈ (-∞[,)𝑁) ↔ (((𝐷𝐹) ∈ ℝ* ∧ -∞ ≤ (𝐷𝐹)) ∧ (𝐷𝐹) < 𝑁)))
6155, 60mpbirand 707 . . . 4 (((𝜑𝐹 ≠ (0g𝑃)) ∧ 𝐹𝐵) → ((𝐷𝐹) ∈ (-∞[,)𝑁) ↔ (𝐷𝐹) < 𝑁))
6261pm5.32da 579 . . 3 ((𝜑𝐹 ≠ (0g𝑃)) → ((𝐹𝐵 ∧ (𝐷𝐹) ∈ (-∞[,)𝑁)) ↔ (𝐹𝐵 ∧ (𝐷𝐹) < 𝑁)))
6346, 62bitrd 279 . 2 ((𝜑𝐹 ≠ (0g𝑃)) → (𝐹𝑆 ↔ (𝐹𝐵 ∧ (𝐷𝐹) < 𝑁)))
6441, 63pm2.61dane 3028 1 (𝜑 → (𝐹𝑆 ↔ (𝐹𝐵 ∧ (𝐷𝐹) < 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2939   class class class wbr 5142  ccnv 5683  dom cdm 5684  cima 5687   Fn wfn 6555  wf 6556  cfv 6560  (class class class)co 7432  cr 11155  -∞cmnf 11294  *cxr 11295   < clt 11296  cle 11297  0cn0 12528  [,)cico 13390  Basecbs 17248  0gc0g 17485  Ringcrg 20231  Poly1cpl1 22179  deg1cdg1 26094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-ofr 7699  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-sup 9483  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-ico 13394  df-fz 13549  df-fzo 13696  df-seq 14044  df-hash 14371  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-0g 17487  df-gsum 17488  df-prds 17493  df-pws 17495  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-mhm 18797  df-submnd 18798  df-grp 18955  df-minusg 18956  df-mulg 19087  df-subg 19142  df-ghm 19232  df-cntz 19336  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-ring 20233  df-cring 20234  df-subrng 20547  df-subrg 20571  df-cnfld 21366  df-psr 21930  df-mpl 21932  df-opsr 21934  df-psr1 22182  df-ply1 22184  df-mdeg 26095  df-deg1 26096
This theorem is referenced by:  algextdeglem7  33765  algextdeglem8  33766
  Copyright terms: Public domain W3C validator