MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsmnd0 Structured version   Visualization version   GIF version

Theorem xpsmnd0 18792
Description: The identity element of a binary product of monoids. (Contributed by AV, 25-Feb-2025.)
Hypothesis
Ref Expression
xpsmnd0.t 𝑇 = (𝑅 ×s 𝑆)
Assertion
Ref Expression
xpsmnd0 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (0g𝑇) = ⟨(0g𝑅), (0g𝑆)⟩)

Proof of Theorem xpsmnd0
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 (Base‘𝑇) = (Base‘𝑇)
2 eqid 2736 . . 3 (0g𝑇) = (0g𝑇)
3 eqid 2736 . . 3 (+g𝑇) = (+g𝑇)
4 eqid 2736 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
5 eqid 2736 . . . . . . 7 (0g𝑅) = (0g𝑅)
64, 5mndidcl 18763 . . . . . 6 (𝑅 ∈ Mnd → (0g𝑅) ∈ (Base‘𝑅))
76adantr 480 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (0g𝑅) ∈ (Base‘𝑅))
8 eqid 2736 . . . . . . 7 (Base‘𝑆) = (Base‘𝑆)
9 eqid 2736 . . . . . . 7 (0g𝑆) = (0g𝑆)
108, 9mndidcl 18763 . . . . . 6 (𝑆 ∈ Mnd → (0g𝑆) ∈ (Base‘𝑆))
1110adantl 481 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (0g𝑆) ∈ (Base‘𝑆))
127, 11opelxpd 5723 . . . 4 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → ⟨(0g𝑅), (0g𝑆)⟩ ∈ ((Base‘𝑅) × (Base‘𝑆)))
13 xpsmnd0.t . . . . 5 𝑇 = (𝑅 ×s 𝑆)
14 simpl 482 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → 𝑅 ∈ Mnd)
15 simpr 484 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → 𝑆 ∈ Mnd)
1613, 4, 8, 14, 15xpsbas 17618 . . . 4 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → ((Base‘𝑅) × (Base‘𝑆)) = (Base‘𝑇))
1712, 16eleqtrd 2842 . . 3 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → ⟨(0g𝑅), (0g𝑆)⟩ ∈ (Base‘𝑇))
1816eleq2d 2826 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (𝑥 ∈ ((Base‘𝑅) × (Base‘𝑆)) ↔ 𝑥 ∈ (Base‘𝑇)))
19 elxp2 5708 . . . . . 6 (𝑥 ∈ ((Base‘𝑅) × (Base‘𝑆)) ↔ ∃𝑎 ∈ (Base‘𝑅)∃𝑏 ∈ (Base‘𝑆)𝑥 = ⟨𝑎, 𝑏⟩)
2014adantr 480 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → 𝑅 ∈ Mnd)
2115adantr 480 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → 𝑆 ∈ Mnd)
227adantr 480 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (0g𝑅) ∈ (Base‘𝑅))
2311adantr 480 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (0g𝑆) ∈ (Base‘𝑆))
24 simpl 482 . . . . . . . . . . 11 ((𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆)) → 𝑎 ∈ (Base‘𝑅))
2524adantl 481 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → 𝑎 ∈ (Base‘𝑅))
26 simpr 484 . . . . . . . . . . 11 ((𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆)) → 𝑏 ∈ (Base‘𝑆))
2726adantl 481 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → 𝑏 ∈ (Base‘𝑆))
28 eqid 2736 . . . . . . . . . . . 12 (+g𝑅) = (+g𝑅)
294, 28mndcl 18756 . . . . . . . . . . 11 ((𝑅 ∈ Mnd ∧ (0g𝑅) ∈ (Base‘𝑅) ∧ 𝑎 ∈ (Base‘𝑅)) → ((0g𝑅)(+g𝑅)𝑎) ∈ (Base‘𝑅))
3020, 22, 25, 29syl3anc 1372 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → ((0g𝑅)(+g𝑅)𝑎) ∈ (Base‘𝑅))
31 eqid 2736 . . . . . . . . . . . 12 (+g𝑆) = (+g𝑆)
328, 31mndcl 18756 . . . . . . . . . . 11 ((𝑆 ∈ Mnd ∧ (0g𝑆) ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆)) → ((0g𝑆)(+g𝑆)𝑏) ∈ (Base‘𝑆))
3321, 23, 27, 32syl3anc 1372 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → ((0g𝑆)(+g𝑆)𝑏) ∈ (Base‘𝑆))
3413, 4, 8, 20, 21, 22, 23, 25, 27, 30, 33, 28, 31, 3xpsadd 17620 . . . . . . . . 9 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (⟨(0g𝑅), (0g𝑆)⟩(+g𝑇)⟨𝑎, 𝑏⟩) = ⟨((0g𝑅)(+g𝑅)𝑎), ((0g𝑆)(+g𝑆)𝑏)⟩)
354, 28, 5mndlid 18768 . . . . . . . . . . 11 ((𝑅 ∈ Mnd ∧ 𝑎 ∈ (Base‘𝑅)) → ((0g𝑅)(+g𝑅)𝑎) = 𝑎)
3614, 24, 35syl2an 596 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → ((0g𝑅)(+g𝑅)𝑎) = 𝑎)
378, 31, 9mndlid 18768 . . . . . . . . . . 11 ((𝑆 ∈ Mnd ∧ 𝑏 ∈ (Base‘𝑆)) → ((0g𝑆)(+g𝑆)𝑏) = 𝑏)
3815, 26, 37syl2an 596 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → ((0g𝑆)(+g𝑆)𝑏) = 𝑏)
3936, 38opeq12d 4880 . . . . . . . . 9 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → ⟨((0g𝑅)(+g𝑅)𝑎), ((0g𝑆)(+g𝑆)𝑏)⟩ = ⟨𝑎, 𝑏⟩)
4034, 39eqtrd 2776 . . . . . . . 8 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (⟨(0g𝑅), (0g𝑆)⟩(+g𝑇)⟨𝑎, 𝑏⟩) = ⟨𝑎, 𝑏⟩)
41 oveq2 7440 . . . . . . . . 9 (𝑥 = ⟨𝑎, 𝑏⟩ → (⟨(0g𝑅), (0g𝑆)⟩(+g𝑇)𝑥) = (⟨(0g𝑅), (0g𝑆)⟩(+g𝑇)⟨𝑎, 𝑏⟩))
42 id 22 . . . . . . . . 9 (𝑥 = ⟨𝑎, 𝑏⟩ → 𝑥 = ⟨𝑎, 𝑏⟩)
4341, 42eqeq12d 2752 . . . . . . . 8 (𝑥 = ⟨𝑎, 𝑏⟩ → ((⟨(0g𝑅), (0g𝑆)⟩(+g𝑇)𝑥) = 𝑥 ↔ (⟨(0g𝑅), (0g𝑆)⟩(+g𝑇)⟨𝑎, 𝑏⟩) = ⟨𝑎, 𝑏⟩))
4440, 43syl5ibrcom 247 . . . . . . 7 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (𝑥 = ⟨𝑎, 𝑏⟩ → (⟨(0g𝑅), (0g𝑆)⟩(+g𝑇)𝑥) = 𝑥))
4544rexlimdvva 3212 . . . . . 6 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (∃𝑎 ∈ (Base‘𝑅)∃𝑏 ∈ (Base‘𝑆)𝑥 = ⟨𝑎, 𝑏⟩ → (⟨(0g𝑅), (0g𝑆)⟩(+g𝑇)𝑥) = 𝑥))
4619, 45biimtrid 242 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (𝑥 ∈ ((Base‘𝑅) × (Base‘𝑆)) → (⟨(0g𝑅), (0g𝑆)⟩(+g𝑇)𝑥) = 𝑥))
4718, 46sylbird 260 . . . 4 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (𝑥 ∈ (Base‘𝑇) → (⟨(0g𝑅), (0g𝑆)⟩(+g𝑇)𝑥) = 𝑥))
4847imp 406 . . 3 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ 𝑥 ∈ (Base‘𝑇)) → (⟨(0g𝑅), (0g𝑆)⟩(+g𝑇)𝑥) = 𝑥)
494, 28mndcl 18756 . . . . . . . . . . 11 ((𝑅 ∈ Mnd ∧ 𝑎 ∈ (Base‘𝑅) ∧ (0g𝑅) ∈ (Base‘𝑅)) → (𝑎(+g𝑅)(0g𝑅)) ∈ (Base‘𝑅))
5020, 25, 22, 49syl3anc 1372 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (𝑎(+g𝑅)(0g𝑅)) ∈ (Base‘𝑅))
518, 31mndcl 18756 . . . . . . . . . . 11 ((𝑆 ∈ Mnd ∧ 𝑏 ∈ (Base‘𝑆) ∧ (0g𝑆) ∈ (Base‘𝑆)) → (𝑏(+g𝑆)(0g𝑆)) ∈ (Base‘𝑆))
5221, 27, 23, 51syl3anc 1372 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (𝑏(+g𝑆)(0g𝑆)) ∈ (Base‘𝑆))
5313, 4, 8, 20, 21, 25, 27, 22, 23, 50, 52, 28, 31, 3xpsadd 17620 . . . . . . . . 9 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (⟨𝑎, 𝑏⟩(+g𝑇)⟨(0g𝑅), (0g𝑆)⟩) = ⟨(𝑎(+g𝑅)(0g𝑅)), (𝑏(+g𝑆)(0g𝑆))⟩)
544, 28, 5mndrid 18769 . . . . . . . . . . 11 ((𝑅 ∈ Mnd ∧ 𝑎 ∈ (Base‘𝑅)) → (𝑎(+g𝑅)(0g𝑅)) = 𝑎)
5514, 24, 54syl2an 596 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (𝑎(+g𝑅)(0g𝑅)) = 𝑎)
568, 31, 9mndrid 18769 . . . . . . . . . . 11 ((𝑆 ∈ Mnd ∧ 𝑏 ∈ (Base‘𝑆)) → (𝑏(+g𝑆)(0g𝑆)) = 𝑏)
5715, 26, 56syl2an 596 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (𝑏(+g𝑆)(0g𝑆)) = 𝑏)
5855, 57opeq12d 4880 . . . . . . . . 9 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → ⟨(𝑎(+g𝑅)(0g𝑅)), (𝑏(+g𝑆)(0g𝑆))⟩ = ⟨𝑎, 𝑏⟩)
5953, 58eqtrd 2776 . . . . . . . 8 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (⟨𝑎, 𝑏⟩(+g𝑇)⟨(0g𝑅), (0g𝑆)⟩) = ⟨𝑎, 𝑏⟩)
60 oveq1 7439 . . . . . . . . 9 (𝑥 = ⟨𝑎, 𝑏⟩ → (𝑥(+g𝑇)⟨(0g𝑅), (0g𝑆)⟩) = (⟨𝑎, 𝑏⟩(+g𝑇)⟨(0g𝑅), (0g𝑆)⟩))
6160, 42eqeq12d 2752 . . . . . . . 8 (𝑥 = ⟨𝑎, 𝑏⟩ → ((𝑥(+g𝑇)⟨(0g𝑅), (0g𝑆)⟩) = 𝑥 ↔ (⟨𝑎, 𝑏⟩(+g𝑇)⟨(0g𝑅), (0g𝑆)⟩) = ⟨𝑎, 𝑏⟩))
6259, 61syl5ibrcom 247 . . . . . . 7 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (𝑥 = ⟨𝑎, 𝑏⟩ → (𝑥(+g𝑇)⟨(0g𝑅), (0g𝑆)⟩) = 𝑥))
6362rexlimdvva 3212 . . . . . 6 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (∃𝑎 ∈ (Base‘𝑅)∃𝑏 ∈ (Base‘𝑆)𝑥 = ⟨𝑎, 𝑏⟩ → (𝑥(+g𝑇)⟨(0g𝑅), (0g𝑆)⟩) = 𝑥))
6419, 63biimtrid 242 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (𝑥 ∈ ((Base‘𝑅) × (Base‘𝑆)) → (𝑥(+g𝑇)⟨(0g𝑅), (0g𝑆)⟩) = 𝑥))
6518, 64sylbird 260 . . . 4 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (𝑥 ∈ (Base‘𝑇) → (𝑥(+g𝑇)⟨(0g𝑅), (0g𝑆)⟩) = 𝑥))
6665imp 406 . . 3 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ 𝑥 ∈ (Base‘𝑇)) → (𝑥(+g𝑇)⟨(0g𝑅), (0g𝑆)⟩) = 𝑥)
671, 2, 3, 17, 48, 66ismgmid2 18682 . 2 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → ⟨(0g𝑅), (0g𝑆)⟩ = (0g𝑇))
6867eqcomd 2742 1 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (0g𝑇) = ⟨(0g𝑅), (0g𝑆)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wrex 3069  cop 4631   × cxp 5682  cfv 6560  (class class class)co 7432  Basecbs 17248  +gcplusg 17298  0gc0g 17485   ×s cxps 17552  Mndcmnd 18748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-inf 9484  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-fz 13549  df-struct 17185  df-slot 17220  df-ndx 17232  df-base 17249  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17487  df-prds 17493  df-imas 17554  df-xps 17556  df-mgm 18654  df-sgrp 18733  df-mnd 18749
This theorem is referenced by:  xpsinv  19079  rngqiprngimf1  21311
  Copyright terms: Public domain W3C validator