MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsmnd0 Structured version   Visualization version   GIF version

Theorem xpsmnd0 18804
Description: The identity element of a binary product of monoids. (Contributed by AV, 25-Feb-2025.)
Hypothesis
Ref Expression
xpsmnd0.t 𝑇 = (𝑅 ×s 𝑆)
Assertion
Ref Expression
xpsmnd0 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (0g𝑇) = ⟨(0g𝑅), (0g𝑆)⟩)

Proof of Theorem xpsmnd0
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . 3 (Base‘𝑇) = (Base‘𝑇)
2 eqid 2735 . . 3 (0g𝑇) = (0g𝑇)
3 eqid 2735 . . 3 (+g𝑇) = (+g𝑇)
4 eqid 2735 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
5 eqid 2735 . . . . . . 7 (0g𝑅) = (0g𝑅)
64, 5mndidcl 18775 . . . . . 6 (𝑅 ∈ Mnd → (0g𝑅) ∈ (Base‘𝑅))
76adantr 480 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (0g𝑅) ∈ (Base‘𝑅))
8 eqid 2735 . . . . . . 7 (Base‘𝑆) = (Base‘𝑆)
9 eqid 2735 . . . . . . 7 (0g𝑆) = (0g𝑆)
108, 9mndidcl 18775 . . . . . 6 (𝑆 ∈ Mnd → (0g𝑆) ∈ (Base‘𝑆))
1110adantl 481 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (0g𝑆) ∈ (Base‘𝑆))
127, 11opelxpd 5728 . . . 4 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → ⟨(0g𝑅), (0g𝑆)⟩ ∈ ((Base‘𝑅) × (Base‘𝑆)))
13 xpsmnd0.t . . . . 5 𝑇 = (𝑅 ×s 𝑆)
14 simpl 482 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → 𝑅 ∈ Mnd)
15 simpr 484 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → 𝑆 ∈ Mnd)
1613, 4, 8, 14, 15xpsbas 17619 . . . 4 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → ((Base‘𝑅) × (Base‘𝑆)) = (Base‘𝑇))
1712, 16eleqtrd 2841 . . 3 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → ⟨(0g𝑅), (0g𝑆)⟩ ∈ (Base‘𝑇))
1816eleq2d 2825 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (𝑥 ∈ ((Base‘𝑅) × (Base‘𝑆)) ↔ 𝑥 ∈ (Base‘𝑇)))
19 elxp2 5713 . . . . . 6 (𝑥 ∈ ((Base‘𝑅) × (Base‘𝑆)) ↔ ∃𝑎 ∈ (Base‘𝑅)∃𝑏 ∈ (Base‘𝑆)𝑥 = ⟨𝑎, 𝑏⟩)
2014adantr 480 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → 𝑅 ∈ Mnd)
2115adantr 480 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → 𝑆 ∈ Mnd)
227adantr 480 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (0g𝑅) ∈ (Base‘𝑅))
2311adantr 480 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (0g𝑆) ∈ (Base‘𝑆))
24 simpl 482 . . . . . . . . . . 11 ((𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆)) → 𝑎 ∈ (Base‘𝑅))
2524adantl 481 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → 𝑎 ∈ (Base‘𝑅))
26 simpr 484 . . . . . . . . . . 11 ((𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆)) → 𝑏 ∈ (Base‘𝑆))
2726adantl 481 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → 𝑏 ∈ (Base‘𝑆))
28 eqid 2735 . . . . . . . . . . . 12 (+g𝑅) = (+g𝑅)
294, 28mndcl 18768 . . . . . . . . . . 11 ((𝑅 ∈ Mnd ∧ (0g𝑅) ∈ (Base‘𝑅) ∧ 𝑎 ∈ (Base‘𝑅)) → ((0g𝑅)(+g𝑅)𝑎) ∈ (Base‘𝑅))
3020, 22, 25, 29syl3anc 1370 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → ((0g𝑅)(+g𝑅)𝑎) ∈ (Base‘𝑅))
31 eqid 2735 . . . . . . . . . . . 12 (+g𝑆) = (+g𝑆)
328, 31mndcl 18768 . . . . . . . . . . 11 ((𝑆 ∈ Mnd ∧ (0g𝑆) ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆)) → ((0g𝑆)(+g𝑆)𝑏) ∈ (Base‘𝑆))
3321, 23, 27, 32syl3anc 1370 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → ((0g𝑆)(+g𝑆)𝑏) ∈ (Base‘𝑆))
3413, 4, 8, 20, 21, 22, 23, 25, 27, 30, 33, 28, 31, 3xpsadd 17621 . . . . . . . . 9 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (⟨(0g𝑅), (0g𝑆)⟩(+g𝑇)⟨𝑎, 𝑏⟩) = ⟨((0g𝑅)(+g𝑅)𝑎), ((0g𝑆)(+g𝑆)𝑏)⟩)
354, 28, 5mndlid 18780 . . . . . . . . . . 11 ((𝑅 ∈ Mnd ∧ 𝑎 ∈ (Base‘𝑅)) → ((0g𝑅)(+g𝑅)𝑎) = 𝑎)
3614, 24, 35syl2an 596 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → ((0g𝑅)(+g𝑅)𝑎) = 𝑎)
378, 31, 9mndlid 18780 . . . . . . . . . . 11 ((𝑆 ∈ Mnd ∧ 𝑏 ∈ (Base‘𝑆)) → ((0g𝑆)(+g𝑆)𝑏) = 𝑏)
3815, 26, 37syl2an 596 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → ((0g𝑆)(+g𝑆)𝑏) = 𝑏)
3936, 38opeq12d 4886 . . . . . . . . 9 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → ⟨((0g𝑅)(+g𝑅)𝑎), ((0g𝑆)(+g𝑆)𝑏)⟩ = ⟨𝑎, 𝑏⟩)
4034, 39eqtrd 2775 . . . . . . . 8 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (⟨(0g𝑅), (0g𝑆)⟩(+g𝑇)⟨𝑎, 𝑏⟩) = ⟨𝑎, 𝑏⟩)
41 oveq2 7439 . . . . . . . . 9 (𝑥 = ⟨𝑎, 𝑏⟩ → (⟨(0g𝑅), (0g𝑆)⟩(+g𝑇)𝑥) = (⟨(0g𝑅), (0g𝑆)⟩(+g𝑇)⟨𝑎, 𝑏⟩))
42 id 22 . . . . . . . . 9 (𝑥 = ⟨𝑎, 𝑏⟩ → 𝑥 = ⟨𝑎, 𝑏⟩)
4341, 42eqeq12d 2751 . . . . . . . 8 (𝑥 = ⟨𝑎, 𝑏⟩ → ((⟨(0g𝑅), (0g𝑆)⟩(+g𝑇)𝑥) = 𝑥 ↔ (⟨(0g𝑅), (0g𝑆)⟩(+g𝑇)⟨𝑎, 𝑏⟩) = ⟨𝑎, 𝑏⟩))
4440, 43syl5ibrcom 247 . . . . . . 7 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (𝑥 = ⟨𝑎, 𝑏⟩ → (⟨(0g𝑅), (0g𝑆)⟩(+g𝑇)𝑥) = 𝑥))
4544rexlimdvva 3211 . . . . . 6 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (∃𝑎 ∈ (Base‘𝑅)∃𝑏 ∈ (Base‘𝑆)𝑥 = ⟨𝑎, 𝑏⟩ → (⟨(0g𝑅), (0g𝑆)⟩(+g𝑇)𝑥) = 𝑥))
4619, 45biimtrid 242 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (𝑥 ∈ ((Base‘𝑅) × (Base‘𝑆)) → (⟨(0g𝑅), (0g𝑆)⟩(+g𝑇)𝑥) = 𝑥))
4718, 46sylbird 260 . . . 4 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (𝑥 ∈ (Base‘𝑇) → (⟨(0g𝑅), (0g𝑆)⟩(+g𝑇)𝑥) = 𝑥))
4847imp 406 . . 3 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ 𝑥 ∈ (Base‘𝑇)) → (⟨(0g𝑅), (0g𝑆)⟩(+g𝑇)𝑥) = 𝑥)
494, 28mndcl 18768 . . . . . . . . . . 11 ((𝑅 ∈ Mnd ∧ 𝑎 ∈ (Base‘𝑅) ∧ (0g𝑅) ∈ (Base‘𝑅)) → (𝑎(+g𝑅)(0g𝑅)) ∈ (Base‘𝑅))
5020, 25, 22, 49syl3anc 1370 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (𝑎(+g𝑅)(0g𝑅)) ∈ (Base‘𝑅))
518, 31mndcl 18768 . . . . . . . . . . 11 ((𝑆 ∈ Mnd ∧ 𝑏 ∈ (Base‘𝑆) ∧ (0g𝑆) ∈ (Base‘𝑆)) → (𝑏(+g𝑆)(0g𝑆)) ∈ (Base‘𝑆))
5221, 27, 23, 51syl3anc 1370 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (𝑏(+g𝑆)(0g𝑆)) ∈ (Base‘𝑆))
5313, 4, 8, 20, 21, 25, 27, 22, 23, 50, 52, 28, 31, 3xpsadd 17621 . . . . . . . . 9 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (⟨𝑎, 𝑏⟩(+g𝑇)⟨(0g𝑅), (0g𝑆)⟩) = ⟨(𝑎(+g𝑅)(0g𝑅)), (𝑏(+g𝑆)(0g𝑆))⟩)
544, 28, 5mndrid 18781 . . . . . . . . . . 11 ((𝑅 ∈ Mnd ∧ 𝑎 ∈ (Base‘𝑅)) → (𝑎(+g𝑅)(0g𝑅)) = 𝑎)
5514, 24, 54syl2an 596 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (𝑎(+g𝑅)(0g𝑅)) = 𝑎)
568, 31, 9mndrid 18781 . . . . . . . . . . 11 ((𝑆 ∈ Mnd ∧ 𝑏 ∈ (Base‘𝑆)) → (𝑏(+g𝑆)(0g𝑆)) = 𝑏)
5715, 26, 56syl2an 596 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (𝑏(+g𝑆)(0g𝑆)) = 𝑏)
5855, 57opeq12d 4886 . . . . . . . . 9 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → ⟨(𝑎(+g𝑅)(0g𝑅)), (𝑏(+g𝑆)(0g𝑆))⟩ = ⟨𝑎, 𝑏⟩)
5953, 58eqtrd 2775 . . . . . . . 8 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (⟨𝑎, 𝑏⟩(+g𝑇)⟨(0g𝑅), (0g𝑆)⟩) = ⟨𝑎, 𝑏⟩)
60 oveq1 7438 . . . . . . . . 9 (𝑥 = ⟨𝑎, 𝑏⟩ → (𝑥(+g𝑇)⟨(0g𝑅), (0g𝑆)⟩) = (⟨𝑎, 𝑏⟩(+g𝑇)⟨(0g𝑅), (0g𝑆)⟩))
6160, 42eqeq12d 2751 . . . . . . . 8 (𝑥 = ⟨𝑎, 𝑏⟩ → ((𝑥(+g𝑇)⟨(0g𝑅), (0g𝑆)⟩) = 𝑥 ↔ (⟨𝑎, 𝑏⟩(+g𝑇)⟨(0g𝑅), (0g𝑆)⟩) = ⟨𝑎, 𝑏⟩))
6259, 61syl5ibrcom 247 . . . . . . 7 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (𝑥 = ⟨𝑎, 𝑏⟩ → (𝑥(+g𝑇)⟨(0g𝑅), (0g𝑆)⟩) = 𝑥))
6362rexlimdvva 3211 . . . . . 6 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (∃𝑎 ∈ (Base‘𝑅)∃𝑏 ∈ (Base‘𝑆)𝑥 = ⟨𝑎, 𝑏⟩ → (𝑥(+g𝑇)⟨(0g𝑅), (0g𝑆)⟩) = 𝑥))
6419, 63biimtrid 242 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (𝑥 ∈ ((Base‘𝑅) × (Base‘𝑆)) → (𝑥(+g𝑇)⟨(0g𝑅), (0g𝑆)⟩) = 𝑥))
6518, 64sylbird 260 . . . 4 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (𝑥 ∈ (Base‘𝑇) → (𝑥(+g𝑇)⟨(0g𝑅), (0g𝑆)⟩) = 𝑥))
6665imp 406 . . 3 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ 𝑥 ∈ (Base‘𝑇)) → (𝑥(+g𝑇)⟨(0g𝑅), (0g𝑆)⟩) = 𝑥)
671, 2, 3, 17, 48, 66ismgmid2 18694 . 2 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → ⟨(0g𝑅), (0g𝑆)⟩ = (0g𝑇))
6867eqcomd 2741 1 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (0g𝑇) = ⟨(0g𝑅), (0g𝑆)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wrex 3068  cop 4637   × cxp 5687  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  0gc0g 17486   ×s cxps 17553  Mndcmnd 18760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17488  df-prds 17494  df-imas 17555  df-xps 17557  df-mgm 18666  df-sgrp 18745  df-mnd 18761
This theorem is referenced by:  xpsinv  19091  rngqiprngimf1  21328
  Copyright terms: Public domain W3C validator