| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tskxpss | Structured version Visualization version GIF version | ||
| Description: A Cartesian product of two parts of a Tarski class is a part of the class. (Contributed by FL, 22-Feb-2011.) (Proof shortened by Mario Carneiro, 20-Jun-2013.) |
| Ref | Expression |
|---|---|
| tskxpss | ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ⊆ 𝑇 ∧ 𝐵 ⊆ 𝑇) → (𝐴 × 𝐵) ⊆ 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp2 5647 | . . . . 5 ⊢ (𝑧 ∈ (𝑇 × 𝑇) ↔ ∃𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑇 𝑧 = 〈𝑥, 𝑦〉) | |
| 2 | tskop 10684 | . . . . . . . 8 ⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇) → 〈𝑥, 𝑦〉 ∈ 𝑇) | |
| 3 | eleq1a 2823 | . . . . . . . 8 ⊢ (〈𝑥, 𝑦〉 ∈ 𝑇 → (𝑧 = 〈𝑥, 𝑦〉 → 𝑧 ∈ 𝑇)) | |
| 4 | 2, 3 | syl 17 | . . . . . . 7 ⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇) → (𝑧 = 〈𝑥, 𝑦〉 → 𝑧 ∈ 𝑇)) |
| 5 | 4 | 3expib 1122 | . . . . . 6 ⊢ (𝑇 ∈ Tarski → ((𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇) → (𝑧 = 〈𝑥, 𝑦〉 → 𝑧 ∈ 𝑇))) |
| 6 | 5 | rexlimdvv 3185 | . . . . 5 ⊢ (𝑇 ∈ Tarski → (∃𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑇 𝑧 = 〈𝑥, 𝑦〉 → 𝑧 ∈ 𝑇)) |
| 7 | 1, 6 | biimtrid 242 | . . . 4 ⊢ (𝑇 ∈ Tarski → (𝑧 ∈ (𝑇 × 𝑇) → 𝑧 ∈ 𝑇)) |
| 8 | 7 | ssrdv 3943 | . . 3 ⊢ (𝑇 ∈ Tarski → (𝑇 × 𝑇) ⊆ 𝑇) |
| 9 | xpss12 5638 | . . 3 ⊢ ((𝐴 ⊆ 𝑇 ∧ 𝐵 ⊆ 𝑇) → (𝐴 × 𝐵) ⊆ (𝑇 × 𝑇)) | |
| 10 | sstr 3946 | . . . 4 ⊢ (((𝐴 × 𝐵) ⊆ (𝑇 × 𝑇) ∧ (𝑇 × 𝑇) ⊆ 𝑇) → (𝐴 × 𝐵) ⊆ 𝑇) | |
| 11 | 10 | expcom 413 | . . 3 ⊢ ((𝑇 × 𝑇) ⊆ 𝑇 → ((𝐴 × 𝐵) ⊆ (𝑇 × 𝑇) → (𝐴 × 𝐵) ⊆ 𝑇)) |
| 12 | 8, 9, 11 | syl2im 40 | . 2 ⊢ (𝑇 ∈ Tarski → ((𝐴 ⊆ 𝑇 ∧ 𝐵 ⊆ 𝑇) → (𝐴 × 𝐵) ⊆ 𝑇)) |
| 13 | 12 | 3impib 1116 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ⊆ 𝑇 ∧ 𝐵 ⊆ 𝑇) → (𝐴 × 𝐵) ⊆ 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ⊆ wss 3905 〈cop 4585 × cxp 5621 Tarskictsk 10661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-r1 9679 df-tsk 10662 |
| This theorem is referenced by: tskcard 10694 |
| Copyright terms: Public domain | W3C validator |