![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tskxpss | Structured version Visualization version GIF version |
Description: A Cartesian product of two parts of a Tarski class is a part of the class. (Contributed by FL, 22-Feb-2011.) (Proof shortened by Mario Carneiro, 20-Jun-2013.) |
Ref | Expression |
---|---|
tskxpss | ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ⊆ 𝑇 ∧ 𝐵 ⊆ 𝑇) → (𝐴 × 𝐵) ⊆ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp2 5712 | . . . . 5 ⊢ (𝑧 ∈ (𝑇 × 𝑇) ↔ ∃𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑇 𝑧 = 〈𝑥, 𝑦〉) | |
2 | tskop 10808 | . . . . . . . 8 ⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇) → 〈𝑥, 𝑦〉 ∈ 𝑇) | |
3 | eleq1a 2833 | . . . . . . . 8 ⊢ (〈𝑥, 𝑦〉 ∈ 𝑇 → (𝑧 = 〈𝑥, 𝑦〉 → 𝑧 ∈ 𝑇)) | |
4 | 2, 3 | syl 17 | . . . . . . 7 ⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇) → (𝑧 = 〈𝑥, 𝑦〉 → 𝑧 ∈ 𝑇)) |
5 | 4 | 3expib 1121 | . . . . . 6 ⊢ (𝑇 ∈ Tarski → ((𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇) → (𝑧 = 〈𝑥, 𝑦〉 → 𝑧 ∈ 𝑇))) |
6 | 5 | rexlimdvv 3209 | . . . . 5 ⊢ (𝑇 ∈ Tarski → (∃𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑇 𝑧 = 〈𝑥, 𝑦〉 → 𝑧 ∈ 𝑇)) |
7 | 1, 6 | biimtrid 242 | . . . 4 ⊢ (𝑇 ∈ Tarski → (𝑧 ∈ (𝑇 × 𝑇) → 𝑧 ∈ 𝑇)) |
8 | 7 | ssrdv 4000 | . . 3 ⊢ (𝑇 ∈ Tarski → (𝑇 × 𝑇) ⊆ 𝑇) |
9 | xpss12 5703 | . . 3 ⊢ ((𝐴 ⊆ 𝑇 ∧ 𝐵 ⊆ 𝑇) → (𝐴 × 𝐵) ⊆ (𝑇 × 𝑇)) | |
10 | sstr 4003 | . . . 4 ⊢ (((𝐴 × 𝐵) ⊆ (𝑇 × 𝑇) ∧ (𝑇 × 𝑇) ⊆ 𝑇) → (𝐴 × 𝐵) ⊆ 𝑇) | |
11 | 10 | expcom 413 | . . 3 ⊢ ((𝑇 × 𝑇) ⊆ 𝑇 → ((𝐴 × 𝐵) ⊆ (𝑇 × 𝑇) → (𝐴 × 𝐵) ⊆ 𝑇)) |
12 | 8, 9, 11 | syl2im 40 | . 2 ⊢ (𝑇 ∈ Tarski → ((𝐴 ⊆ 𝑇 ∧ 𝐵 ⊆ 𝑇) → (𝐴 × 𝐵) ⊆ 𝑇)) |
13 | 12 | 3impib 1115 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ⊆ 𝑇 ∧ 𝐵 ⊆ 𝑇) → (𝐴 × 𝐵) ⊆ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 ∃wrex 3067 ⊆ wss 3962 〈cop 4636 × cxp 5686 Tarskictsk 10785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-inf2 9678 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-2o 8505 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-r1 9801 df-tsk 10786 |
This theorem is referenced by: tskcard 10818 |
Copyright terms: Public domain | W3C validator |