| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > enref | Structured version Visualization version GIF version | ||
| Description: Equinumerosity is reflexive. Theorem 1 of [Suppes] p. 92. (Contributed by NM, 25-Sep-2004.) |
| Ref | Expression |
|---|---|
| enref.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| enref | ⊢ 𝐴 ≈ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enref.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | enrefg 8916 | . 2 ⊢ (𝐴 ∈ V → 𝐴 ≈ 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ≈ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3438 class class class wbr 5095 ≈ cen 8876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-en 8880 |
| This theorem is referenced by: ener 8933 en0ALT 8951 pwen 9074 isinfOLD 9166 karden 9810 mappwen 10025 nnadju 10111 infmap2 10130 ackbij1lem5 10136 axcc4dom 10354 domtriomlem 10355 cfpwsdom 10497 0tsk 10668 fzennn 13893 qnnen 16140 rpnnen 16154 rexpen 16155 lmisfree 21767 met2ndci 24426 lgseisenlem2 27303 poimirlem9 37608 poimirlem26 37625 1aryenef 48618 2aryenef 48629 |
| Copyright terms: Public domain | W3C validator |