MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsring1d Structured version   Visualization version   GIF version

Theorem xpsring1d 20249
Description: The multiplicative identity element of a binary product of rings. (Contributed by AV, 16-Mar-2025.)
Hypotheses
Ref Expression
xpsringd.y 𝑌 = (𝑆 ×s 𝑅)
xpsringd.s (𝜑𝑆 ∈ Ring)
xpsringd.r (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
xpsring1d (𝜑 → (1r𝑌) = ⟨(1r𝑆), (1r𝑅)⟩)

Proof of Theorem xpsring1d
Dummy variables 𝑥 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . 4 (mulGrp‘𝑌) = (mulGrp‘𝑌)
2 eqid 2730 . . . 4 (Base‘𝑌) = (Base‘𝑌)
31, 2mgpbas 20061 . . 3 (Base‘𝑌) = (Base‘(mulGrp‘𝑌))
4 eqid 2730 . . . 4 (1r𝑌) = (1r𝑌)
51, 4ringidval 20099 . . 3 (1r𝑌) = (0g‘(mulGrp‘𝑌))
6 eqid 2730 . . . 4 (.r𝑌) = (.r𝑌)
71, 6mgpplusg 20060 . . 3 (.r𝑌) = (+g‘(mulGrp‘𝑌))
8 xpsringd.s . . . . . 6 (𝜑𝑆 ∈ Ring)
9 eqid 2730 . . . . . . 7 (Base‘𝑆) = (Base‘𝑆)
10 eqid 2730 . . . . . . 7 (1r𝑆) = (1r𝑆)
119, 10ringidcl 20181 . . . . . 6 (𝑆 ∈ Ring → (1r𝑆) ∈ (Base‘𝑆))
128, 11syl 17 . . . . 5 (𝜑 → (1r𝑆) ∈ (Base‘𝑆))
13 xpsringd.r . . . . . 6 (𝜑𝑅 ∈ Ring)
14 eqid 2730 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
15 eqid 2730 . . . . . . 7 (1r𝑅) = (1r𝑅)
1614, 15ringidcl 20181 . . . . . 6 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
1713, 16syl 17 . . . . 5 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
1812, 17opelxpd 5680 . . . 4 (𝜑 → ⟨(1r𝑆), (1r𝑅)⟩ ∈ ((Base‘𝑆) × (Base‘𝑅)))
19 xpsringd.y . . . . 5 𝑌 = (𝑆 ×s 𝑅)
2019, 9, 14, 8, 13xpsbas 17542 . . . 4 (𝜑 → ((Base‘𝑆) × (Base‘𝑅)) = (Base‘𝑌))
2118, 20eleqtrd 2831 . . 3 (𝜑 → ⟨(1r𝑆), (1r𝑅)⟩ ∈ (Base‘𝑌))
2220eleq2d 2815 . . . . 5 (𝜑 → (𝑥 ∈ ((Base‘𝑆) × (Base‘𝑅)) ↔ 𝑥 ∈ (Base‘𝑌)))
23 elxp2 5665 . . . . . 6 (𝑥 ∈ ((Base‘𝑆) × (Base‘𝑅)) ↔ ∃𝑎 ∈ (Base‘𝑆)∃𝑏 ∈ (Base‘𝑅)𝑥 = ⟨𝑎, 𝑏⟩)
248adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑅))) → 𝑆 ∈ Ring)
2513adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑅))) → 𝑅 ∈ Ring)
2612adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑅))) → (1r𝑆) ∈ (Base‘𝑆))
2717adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑅))) → (1r𝑅) ∈ (Base‘𝑅))
28 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑅))) → 𝑎 ∈ (Base‘𝑆))
29 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑅))) → 𝑏 ∈ (Base‘𝑅))
30 eqid 2730 . . . . . . . . . . 11 (.r𝑆) = (.r𝑆)
319, 30, 24, 26, 28ringcld 20176 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑅))) → ((1r𝑆)(.r𝑆)𝑎) ∈ (Base‘𝑆))
32 eqid 2730 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
3314, 32, 25, 27, 29ringcld 20176 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑅))) → ((1r𝑅)(.r𝑅)𝑏) ∈ (Base‘𝑅))
3419, 9, 14, 24, 25, 26, 27, 28, 29, 31, 33, 30, 32, 6xpsmul 17545 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑅))) → (⟨(1r𝑆), (1r𝑅)⟩(.r𝑌)⟨𝑎, 𝑏⟩) = ⟨((1r𝑆)(.r𝑆)𝑎), ((1r𝑅)(.r𝑅)𝑏)⟩)
35 simpl 482 . . . . . . . . . . 11 ((𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑅)) → 𝑎 ∈ (Base‘𝑆))
369, 30, 10ringlidm 20185 . . . . . . . . . . 11 ((𝑆 ∈ Ring ∧ 𝑎 ∈ (Base‘𝑆)) → ((1r𝑆)(.r𝑆)𝑎) = 𝑎)
378, 35, 36syl2an 596 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑅))) → ((1r𝑆)(.r𝑆)𝑎) = 𝑎)
38 simpr 484 . . . . . . . . . . 11 ((𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑅)) → 𝑏 ∈ (Base‘𝑅))
3914, 32, 15ringlidm 20185 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑏 ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)𝑏) = 𝑏)
4013, 38, 39syl2an 596 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑅))) → ((1r𝑅)(.r𝑅)𝑏) = 𝑏)
4137, 40opeq12d 4848 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑅))) → ⟨((1r𝑆)(.r𝑆)𝑎), ((1r𝑅)(.r𝑅)𝑏)⟩ = ⟨𝑎, 𝑏⟩)
4234, 41eqtrd 2765 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑅))) → (⟨(1r𝑆), (1r𝑅)⟩(.r𝑌)⟨𝑎, 𝑏⟩) = ⟨𝑎, 𝑏⟩)
43 oveq2 7398 . . . . . . . . 9 (𝑥 = ⟨𝑎, 𝑏⟩ → (⟨(1r𝑆), (1r𝑅)⟩(.r𝑌)𝑥) = (⟨(1r𝑆), (1r𝑅)⟩(.r𝑌)⟨𝑎, 𝑏⟩))
44 id 22 . . . . . . . . 9 (𝑥 = ⟨𝑎, 𝑏⟩ → 𝑥 = ⟨𝑎, 𝑏⟩)
4543, 44eqeq12d 2746 . . . . . . . 8 (𝑥 = ⟨𝑎, 𝑏⟩ → ((⟨(1r𝑆), (1r𝑅)⟩(.r𝑌)𝑥) = 𝑥 ↔ (⟨(1r𝑆), (1r𝑅)⟩(.r𝑌)⟨𝑎, 𝑏⟩) = ⟨𝑎, 𝑏⟩))
4642, 45syl5ibrcom 247 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑅))) → (𝑥 = ⟨𝑎, 𝑏⟩ → (⟨(1r𝑆), (1r𝑅)⟩(.r𝑌)𝑥) = 𝑥))
4746rexlimdvva 3195 . . . . . 6 (𝜑 → (∃𝑎 ∈ (Base‘𝑆)∃𝑏 ∈ (Base‘𝑅)𝑥 = ⟨𝑎, 𝑏⟩ → (⟨(1r𝑆), (1r𝑅)⟩(.r𝑌)𝑥) = 𝑥))
4823, 47biimtrid 242 . . . . 5 (𝜑 → (𝑥 ∈ ((Base‘𝑆) × (Base‘𝑅)) → (⟨(1r𝑆), (1r𝑅)⟩(.r𝑌)𝑥) = 𝑥))
4922, 48sylbird 260 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝑌) → (⟨(1r𝑆), (1r𝑅)⟩(.r𝑌)𝑥) = 𝑥))
5049imp 406 . . 3 ((𝜑𝑥 ∈ (Base‘𝑌)) → (⟨(1r𝑆), (1r𝑅)⟩(.r𝑌)𝑥) = 𝑥)
519, 30, 24, 28, 26ringcld 20176 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑅))) → (𝑎(.r𝑆)(1r𝑆)) ∈ (Base‘𝑆))
5214, 32, 25, 29, 27ringcld 20176 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑅))) → (𝑏(.r𝑅)(1r𝑅)) ∈ (Base‘𝑅))
5319, 9, 14, 24, 25, 28, 29, 26, 27, 51, 52, 30, 32, 6xpsmul 17545 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑅))) → (⟨𝑎, 𝑏⟩(.r𝑌)⟨(1r𝑆), (1r𝑅)⟩) = ⟨(𝑎(.r𝑆)(1r𝑆)), (𝑏(.r𝑅)(1r𝑅))⟩)
549, 30, 10ringridm 20186 . . . . . . . . . . 11 ((𝑆 ∈ Ring ∧ 𝑎 ∈ (Base‘𝑆)) → (𝑎(.r𝑆)(1r𝑆)) = 𝑎)
558, 35, 54syl2an 596 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑅))) → (𝑎(.r𝑆)(1r𝑆)) = 𝑎)
5614, 32, 15ringridm 20186 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑏 ∈ (Base‘𝑅)) → (𝑏(.r𝑅)(1r𝑅)) = 𝑏)
5713, 38, 56syl2an 596 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑅))) → (𝑏(.r𝑅)(1r𝑅)) = 𝑏)
5855, 57opeq12d 4848 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑅))) → ⟨(𝑎(.r𝑆)(1r𝑆)), (𝑏(.r𝑅)(1r𝑅))⟩ = ⟨𝑎, 𝑏⟩)
5953, 58eqtrd 2765 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑅))) → (⟨𝑎, 𝑏⟩(.r𝑌)⟨(1r𝑆), (1r𝑅)⟩) = ⟨𝑎, 𝑏⟩)
60 oveq1 7397 . . . . . . . . 9 (𝑥 = ⟨𝑎, 𝑏⟩ → (𝑥(.r𝑌)⟨(1r𝑆), (1r𝑅)⟩) = (⟨𝑎, 𝑏⟩(.r𝑌)⟨(1r𝑆), (1r𝑅)⟩))
6160, 44eqeq12d 2746 . . . . . . . 8 (𝑥 = ⟨𝑎, 𝑏⟩ → ((𝑥(.r𝑌)⟨(1r𝑆), (1r𝑅)⟩) = 𝑥 ↔ (⟨𝑎, 𝑏⟩(.r𝑌)⟨(1r𝑆), (1r𝑅)⟩) = ⟨𝑎, 𝑏⟩))
6259, 61syl5ibrcom 247 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑅))) → (𝑥 = ⟨𝑎, 𝑏⟩ → (𝑥(.r𝑌)⟨(1r𝑆), (1r𝑅)⟩) = 𝑥))
6362rexlimdvva 3195 . . . . . 6 (𝜑 → (∃𝑎 ∈ (Base‘𝑆)∃𝑏 ∈ (Base‘𝑅)𝑥 = ⟨𝑎, 𝑏⟩ → (𝑥(.r𝑌)⟨(1r𝑆), (1r𝑅)⟩) = 𝑥))
6423, 63biimtrid 242 . . . . 5 (𝜑 → (𝑥 ∈ ((Base‘𝑆) × (Base‘𝑅)) → (𝑥(.r𝑌)⟨(1r𝑆), (1r𝑅)⟩) = 𝑥))
6522, 64sylbird 260 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝑌) → (𝑥(.r𝑌)⟨(1r𝑆), (1r𝑅)⟩) = 𝑥))
6665imp 406 . . 3 ((𝜑𝑥 ∈ (Base‘𝑌)) → (𝑥(.r𝑌)⟨(1r𝑆), (1r𝑅)⟩) = 𝑥)
673, 5, 7, 21, 50, 66ismgmid2 18602 . 2 (𝜑 → ⟨(1r𝑆), (1r𝑅)⟩ = (1r𝑌))
6867eqcomd 2736 1 (𝜑 → (1r𝑌) = ⟨(1r𝑆), (1r𝑅)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3054  cop 4598   × cxp 5639  cfv 6514  (class class class)co 7390  Basecbs 17186  .rcmulr 17228   ×s cxps 17476  mulGrpcmgp 20056  1rcur 20097  Ringcrg 20149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17411  df-prds 17417  df-imas 17478  df-xps 17480  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mgp 20057  df-ur 20098  df-ring 20151
This theorem is referenced by:  rngqipring1  21233  pzriprng1  21415
  Copyright terms: Public domain W3C validator