MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskxpss Structured version   Visualization version   GIF version

Theorem tskxpss 10459
Description: A Cartesian product of two parts of a Tarski class is a part of the class. (Contributed by FL, 22-Feb-2011.) (Proof shortened by Mario Carneiro, 20-Jun-2013.)
Assertion
Ref Expression
tskxpss ((𝑇 ∈ Tarski ∧ 𝐴𝑇𝐵𝑇) → (𝐴 × 𝐵) ⊆ 𝑇)

Proof of Theorem tskxpss
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp2 5604 . . . . 5 (𝑧 ∈ (𝑇 × 𝑇) ↔ ∃𝑥𝑇𝑦𝑇 𝑧 = ⟨𝑥, 𝑦⟩)
2 tskop 10458 . . . . . . . 8 ((𝑇 ∈ Tarski ∧ 𝑥𝑇𝑦𝑇) → ⟨𝑥, 𝑦⟩ ∈ 𝑇)
3 eleq1a 2834 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ 𝑇 → (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧𝑇))
42, 3syl 17 . . . . . . 7 ((𝑇 ∈ Tarski ∧ 𝑥𝑇𝑦𝑇) → (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧𝑇))
543expib 1120 . . . . . 6 (𝑇 ∈ Tarski → ((𝑥𝑇𝑦𝑇) → (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧𝑇)))
65rexlimdvv 3221 . . . . 5 (𝑇 ∈ Tarski → (∃𝑥𝑇𝑦𝑇 𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧𝑇))
71, 6syl5bi 241 . . . 4 (𝑇 ∈ Tarski → (𝑧 ∈ (𝑇 × 𝑇) → 𝑧𝑇))
87ssrdv 3923 . . 3 (𝑇 ∈ Tarski → (𝑇 × 𝑇) ⊆ 𝑇)
9 xpss12 5595 . . 3 ((𝐴𝑇𝐵𝑇) → (𝐴 × 𝐵) ⊆ (𝑇 × 𝑇))
10 sstr 3925 . . . 4 (((𝐴 × 𝐵) ⊆ (𝑇 × 𝑇) ∧ (𝑇 × 𝑇) ⊆ 𝑇) → (𝐴 × 𝐵) ⊆ 𝑇)
1110expcom 413 . . 3 ((𝑇 × 𝑇) ⊆ 𝑇 → ((𝐴 × 𝐵) ⊆ (𝑇 × 𝑇) → (𝐴 × 𝐵) ⊆ 𝑇))
128, 9, 11syl2im 40 . 2 (𝑇 ∈ Tarski → ((𝐴𝑇𝐵𝑇) → (𝐴 × 𝐵) ⊆ 𝑇))
13123impib 1114 1 ((𝑇 ∈ Tarski ∧ 𝐴𝑇𝐵𝑇) → (𝐴 × 𝐵) ⊆ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wrex 3064  wss 3883  cop 4564   × cxp 5578  Tarskictsk 10435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-r1 9453  df-tsk 10436
This theorem is referenced by:  tskcard  10468
  Copyright terms: Public domain W3C validator