MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsmnd0 Structured version   Visualization version   GIF version

Theorem xpsmnd0 18686
Description: The identity element of a binary product of monoids. (Contributed by AV, 25-Feb-2025.)
Hypothesis
Ref Expression
xpsmnd0.t 𝑇 = (𝑅 ×s 𝑆)
Assertion
Ref Expression
xpsmnd0 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (0g𝑇) = ⟨(0g𝑅), (0g𝑆)⟩)

Proof of Theorem xpsmnd0
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 (Base‘𝑇) = (Base‘𝑇)
2 eqid 2731 . . 3 (0g𝑇) = (0g𝑇)
3 eqid 2731 . . 3 (+g𝑇) = (+g𝑇)
4 eqid 2731 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
5 eqid 2731 . . . . . . 7 (0g𝑅) = (0g𝑅)
64, 5mndidcl 18657 . . . . . 6 (𝑅 ∈ Mnd → (0g𝑅) ∈ (Base‘𝑅))
76adantr 480 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (0g𝑅) ∈ (Base‘𝑅))
8 eqid 2731 . . . . . . 7 (Base‘𝑆) = (Base‘𝑆)
9 eqid 2731 . . . . . . 7 (0g𝑆) = (0g𝑆)
108, 9mndidcl 18657 . . . . . 6 (𝑆 ∈ Mnd → (0g𝑆) ∈ (Base‘𝑆))
1110adantl 481 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (0g𝑆) ∈ (Base‘𝑆))
127, 11opelxpd 5655 . . . 4 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → ⟨(0g𝑅), (0g𝑆)⟩ ∈ ((Base‘𝑅) × (Base‘𝑆)))
13 xpsmnd0.t . . . . 5 𝑇 = (𝑅 ×s 𝑆)
14 simpl 482 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → 𝑅 ∈ Mnd)
15 simpr 484 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → 𝑆 ∈ Mnd)
1613, 4, 8, 14, 15xpsbas 17476 . . . 4 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → ((Base‘𝑅) × (Base‘𝑆)) = (Base‘𝑇))
1712, 16eleqtrd 2833 . . 3 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → ⟨(0g𝑅), (0g𝑆)⟩ ∈ (Base‘𝑇))
1816eleq2d 2817 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (𝑥 ∈ ((Base‘𝑅) × (Base‘𝑆)) ↔ 𝑥 ∈ (Base‘𝑇)))
19 elxp2 5640 . . . . . 6 (𝑥 ∈ ((Base‘𝑅) × (Base‘𝑆)) ↔ ∃𝑎 ∈ (Base‘𝑅)∃𝑏 ∈ (Base‘𝑆)𝑥 = ⟨𝑎, 𝑏⟩)
2014adantr 480 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → 𝑅 ∈ Mnd)
2115adantr 480 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → 𝑆 ∈ Mnd)
227adantr 480 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (0g𝑅) ∈ (Base‘𝑅))
2311adantr 480 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (0g𝑆) ∈ (Base‘𝑆))
24 simpl 482 . . . . . . . . . . 11 ((𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆)) → 𝑎 ∈ (Base‘𝑅))
2524adantl 481 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → 𝑎 ∈ (Base‘𝑅))
26 simpr 484 . . . . . . . . . . 11 ((𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆)) → 𝑏 ∈ (Base‘𝑆))
2726adantl 481 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → 𝑏 ∈ (Base‘𝑆))
28 eqid 2731 . . . . . . . . . . . 12 (+g𝑅) = (+g𝑅)
294, 28mndcl 18650 . . . . . . . . . . 11 ((𝑅 ∈ Mnd ∧ (0g𝑅) ∈ (Base‘𝑅) ∧ 𝑎 ∈ (Base‘𝑅)) → ((0g𝑅)(+g𝑅)𝑎) ∈ (Base‘𝑅))
3020, 22, 25, 29syl3anc 1373 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → ((0g𝑅)(+g𝑅)𝑎) ∈ (Base‘𝑅))
31 eqid 2731 . . . . . . . . . . . 12 (+g𝑆) = (+g𝑆)
328, 31mndcl 18650 . . . . . . . . . . 11 ((𝑆 ∈ Mnd ∧ (0g𝑆) ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆)) → ((0g𝑆)(+g𝑆)𝑏) ∈ (Base‘𝑆))
3321, 23, 27, 32syl3anc 1373 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → ((0g𝑆)(+g𝑆)𝑏) ∈ (Base‘𝑆))
3413, 4, 8, 20, 21, 22, 23, 25, 27, 30, 33, 28, 31, 3xpsadd 17478 . . . . . . . . 9 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (⟨(0g𝑅), (0g𝑆)⟩(+g𝑇)⟨𝑎, 𝑏⟩) = ⟨((0g𝑅)(+g𝑅)𝑎), ((0g𝑆)(+g𝑆)𝑏)⟩)
354, 28, 5mndlid 18662 . . . . . . . . . . 11 ((𝑅 ∈ Mnd ∧ 𝑎 ∈ (Base‘𝑅)) → ((0g𝑅)(+g𝑅)𝑎) = 𝑎)
3614, 24, 35syl2an 596 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → ((0g𝑅)(+g𝑅)𝑎) = 𝑎)
378, 31, 9mndlid 18662 . . . . . . . . . . 11 ((𝑆 ∈ Mnd ∧ 𝑏 ∈ (Base‘𝑆)) → ((0g𝑆)(+g𝑆)𝑏) = 𝑏)
3815, 26, 37syl2an 596 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → ((0g𝑆)(+g𝑆)𝑏) = 𝑏)
3936, 38opeq12d 4833 . . . . . . . . 9 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → ⟨((0g𝑅)(+g𝑅)𝑎), ((0g𝑆)(+g𝑆)𝑏)⟩ = ⟨𝑎, 𝑏⟩)
4034, 39eqtrd 2766 . . . . . . . 8 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (⟨(0g𝑅), (0g𝑆)⟩(+g𝑇)⟨𝑎, 𝑏⟩) = ⟨𝑎, 𝑏⟩)
41 oveq2 7354 . . . . . . . . 9 (𝑥 = ⟨𝑎, 𝑏⟩ → (⟨(0g𝑅), (0g𝑆)⟩(+g𝑇)𝑥) = (⟨(0g𝑅), (0g𝑆)⟩(+g𝑇)⟨𝑎, 𝑏⟩))
42 id 22 . . . . . . . . 9 (𝑥 = ⟨𝑎, 𝑏⟩ → 𝑥 = ⟨𝑎, 𝑏⟩)
4341, 42eqeq12d 2747 . . . . . . . 8 (𝑥 = ⟨𝑎, 𝑏⟩ → ((⟨(0g𝑅), (0g𝑆)⟩(+g𝑇)𝑥) = 𝑥 ↔ (⟨(0g𝑅), (0g𝑆)⟩(+g𝑇)⟨𝑎, 𝑏⟩) = ⟨𝑎, 𝑏⟩))
4440, 43syl5ibrcom 247 . . . . . . 7 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (𝑥 = ⟨𝑎, 𝑏⟩ → (⟨(0g𝑅), (0g𝑆)⟩(+g𝑇)𝑥) = 𝑥))
4544rexlimdvva 3189 . . . . . 6 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (∃𝑎 ∈ (Base‘𝑅)∃𝑏 ∈ (Base‘𝑆)𝑥 = ⟨𝑎, 𝑏⟩ → (⟨(0g𝑅), (0g𝑆)⟩(+g𝑇)𝑥) = 𝑥))
4619, 45biimtrid 242 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (𝑥 ∈ ((Base‘𝑅) × (Base‘𝑆)) → (⟨(0g𝑅), (0g𝑆)⟩(+g𝑇)𝑥) = 𝑥))
4718, 46sylbird 260 . . . 4 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (𝑥 ∈ (Base‘𝑇) → (⟨(0g𝑅), (0g𝑆)⟩(+g𝑇)𝑥) = 𝑥))
4847imp 406 . . 3 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ 𝑥 ∈ (Base‘𝑇)) → (⟨(0g𝑅), (0g𝑆)⟩(+g𝑇)𝑥) = 𝑥)
494, 28mndcl 18650 . . . . . . . . . . 11 ((𝑅 ∈ Mnd ∧ 𝑎 ∈ (Base‘𝑅) ∧ (0g𝑅) ∈ (Base‘𝑅)) → (𝑎(+g𝑅)(0g𝑅)) ∈ (Base‘𝑅))
5020, 25, 22, 49syl3anc 1373 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (𝑎(+g𝑅)(0g𝑅)) ∈ (Base‘𝑅))
518, 31mndcl 18650 . . . . . . . . . . 11 ((𝑆 ∈ Mnd ∧ 𝑏 ∈ (Base‘𝑆) ∧ (0g𝑆) ∈ (Base‘𝑆)) → (𝑏(+g𝑆)(0g𝑆)) ∈ (Base‘𝑆))
5221, 27, 23, 51syl3anc 1373 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (𝑏(+g𝑆)(0g𝑆)) ∈ (Base‘𝑆))
5313, 4, 8, 20, 21, 25, 27, 22, 23, 50, 52, 28, 31, 3xpsadd 17478 . . . . . . . . 9 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (⟨𝑎, 𝑏⟩(+g𝑇)⟨(0g𝑅), (0g𝑆)⟩) = ⟨(𝑎(+g𝑅)(0g𝑅)), (𝑏(+g𝑆)(0g𝑆))⟩)
544, 28, 5mndrid 18663 . . . . . . . . . . 11 ((𝑅 ∈ Mnd ∧ 𝑎 ∈ (Base‘𝑅)) → (𝑎(+g𝑅)(0g𝑅)) = 𝑎)
5514, 24, 54syl2an 596 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (𝑎(+g𝑅)(0g𝑅)) = 𝑎)
568, 31, 9mndrid 18663 . . . . . . . . . . 11 ((𝑆 ∈ Mnd ∧ 𝑏 ∈ (Base‘𝑆)) → (𝑏(+g𝑆)(0g𝑆)) = 𝑏)
5715, 26, 56syl2an 596 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (𝑏(+g𝑆)(0g𝑆)) = 𝑏)
5855, 57opeq12d 4833 . . . . . . . . 9 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → ⟨(𝑎(+g𝑅)(0g𝑅)), (𝑏(+g𝑆)(0g𝑆))⟩ = ⟨𝑎, 𝑏⟩)
5953, 58eqtrd 2766 . . . . . . . 8 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (⟨𝑎, 𝑏⟩(+g𝑇)⟨(0g𝑅), (0g𝑆)⟩) = ⟨𝑎, 𝑏⟩)
60 oveq1 7353 . . . . . . . . 9 (𝑥 = ⟨𝑎, 𝑏⟩ → (𝑥(+g𝑇)⟨(0g𝑅), (0g𝑆)⟩) = (⟨𝑎, 𝑏⟩(+g𝑇)⟨(0g𝑅), (0g𝑆)⟩))
6160, 42eqeq12d 2747 . . . . . . . 8 (𝑥 = ⟨𝑎, 𝑏⟩ → ((𝑥(+g𝑇)⟨(0g𝑅), (0g𝑆)⟩) = 𝑥 ↔ (⟨𝑎, 𝑏⟩(+g𝑇)⟨(0g𝑅), (0g𝑆)⟩) = ⟨𝑎, 𝑏⟩))
6259, 61syl5ibrcom 247 . . . . . . 7 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (𝑥 = ⟨𝑎, 𝑏⟩ → (𝑥(+g𝑇)⟨(0g𝑅), (0g𝑆)⟩) = 𝑥))
6362rexlimdvva 3189 . . . . . 6 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (∃𝑎 ∈ (Base‘𝑅)∃𝑏 ∈ (Base‘𝑆)𝑥 = ⟨𝑎, 𝑏⟩ → (𝑥(+g𝑇)⟨(0g𝑅), (0g𝑆)⟩) = 𝑥))
6419, 63biimtrid 242 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (𝑥 ∈ ((Base‘𝑅) × (Base‘𝑆)) → (𝑥(+g𝑇)⟨(0g𝑅), (0g𝑆)⟩) = 𝑥))
6518, 64sylbird 260 . . . 4 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (𝑥 ∈ (Base‘𝑇) → (𝑥(+g𝑇)⟨(0g𝑅), (0g𝑆)⟩) = 𝑥))
6665imp 406 . . 3 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ 𝑥 ∈ (Base‘𝑇)) → (𝑥(+g𝑇)⟨(0g𝑅), (0g𝑆)⟩) = 𝑥)
671, 2, 3, 17, 48, 66ismgmid2 18576 . 2 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → ⟨(0g𝑅), (0g𝑆)⟩ = (0g𝑇))
6867eqcomd 2737 1 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (0g𝑇) = ⟨(0g𝑅), (0g𝑆)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wrex 3056  cop 4582   × cxp 5614  cfv 6481  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  0gc0g 17343   ×s cxps 17410  Mndcmnd 18642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-prds 17351  df-imas 17412  df-xps 17414  df-mgm 18548  df-sgrp 18627  df-mnd 18643
This theorem is referenced by:  xpsinv  18973  rngqiprngimf1  21238
  Copyright terms: Public domain W3C validator