MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enref Structured version   Visualization version   GIF version

Theorem enref 8728
Description: Equinumerosity is reflexive. Theorem 1 of [Suppes] p. 92. (Contributed by NM, 25-Sep-2004.)
Hypothesis
Ref Expression
enref.1 𝐴 ∈ V
Assertion
Ref Expression
enref 𝐴𝐴

Proof of Theorem enref
StepHypRef Expression
1 enref.1 . 2 𝐴 ∈ V
2 enrefg 8727 . 2 (𝐴 ∈ V → 𝐴𝐴)
31, 2ax-mp 5 1 𝐴𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  Vcvv 3422   class class class wbr 5070  cen 8688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-en 8692
This theorem is referenced by:  ener  8742  en0ALT  8760  pwen  8886  phplem2  8893  phplem3  8894  isinf  8965  pssnnOLD  8969  karden  9584  mappwen  9799  nnadju  9884  infmap2  9905  ackbij1lem5  9911  axcc4dom  10128  domtriomlem  10129  cfpwsdom  10271  0tsk  10442  fzennn  13616  qnnen  15850  rpnnen  15864  rexpen  15865  lmisfree  20959  met2ndci  23584  lgseisenlem2  26429  poimirlem9  35713  poimirlem26  35730  1aryenef  45879  2aryenef  45890
  Copyright terms: Public domain W3C validator