| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tskxpss | Structured version Visualization version GIF version | ||
| Description: A Cartesian product of two parts of a Tarski class is a part of the class. (Contributed by FL, 22-Feb-2011.) (Proof shortened by Mario Carneiro, 20-Jun-2013.) |
| Ref | Expression |
|---|---|
| tskxpss | ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ⊆ 𝑇 ∧ 𝐵 ⊆ 𝑇) → (𝐴 × 𝐵) ⊆ 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp2 5678 | . . . . 5 ⊢ (𝑧 ∈ (𝑇 × 𝑇) ↔ ∃𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑇 𝑧 = 〈𝑥, 𝑦〉) | |
| 2 | tskop 10785 | . . . . . . . 8 ⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇) → 〈𝑥, 𝑦〉 ∈ 𝑇) | |
| 3 | eleq1a 2829 | . . . . . . . 8 ⊢ (〈𝑥, 𝑦〉 ∈ 𝑇 → (𝑧 = 〈𝑥, 𝑦〉 → 𝑧 ∈ 𝑇)) | |
| 4 | 2, 3 | syl 17 | . . . . . . 7 ⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇) → (𝑧 = 〈𝑥, 𝑦〉 → 𝑧 ∈ 𝑇)) |
| 5 | 4 | 3expib 1122 | . . . . . 6 ⊢ (𝑇 ∈ Tarski → ((𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇) → (𝑧 = 〈𝑥, 𝑦〉 → 𝑧 ∈ 𝑇))) |
| 6 | 5 | rexlimdvv 3197 | . . . . 5 ⊢ (𝑇 ∈ Tarski → (∃𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑇 𝑧 = 〈𝑥, 𝑦〉 → 𝑧 ∈ 𝑇)) |
| 7 | 1, 6 | biimtrid 242 | . . . 4 ⊢ (𝑇 ∈ Tarski → (𝑧 ∈ (𝑇 × 𝑇) → 𝑧 ∈ 𝑇)) |
| 8 | 7 | ssrdv 3964 | . . 3 ⊢ (𝑇 ∈ Tarski → (𝑇 × 𝑇) ⊆ 𝑇) |
| 9 | xpss12 5669 | . . 3 ⊢ ((𝐴 ⊆ 𝑇 ∧ 𝐵 ⊆ 𝑇) → (𝐴 × 𝐵) ⊆ (𝑇 × 𝑇)) | |
| 10 | sstr 3967 | . . . 4 ⊢ (((𝐴 × 𝐵) ⊆ (𝑇 × 𝑇) ∧ (𝑇 × 𝑇) ⊆ 𝑇) → (𝐴 × 𝐵) ⊆ 𝑇) | |
| 11 | 10 | expcom 413 | . . 3 ⊢ ((𝑇 × 𝑇) ⊆ 𝑇 → ((𝐴 × 𝐵) ⊆ (𝑇 × 𝑇) → (𝐴 × 𝐵) ⊆ 𝑇)) |
| 12 | 8, 9, 11 | syl2im 40 | . 2 ⊢ (𝑇 ∈ Tarski → ((𝐴 ⊆ 𝑇 ∧ 𝐵 ⊆ 𝑇) → (𝐴 × 𝐵) ⊆ 𝑇)) |
| 13 | 12 | 3impib 1116 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ⊆ 𝑇 ∧ 𝐵 ⊆ 𝑇) → (𝐴 × 𝐵) ⊆ 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 ⊆ wss 3926 〈cop 4607 × cxp 5652 Tarskictsk 10762 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-r1 9778 df-tsk 10763 |
| This theorem is referenced by: tskcard 10795 |
| Copyright terms: Public domain | W3C validator |