MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsmnd0 Structured version   Visualization version   GIF version

Theorem xpsmnd0 18742
Description: The identity element of a binary product of monoids. (Contributed by AV, 25-Feb-2025.)
Hypothesis
Ref Expression
xpsmnd0.t 𝑇 = (𝑅 ×s 𝑆)
Assertion
Ref Expression
xpsmnd0 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (0g𝑇) = ⟨(0g𝑅), (0g𝑆)⟩)

Proof of Theorem xpsmnd0
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2728 . . 3 (Base‘𝑇) = (Base‘𝑇)
2 eqid 2728 . . 3 (0g𝑇) = (0g𝑇)
3 eqid 2728 . . 3 (+g𝑇) = (+g𝑇)
4 eqid 2728 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
5 eqid 2728 . . . . . . 7 (0g𝑅) = (0g𝑅)
64, 5mndidcl 18716 . . . . . 6 (𝑅 ∈ Mnd → (0g𝑅) ∈ (Base‘𝑅))
76adantr 479 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (0g𝑅) ∈ (Base‘𝑅))
8 eqid 2728 . . . . . . 7 (Base‘𝑆) = (Base‘𝑆)
9 eqid 2728 . . . . . . 7 (0g𝑆) = (0g𝑆)
108, 9mndidcl 18716 . . . . . 6 (𝑆 ∈ Mnd → (0g𝑆) ∈ (Base‘𝑆))
1110adantl 480 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (0g𝑆) ∈ (Base‘𝑆))
127, 11opelxpd 5721 . . . 4 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → ⟨(0g𝑅), (0g𝑆)⟩ ∈ ((Base‘𝑅) × (Base‘𝑆)))
13 xpsmnd0.t . . . . 5 𝑇 = (𝑅 ×s 𝑆)
14 simpl 481 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → 𝑅 ∈ Mnd)
15 simpr 483 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → 𝑆 ∈ Mnd)
1613, 4, 8, 14, 15xpsbas 17561 . . . 4 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → ((Base‘𝑅) × (Base‘𝑆)) = (Base‘𝑇))
1712, 16eleqtrd 2831 . . 3 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → ⟨(0g𝑅), (0g𝑆)⟩ ∈ (Base‘𝑇))
1816eleq2d 2815 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (𝑥 ∈ ((Base‘𝑅) × (Base‘𝑆)) ↔ 𝑥 ∈ (Base‘𝑇)))
19 elxp2 5706 . . . . . 6 (𝑥 ∈ ((Base‘𝑅) × (Base‘𝑆)) ↔ ∃𝑎 ∈ (Base‘𝑅)∃𝑏 ∈ (Base‘𝑆)𝑥 = ⟨𝑎, 𝑏⟩)
2014adantr 479 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → 𝑅 ∈ Mnd)
2115adantr 479 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → 𝑆 ∈ Mnd)
227adantr 479 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (0g𝑅) ∈ (Base‘𝑅))
2311adantr 479 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (0g𝑆) ∈ (Base‘𝑆))
24 simpl 481 . . . . . . . . . . 11 ((𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆)) → 𝑎 ∈ (Base‘𝑅))
2524adantl 480 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → 𝑎 ∈ (Base‘𝑅))
26 simpr 483 . . . . . . . . . . 11 ((𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆)) → 𝑏 ∈ (Base‘𝑆))
2726adantl 480 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → 𝑏 ∈ (Base‘𝑆))
28 eqid 2728 . . . . . . . . . . . 12 (+g𝑅) = (+g𝑅)
294, 28mndcl 18709 . . . . . . . . . . 11 ((𝑅 ∈ Mnd ∧ (0g𝑅) ∈ (Base‘𝑅) ∧ 𝑎 ∈ (Base‘𝑅)) → ((0g𝑅)(+g𝑅)𝑎) ∈ (Base‘𝑅))
3020, 22, 25, 29syl3anc 1368 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → ((0g𝑅)(+g𝑅)𝑎) ∈ (Base‘𝑅))
31 eqid 2728 . . . . . . . . . . . 12 (+g𝑆) = (+g𝑆)
328, 31mndcl 18709 . . . . . . . . . . 11 ((𝑆 ∈ Mnd ∧ (0g𝑆) ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆)) → ((0g𝑆)(+g𝑆)𝑏) ∈ (Base‘𝑆))
3321, 23, 27, 32syl3anc 1368 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → ((0g𝑆)(+g𝑆)𝑏) ∈ (Base‘𝑆))
3413, 4, 8, 20, 21, 22, 23, 25, 27, 30, 33, 28, 31, 3xpsadd 17563 . . . . . . . . 9 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (⟨(0g𝑅), (0g𝑆)⟩(+g𝑇)⟨𝑎, 𝑏⟩) = ⟨((0g𝑅)(+g𝑅)𝑎), ((0g𝑆)(+g𝑆)𝑏)⟩)
354, 28, 5mndlid 18721 . . . . . . . . . . 11 ((𝑅 ∈ Mnd ∧ 𝑎 ∈ (Base‘𝑅)) → ((0g𝑅)(+g𝑅)𝑎) = 𝑎)
3614, 24, 35syl2an 594 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → ((0g𝑅)(+g𝑅)𝑎) = 𝑎)
378, 31, 9mndlid 18721 . . . . . . . . . . 11 ((𝑆 ∈ Mnd ∧ 𝑏 ∈ (Base‘𝑆)) → ((0g𝑆)(+g𝑆)𝑏) = 𝑏)
3815, 26, 37syl2an 594 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → ((0g𝑆)(+g𝑆)𝑏) = 𝑏)
3936, 38opeq12d 4886 . . . . . . . . 9 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → ⟨((0g𝑅)(+g𝑅)𝑎), ((0g𝑆)(+g𝑆)𝑏)⟩ = ⟨𝑎, 𝑏⟩)
4034, 39eqtrd 2768 . . . . . . . 8 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (⟨(0g𝑅), (0g𝑆)⟩(+g𝑇)⟨𝑎, 𝑏⟩) = ⟨𝑎, 𝑏⟩)
41 oveq2 7434 . . . . . . . . 9 (𝑥 = ⟨𝑎, 𝑏⟩ → (⟨(0g𝑅), (0g𝑆)⟩(+g𝑇)𝑥) = (⟨(0g𝑅), (0g𝑆)⟩(+g𝑇)⟨𝑎, 𝑏⟩))
42 id 22 . . . . . . . . 9 (𝑥 = ⟨𝑎, 𝑏⟩ → 𝑥 = ⟨𝑎, 𝑏⟩)
4341, 42eqeq12d 2744 . . . . . . . 8 (𝑥 = ⟨𝑎, 𝑏⟩ → ((⟨(0g𝑅), (0g𝑆)⟩(+g𝑇)𝑥) = 𝑥 ↔ (⟨(0g𝑅), (0g𝑆)⟩(+g𝑇)⟨𝑎, 𝑏⟩) = ⟨𝑎, 𝑏⟩))
4440, 43syl5ibrcom 246 . . . . . . 7 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (𝑥 = ⟨𝑎, 𝑏⟩ → (⟨(0g𝑅), (0g𝑆)⟩(+g𝑇)𝑥) = 𝑥))
4544rexlimdvva 3209 . . . . . 6 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (∃𝑎 ∈ (Base‘𝑅)∃𝑏 ∈ (Base‘𝑆)𝑥 = ⟨𝑎, 𝑏⟩ → (⟨(0g𝑅), (0g𝑆)⟩(+g𝑇)𝑥) = 𝑥))
4619, 45biimtrid 241 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (𝑥 ∈ ((Base‘𝑅) × (Base‘𝑆)) → (⟨(0g𝑅), (0g𝑆)⟩(+g𝑇)𝑥) = 𝑥))
4718, 46sylbird 259 . . . 4 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (𝑥 ∈ (Base‘𝑇) → (⟨(0g𝑅), (0g𝑆)⟩(+g𝑇)𝑥) = 𝑥))
4847imp 405 . . 3 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ 𝑥 ∈ (Base‘𝑇)) → (⟨(0g𝑅), (0g𝑆)⟩(+g𝑇)𝑥) = 𝑥)
494, 28mndcl 18709 . . . . . . . . . . 11 ((𝑅 ∈ Mnd ∧ 𝑎 ∈ (Base‘𝑅) ∧ (0g𝑅) ∈ (Base‘𝑅)) → (𝑎(+g𝑅)(0g𝑅)) ∈ (Base‘𝑅))
5020, 25, 22, 49syl3anc 1368 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (𝑎(+g𝑅)(0g𝑅)) ∈ (Base‘𝑅))
518, 31mndcl 18709 . . . . . . . . . . 11 ((𝑆 ∈ Mnd ∧ 𝑏 ∈ (Base‘𝑆) ∧ (0g𝑆) ∈ (Base‘𝑆)) → (𝑏(+g𝑆)(0g𝑆)) ∈ (Base‘𝑆))
5221, 27, 23, 51syl3anc 1368 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (𝑏(+g𝑆)(0g𝑆)) ∈ (Base‘𝑆))
5313, 4, 8, 20, 21, 25, 27, 22, 23, 50, 52, 28, 31, 3xpsadd 17563 . . . . . . . . 9 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (⟨𝑎, 𝑏⟩(+g𝑇)⟨(0g𝑅), (0g𝑆)⟩) = ⟨(𝑎(+g𝑅)(0g𝑅)), (𝑏(+g𝑆)(0g𝑆))⟩)
544, 28, 5mndrid 18722 . . . . . . . . . . 11 ((𝑅 ∈ Mnd ∧ 𝑎 ∈ (Base‘𝑅)) → (𝑎(+g𝑅)(0g𝑅)) = 𝑎)
5514, 24, 54syl2an 594 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (𝑎(+g𝑅)(0g𝑅)) = 𝑎)
568, 31, 9mndrid 18722 . . . . . . . . . . 11 ((𝑆 ∈ Mnd ∧ 𝑏 ∈ (Base‘𝑆)) → (𝑏(+g𝑆)(0g𝑆)) = 𝑏)
5715, 26, 56syl2an 594 . . . . . . . . . 10 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (𝑏(+g𝑆)(0g𝑆)) = 𝑏)
5855, 57opeq12d 4886 . . . . . . . . 9 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → ⟨(𝑎(+g𝑅)(0g𝑅)), (𝑏(+g𝑆)(0g𝑆))⟩ = ⟨𝑎, 𝑏⟩)
5953, 58eqtrd 2768 . . . . . . . 8 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (⟨𝑎, 𝑏⟩(+g𝑇)⟨(0g𝑅), (0g𝑆)⟩) = ⟨𝑎, 𝑏⟩)
60 oveq1 7433 . . . . . . . . 9 (𝑥 = ⟨𝑎, 𝑏⟩ → (𝑥(+g𝑇)⟨(0g𝑅), (0g𝑆)⟩) = (⟨𝑎, 𝑏⟩(+g𝑇)⟨(0g𝑅), (0g𝑆)⟩))
6160, 42eqeq12d 2744 . . . . . . . 8 (𝑥 = ⟨𝑎, 𝑏⟩ → ((𝑥(+g𝑇)⟨(0g𝑅), (0g𝑆)⟩) = 𝑥 ↔ (⟨𝑎, 𝑏⟩(+g𝑇)⟨(0g𝑅), (0g𝑆)⟩) = ⟨𝑎, 𝑏⟩))
6259, 61syl5ibrcom 246 . . . . . . 7 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑆))) → (𝑥 = ⟨𝑎, 𝑏⟩ → (𝑥(+g𝑇)⟨(0g𝑅), (0g𝑆)⟩) = 𝑥))
6362rexlimdvva 3209 . . . . . 6 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (∃𝑎 ∈ (Base‘𝑅)∃𝑏 ∈ (Base‘𝑆)𝑥 = ⟨𝑎, 𝑏⟩ → (𝑥(+g𝑇)⟨(0g𝑅), (0g𝑆)⟩) = 𝑥))
6419, 63biimtrid 241 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (𝑥 ∈ ((Base‘𝑅) × (Base‘𝑆)) → (𝑥(+g𝑇)⟨(0g𝑅), (0g𝑆)⟩) = 𝑥))
6518, 64sylbird 259 . . . 4 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (𝑥 ∈ (Base‘𝑇) → (𝑥(+g𝑇)⟨(0g𝑅), (0g𝑆)⟩) = 𝑥))
6665imp 405 . . 3 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ 𝑥 ∈ (Base‘𝑇)) → (𝑥(+g𝑇)⟨(0g𝑅), (0g𝑆)⟩) = 𝑥)
671, 2, 3, 17, 48, 66ismgmid2 18635 . 2 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → ⟨(0g𝑅), (0g𝑆)⟩ = (0g𝑇))
6867eqcomd 2734 1 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (0g𝑇) = ⟨(0g𝑅), (0g𝑆)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wrex 3067  cop 4638   × cxp 5680  cfv 6553  (class class class)co 7426  Basecbs 17187  +gcplusg 17240  0gc0g 17428   ×s cxps 17495  Mndcmnd 18701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-2o 8494  df-er 8731  df-map 8853  df-ixp 8923  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-sup 9473  df-inf 9474  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-dec 12716  df-uz 12861  df-fz 13525  df-struct 17123  df-slot 17158  df-ndx 17170  df-base 17188  df-plusg 17253  df-mulr 17254  df-sca 17256  df-vsca 17257  df-ip 17258  df-tset 17259  df-ple 17260  df-ds 17262  df-hom 17264  df-cco 17265  df-0g 17430  df-prds 17436  df-imas 17497  df-xps 17499  df-mgm 18607  df-sgrp 18686  df-mnd 18702
This theorem is referenced by:  xpsinv  19023  rngqiprngimf1  21197
  Copyright terms: Public domain W3C validator