Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tskxpss | Structured version Visualization version GIF version |
Description: A Cartesian product of two parts of a Tarski class is a part of the class. (Contributed by FL, 22-Feb-2011.) (Proof shortened by Mario Carneiro, 20-Jun-2013.) |
Ref | Expression |
---|---|
tskxpss | ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ⊆ 𝑇 ∧ 𝐵 ⊆ 𝑇) → (𝐴 × 𝐵) ⊆ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp2 5649 | . . . . 5 ⊢ (𝑧 ∈ (𝑇 × 𝑇) ↔ ∃𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑇 𝑧 = 〈𝑥, 𝑦〉) | |
2 | tskop 10633 | . . . . . . . 8 ⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇) → 〈𝑥, 𝑦〉 ∈ 𝑇) | |
3 | eleq1a 2833 | . . . . . . . 8 ⊢ (〈𝑥, 𝑦〉 ∈ 𝑇 → (𝑧 = 〈𝑥, 𝑦〉 → 𝑧 ∈ 𝑇)) | |
4 | 2, 3 | syl 17 | . . . . . . 7 ⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇) → (𝑧 = 〈𝑥, 𝑦〉 → 𝑧 ∈ 𝑇)) |
5 | 4 | 3expib 1122 | . . . . . 6 ⊢ (𝑇 ∈ Tarski → ((𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇) → (𝑧 = 〈𝑥, 𝑦〉 → 𝑧 ∈ 𝑇))) |
6 | 5 | rexlimdvv 3201 | . . . . 5 ⊢ (𝑇 ∈ Tarski → (∃𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑇 𝑧 = 〈𝑥, 𝑦〉 → 𝑧 ∈ 𝑇)) |
7 | 1, 6 | biimtrid 241 | . . . 4 ⊢ (𝑇 ∈ Tarski → (𝑧 ∈ (𝑇 × 𝑇) → 𝑧 ∈ 𝑇)) |
8 | 7 | ssrdv 3942 | . . 3 ⊢ (𝑇 ∈ Tarski → (𝑇 × 𝑇) ⊆ 𝑇) |
9 | xpss12 5640 | . . 3 ⊢ ((𝐴 ⊆ 𝑇 ∧ 𝐵 ⊆ 𝑇) → (𝐴 × 𝐵) ⊆ (𝑇 × 𝑇)) | |
10 | sstr 3944 | . . . 4 ⊢ (((𝐴 × 𝐵) ⊆ (𝑇 × 𝑇) ∧ (𝑇 × 𝑇) ⊆ 𝑇) → (𝐴 × 𝐵) ⊆ 𝑇) | |
11 | 10 | expcom 415 | . . 3 ⊢ ((𝑇 × 𝑇) ⊆ 𝑇 → ((𝐴 × 𝐵) ⊆ (𝑇 × 𝑇) → (𝐴 × 𝐵) ⊆ 𝑇)) |
12 | 8, 9, 11 | syl2im 40 | . 2 ⊢ (𝑇 ∈ Tarski → ((𝐴 ⊆ 𝑇 ∧ 𝐵 ⊆ 𝑇) → (𝐴 × 𝐵) ⊆ 𝑇)) |
13 | 12 | 3impib 1116 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ⊆ 𝑇 ∧ 𝐵 ⊆ 𝑇) → (𝐴 × 𝐵) ⊆ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∃wrex 3071 ⊆ wss 3902 〈cop 4584 × cxp 5623 Tarskictsk 10610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-inf2 9503 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-int 4900 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-ov 7345 df-om 7786 df-2nd 7905 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-1o 8372 df-er 8574 df-en 8810 df-dom 8811 df-sdom 8812 df-fin 8813 df-r1 9626 df-tsk 10611 |
This theorem is referenced by: tskcard 10643 |
Copyright terms: Public domain | W3C validator |