Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tskxpss | Structured version Visualization version GIF version |
Description: A Cartesian product of two parts of a Tarski class is a part of the class. (Contributed by FL, 22-Feb-2011.) (Proof shortened by Mario Carneiro, 20-Jun-2013.) |
Ref | Expression |
---|---|
tskxpss | ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ⊆ 𝑇 ∧ 𝐵 ⊆ 𝑇) → (𝐴 × 𝐵) ⊆ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp2 5613 | . . . . 5 ⊢ (𝑧 ∈ (𝑇 × 𝑇) ↔ ∃𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑇 𝑧 = 〈𝑥, 𝑦〉) | |
2 | tskop 10527 | . . . . . . . 8 ⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇) → 〈𝑥, 𝑦〉 ∈ 𝑇) | |
3 | eleq1a 2834 | . . . . . . . 8 ⊢ (〈𝑥, 𝑦〉 ∈ 𝑇 → (𝑧 = 〈𝑥, 𝑦〉 → 𝑧 ∈ 𝑇)) | |
4 | 2, 3 | syl 17 | . . . . . . 7 ⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇) → (𝑧 = 〈𝑥, 𝑦〉 → 𝑧 ∈ 𝑇)) |
5 | 4 | 3expib 1121 | . . . . . 6 ⊢ (𝑇 ∈ Tarski → ((𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇) → (𝑧 = 〈𝑥, 𝑦〉 → 𝑧 ∈ 𝑇))) |
6 | 5 | rexlimdvv 3222 | . . . . 5 ⊢ (𝑇 ∈ Tarski → (∃𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑇 𝑧 = 〈𝑥, 𝑦〉 → 𝑧 ∈ 𝑇)) |
7 | 1, 6 | syl5bi 241 | . . . 4 ⊢ (𝑇 ∈ Tarski → (𝑧 ∈ (𝑇 × 𝑇) → 𝑧 ∈ 𝑇)) |
8 | 7 | ssrdv 3927 | . . 3 ⊢ (𝑇 ∈ Tarski → (𝑇 × 𝑇) ⊆ 𝑇) |
9 | xpss12 5604 | . . 3 ⊢ ((𝐴 ⊆ 𝑇 ∧ 𝐵 ⊆ 𝑇) → (𝐴 × 𝐵) ⊆ (𝑇 × 𝑇)) | |
10 | sstr 3929 | . . . 4 ⊢ (((𝐴 × 𝐵) ⊆ (𝑇 × 𝑇) ∧ (𝑇 × 𝑇) ⊆ 𝑇) → (𝐴 × 𝐵) ⊆ 𝑇) | |
11 | 10 | expcom 414 | . . 3 ⊢ ((𝑇 × 𝑇) ⊆ 𝑇 → ((𝐴 × 𝐵) ⊆ (𝑇 × 𝑇) → (𝐴 × 𝐵) ⊆ 𝑇)) |
12 | 8, 9, 11 | syl2im 40 | . 2 ⊢ (𝑇 ∈ Tarski → ((𝐴 ⊆ 𝑇 ∧ 𝐵 ⊆ 𝑇) → (𝐴 × 𝐵) ⊆ 𝑇)) |
13 | 12 | 3impib 1115 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ⊆ 𝑇 ∧ 𝐵 ⊆ 𝑇) → (𝐴 × 𝐵) ⊆ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 ⊆ wss 3887 〈cop 4567 × cxp 5587 Tarskictsk 10504 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-r1 9522 df-tsk 10505 |
This theorem is referenced by: tskcard 10537 |
Copyright terms: Public domain | W3C validator |