MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskxpss Structured version   Visualization version   GIF version

Theorem tskxpss 10183
Description: A Cartesian product of two parts of a Tarski class is a part of the class. (Contributed by FL, 22-Feb-2011.) (Proof shortened by Mario Carneiro, 20-Jun-2013.)
Assertion
Ref Expression
tskxpss ((𝑇 ∈ Tarski ∧ 𝐴𝑇𝐵𝑇) → (𝐴 × 𝐵) ⊆ 𝑇)

Proof of Theorem tskxpss
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp2 5543 . . . . 5 (𝑧 ∈ (𝑇 × 𝑇) ↔ ∃𝑥𝑇𝑦𝑇 𝑧 = ⟨𝑥, 𝑦⟩)
2 tskop 10182 . . . . . . . 8 ((𝑇 ∈ Tarski ∧ 𝑥𝑇𝑦𝑇) → ⟨𝑥, 𝑦⟩ ∈ 𝑇)
3 eleq1a 2885 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ 𝑇 → (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧𝑇))
42, 3syl 17 . . . . . . 7 ((𝑇 ∈ Tarski ∧ 𝑥𝑇𝑦𝑇) → (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧𝑇))
543expib 1119 . . . . . 6 (𝑇 ∈ Tarski → ((𝑥𝑇𝑦𝑇) → (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧𝑇)))
65rexlimdvv 3252 . . . . 5 (𝑇 ∈ Tarski → (∃𝑥𝑇𝑦𝑇 𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧𝑇))
71, 6syl5bi 245 . . . 4 (𝑇 ∈ Tarski → (𝑧 ∈ (𝑇 × 𝑇) → 𝑧𝑇))
87ssrdv 3921 . . 3 (𝑇 ∈ Tarski → (𝑇 × 𝑇) ⊆ 𝑇)
9 xpss12 5534 . . 3 ((𝐴𝑇𝐵𝑇) → (𝐴 × 𝐵) ⊆ (𝑇 × 𝑇))
10 sstr 3923 . . . 4 (((𝐴 × 𝐵) ⊆ (𝑇 × 𝑇) ∧ (𝑇 × 𝑇) ⊆ 𝑇) → (𝐴 × 𝐵) ⊆ 𝑇)
1110expcom 417 . . 3 ((𝑇 × 𝑇) ⊆ 𝑇 → ((𝐴 × 𝐵) ⊆ (𝑇 × 𝑇) → (𝐴 × 𝐵) ⊆ 𝑇))
128, 9, 11syl2im 40 . 2 (𝑇 ∈ Tarski → ((𝐴𝑇𝐵𝑇) → (𝐴 × 𝐵) ⊆ 𝑇))
13123impib 1113 1 ((𝑇 ∈ Tarski ∧ 𝐴𝑇𝐵𝑇) → (𝐴 × 𝐵) ⊆ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wrex 3107  wss 3881  cop 4531   × cxp 5517  Tarskictsk 10159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-r1 9177  df-tsk 10160
This theorem is referenced by:  tskcard  10192
  Copyright terms: Public domain W3C validator