Step | Hyp | Ref
| Expression |
1 | | eqid 2732 |
. . 3
⊢
(Base‘𝑇) =
(Base‘𝑇) |
2 | | eqid 2732 |
. . 3
⊢
(0g‘𝑇) = (0g‘𝑇) |
3 | | eqid 2732 |
. . 3
⊢
(+g‘𝑇) = (+g‘𝑇) |
4 | | eqid 2732 |
. . . . . . 7
⊢
(Base‘𝑅) =
(Base‘𝑅) |
5 | | eqid 2732 |
. . . . . . 7
⊢
(0g‘𝑅) = (0g‘𝑅) |
6 | 4, 5 | mndidcl 18636 |
. . . . . 6
⊢ (𝑅 ∈ Mnd →
(0g‘𝑅)
∈ (Base‘𝑅)) |
7 | 6 | adantr 481 |
. . . . 5
⊢ ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) →
(0g‘𝑅)
∈ (Base‘𝑅)) |
8 | | eqid 2732 |
. . . . . . 7
⊢
(Base‘𝑆) =
(Base‘𝑆) |
9 | | eqid 2732 |
. . . . . . 7
⊢
(0g‘𝑆) = (0g‘𝑆) |
10 | 8, 9 | mndidcl 18636 |
. . . . . 6
⊢ (𝑆 ∈ Mnd →
(0g‘𝑆)
∈ (Base‘𝑆)) |
11 | 10 | adantl 482 |
. . . . 5
⊢ ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) →
(0g‘𝑆)
∈ (Base‘𝑆)) |
12 | 7, 11 | opelxpd 5713 |
. . . 4
⊢ ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) →
⟨(0g‘𝑅), (0g‘𝑆)⟩ ∈ ((Base‘𝑅) × (Base‘𝑆))) |
13 | | xpsmnd0.t |
. . . . 5
⊢ 𝑇 = (𝑅 ×s 𝑆) |
14 | | simpl 483 |
. . . . 5
⊢ ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → 𝑅 ∈ Mnd) |
15 | | simpr 485 |
. . . . 5
⊢ ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → 𝑆 ∈ Mnd) |
16 | 13, 4, 8, 14, 15 | xpsbas 17514 |
. . . 4
⊢ ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) →
((Base‘𝑅) ×
(Base‘𝑆)) =
(Base‘𝑇)) |
17 | 12, 16 | eleqtrd 2835 |
. . 3
⊢ ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) →
⟨(0g‘𝑅), (0g‘𝑆)⟩ ∈ (Base‘𝑇)) |
18 | 16 | eleq2d 2819 |
. . . . 5
⊢ ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (𝑥 ∈ ((Base‘𝑅) × (Base‘𝑆)) ↔ 𝑥 ∈ (Base‘𝑇))) |
19 | | elxp2 5699 |
. . . . . 6
⊢ (𝑥 ∈ ((Base‘𝑅) × (Base‘𝑆)) ↔ ∃𝑎 ∈ (Base‘𝑅)∃𝑏 ∈ (Base‘𝑆)𝑥 = ⟨𝑎, 𝑏⟩) |
20 | 14 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → 𝑅 ∈ Mnd) |
21 | 15 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → 𝑆 ∈ Mnd) |
22 | 7 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (0g‘𝑅) ∈ (Base‘𝑅)) |
23 | 11 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (0g‘𝑆) ∈ (Base‘𝑆)) |
24 | | simpl 483 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆)) → 𝑎 ∈ (Base‘𝑅)) |
25 | 24 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → 𝑎 ∈ (Base‘𝑅)) |
26 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆)) → 𝑏 ∈ (Base‘𝑆)) |
27 | 26 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → 𝑏 ∈ (Base‘𝑆)) |
28 | | eqid 2732 |
. . . . . . . . . . . 12
⊢
(+g‘𝑅) = (+g‘𝑅) |
29 | 4, 28 | mndcl 18629 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Mnd ∧
(0g‘𝑅)
∈ (Base‘𝑅) ∧
𝑎 ∈ (Base‘𝑅)) →
((0g‘𝑅)(+g‘𝑅)𝑎) ∈ (Base‘𝑅)) |
30 | 20, 22, 25, 29 | syl3anc 1371 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → ((0g‘𝑅)(+g‘𝑅)𝑎) ∈ (Base‘𝑅)) |
31 | | eqid 2732 |
. . . . . . . . . . . 12
⊢
(+g‘𝑆) = (+g‘𝑆) |
32 | 8, 31 | mndcl 18629 |
. . . . . . . . . . 11
⊢ ((𝑆 ∈ Mnd ∧
(0g‘𝑆)
∈ (Base‘𝑆) ∧
𝑏 ∈ (Base‘𝑆)) →
((0g‘𝑆)(+g‘𝑆)𝑏) ∈ (Base‘𝑆)) |
33 | 21, 23, 27, 32 | syl3anc 1371 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → ((0g‘𝑆)(+g‘𝑆)𝑏) ∈ (Base‘𝑆)) |
34 | 13, 4, 8, 20, 21, 22, 23, 25, 27, 30, 33, 28, 31, 3 | xpsadd 17516 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (⟨(0g‘𝑅), (0g‘𝑆)⟩(+g‘𝑇)⟨𝑎, 𝑏⟩) = ⟨((0g‘𝑅)(+g‘𝑅)𝑎), ((0g‘𝑆)(+g‘𝑆)𝑏)⟩) |
35 | 4, 28, 5 | mndlid 18641 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Mnd ∧ 𝑎 ∈ (Base‘𝑅)) →
((0g‘𝑅)(+g‘𝑅)𝑎) = 𝑎) |
36 | 14, 24, 35 | syl2an 596 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → ((0g‘𝑅)(+g‘𝑅)𝑎) = 𝑎) |
37 | 8, 31, 9 | mndlid 18641 |
. . . . . . . . . . 11
⊢ ((𝑆 ∈ Mnd ∧ 𝑏 ∈ (Base‘𝑆)) →
((0g‘𝑆)(+g‘𝑆)𝑏) = 𝑏) |
38 | 15, 26, 37 | syl2an 596 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → ((0g‘𝑆)(+g‘𝑆)𝑏) = 𝑏) |
39 | 36, 38 | opeq12d 4880 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → ⟨((0g‘𝑅)(+g‘𝑅)𝑎), ((0g‘𝑆)(+g‘𝑆)𝑏)⟩ = ⟨𝑎, 𝑏⟩) |
40 | 34, 39 | eqtrd 2772 |
. . . . . . . 8
⊢ (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (⟨(0g‘𝑅), (0g‘𝑆)⟩(+g‘𝑇)⟨𝑎, 𝑏⟩) = ⟨𝑎, 𝑏⟩) |
41 | | oveq2 7413 |
. . . . . . . . 9
⊢ (𝑥 = ⟨𝑎, 𝑏⟩ →
(⟨(0g‘𝑅), (0g‘𝑆)⟩(+g‘𝑇)𝑥) = (⟨(0g‘𝑅), (0g‘𝑆)⟩(+g‘𝑇)⟨𝑎, 𝑏⟩)) |
42 | | id 22 |
. . . . . . . . 9
⊢ (𝑥 = ⟨𝑎, 𝑏⟩ → 𝑥 = ⟨𝑎, 𝑏⟩) |
43 | 41, 42 | eqeq12d 2748 |
. . . . . . . 8
⊢ (𝑥 = ⟨𝑎, 𝑏⟩ →
((⟨(0g‘𝑅), (0g‘𝑆)⟩(+g‘𝑇)𝑥) = 𝑥 ↔ (⟨(0g‘𝑅), (0g‘𝑆)⟩(+g‘𝑇)⟨𝑎, 𝑏⟩) = ⟨𝑎, 𝑏⟩)) |
44 | 40, 43 | syl5ibrcom 246 |
. . . . . . 7
⊢ (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (𝑥 = ⟨𝑎, 𝑏⟩ →
(⟨(0g‘𝑅), (0g‘𝑆)⟩(+g‘𝑇)𝑥) = 𝑥)) |
45 | 44 | rexlimdvva 3211 |
. . . . . 6
⊢ ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) →
(∃𝑎 ∈
(Base‘𝑅)∃𝑏 ∈ (Base‘𝑆)𝑥 = ⟨𝑎, 𝑏⟩ →
(⟨(0g‘𝑅), (0g‘𝑆)⟩(+g‘𝑇)𝑥) = 𝑥)) |
46 | 19, 45 | biimtrid 241 |
. . . . 5
⊢ ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (𝑥 ∈ ((Base‘𝑅) × (Base‘𝑆)) →
(⟨(0g‘𝑅), (0g‘𝑆)⟩(+g‘𝑇)𝑥) = 𝑥)) |
47 | 18, 46 | sylbird 259 |
. . . 4
⊢ ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (𝑥 ∈ (Base‘𝑇) →
(⟨(0g‘𝑅), (0g‘𝑆)⟩(+g‘𝑇)𝑥) = 𝑥)) |
48 | 47 | imp 407 |
. . 3
⊢ (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ 𝑥 ∈ (Base‘𝑇)) →
(⟨(0g‘𝑅), (0g‘𝑆)⟩(+g‘𝑇)𝑥) = 𝑥) |
49 | 4, 28 | mndcl 18629 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Mnd ∧ 𝑎 ∈ (Base‘𝑅) ∧
(0g‘𝑅)
∈ (Base‘𝑅))
→ (𝑎(+g‘𝑅)(0g‘𝑅)) ∈ (Base‘𝑅)) |
50 | 20, 25, 22, 49 | syl3anc 1371 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (𝑎(+g‘𝑅)(0g‘𝑅)) ∈ (Base‘𝑅)) |
51 | 8, 31 | mndcl 18629 |
. . . . . . . . . . 11
⊢ ((𝑆 ∈ Mnd ∧ 𝑏 ∈ (Base‘𝑆) ∧
(0g‘𝑆)
∈ (Base‘𝑆))
→ (𝑏(+g‘𝑆)(0g‘𝑆)) ∈ (Base‘𝑆)) |
52 | 21, 27, 23, 51 | syl3anc 1371 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (𝑏(+g‘𝑆)(0g‘𝑆)) ∈ (Base‘𝑆)) |
53 | 13, 4, 8, 20, 21, 25, 27, 22, 23, 50, 52, 28, 31, 3 | xpsadd 17516 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (⟨𝑎, 𝑏⟩(+g‘𝑇)⟨(0g‘𝑅), (0g‘𝑆)⟩) = ⟨(𝑎(+g‘𝑅)(0g‘𝑅)), (𝑏(+g‘𝑆)(0g‘𝑆))⟩) |
54 | 4, 28, 5 | mndrid 18642 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Mnd ∧ 𝑎 ∈ (Base‘𝑅)) → (𝑎(+g‘𝑅)(0g‘𝑅)) = 𝑎) |
55 | 14, 24, 54 | syl2an 596 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (𝑎(+g‘𝑅)(0g‘𝑅)) = 𝑎) |
56 | 8, 31, 9 | mndrid 18642 |
. . . . . . . . . . 11
⊢ ((𝑆 ∈ Mnd ∧ 𝑏 ∈ (Base‘𝑆)) → (𝑏(+g‘𝑆)(0g‘𝑆)) = 𝑏) |
57 | 15, 26, 56 | syl2an 596 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (𝑏(+g‘𝑆)(0g‘𝑆)) = 𝑏) |
58 | 55, 57 | opeq12d 4880 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → ⟨(𝑎(+g‘𝑅)(0g‘𝑅)), (𝑏(+g‘𝑆)(0g‘𝑆))⟩ = ⟨𝑎, 𝑏⟩) |
59 | 53, 58 | eqtrd 2772 |
. . . . . . . 8
⊢ (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (⟨𝑎, 𝑏⟩(+g‘𝑇)⟨(0g‘𝑅), (0g‘𝑆)⟩) = ⟨𝑎, 𝑏⟩) |
60 | | oveq1 7412 |
. . . . . . . . 9
⊢ (𝑥 = ⟨𝑎, 𝑏⟩ → (𝑥(+g‘𝑇)⟨(0g‘𝑅), (0g‘𝑆)⟩) = (⟨𝑎, 𝑏⟩(+g‘𝑇)⟨(0g‘𝑅), (0g‘𝑆)⟩)) |
61 | 60, 42 | eqeq12d 2748 |
. . . . . . . 8
⊢ (𝑥 = ⟨𝑎, 𝑏⟩ → ((𝑥(+g‘𝑇)⟨(0g‘𝑅), (0g‘𝑆)⟩) = 𝑥 ↔ (⟨𝑎, 𝑏⟩(+g‘𝑇)⟨(0g‘𝑅), (0g‘𝑆)⟩) = ⟨𝑎, 𝑏⟩)) |
62 | 59, 61 | syl5ibrcom 246 |
. . . . . . 7
⊢ (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (𝑥 = ⟨𝑎, 𝑏⟩ → (𝑥(+g‘𝑇)⟨(0g‘𝑅), (0g‘𝑆)⟩) = 𝑥)) |
63 | 62 | rexlimdvva 3211 |
. . . . . 6
⊢ ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) →
(∃𝑎 ∈
(Base‘𝑅)∃𝑏 ∈ (Base‘𝑆)𝑥 = ⟨𝑎, 𝑏⟩ → (𝑥(+g‘𝑇)⟨(0g‘𝑅), (0g‘𝑆)⟩) = 𝑥)) |
64 | 19, 63 | biimtrid 241 |
. . . . 5
⊢ ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (𝑥 ∈ ((Base‘𝑅) × (Base‘𝑆)) → (𝑥(+g‘𝑇)⟨(0g‘𝑅), (0g‘𝑆)⟩) = 𝑥)) |
65 | 18, 64 | sylbird 259 |
. . . 4
⊢ ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (𝑥 ∈ (Base‘𝑇) → (𝑥(+g‘𝑇)⟨(0g‘𝑅), (0g‘𝑆)⟩) = 𝑥)) |
66 | 65 | imp 407 |
. . 3
⊢ (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ 𝑥 ∈ (Base‘𝑇)) → (𝑥(+g‘𝑇)⟨(0g‘𝑅), (0g‘𝑆)⟩) = 𝑥) |
67 | 1, 2, 3, 17, 48, 66 | ismgmid2 18583 |
. 2
⊢ ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) →
⟨(0g‘𝑅), (0g‘𝑆)⟩ = (0g‘𝑇)) |
68 | 67 | eqcomd 2738 |
1
⊢ ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) →
(0g‘𝑇) =
⟨(0g‘𝑅), (0g‘𝑆)⟩) |