Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > enref | Structured version Visualization version GIF version |
Description: Equinumerosity is reflexive. Theorem 1 of [Suppes] p. 92. (Contributed by NM, 25-Sep-2004.) |
Ref | Expression |
---|---|
enref.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
enref | ⊢ 𝐴 ≈ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enref.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | enrefg 8572 | . 2 ⊢ (𝐴 ∈ V → 𝐴 ≈ 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ≈ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2111 Vcvv 3409 class class class wbr 5036 ≈ cen 8537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-opab 5099 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-en 8541 |
This theorem is referenced by: ener 8587 en0OLD 8604 pwen 8725 phplem2 8732 phplem3 8733 isinf 8782 pssnnOLD 8787 karden 9370 mappwen 9585 nnadju 9670 infmap2 9691 ackbij1lem5 9697 axcc4dom 9914 domtriomlem 9915 cfpwsdom 10057 0tsk 10228 fzennn 13398 qnnen 15627 rpnnen 15641 rexpen 15642 lmisfree 20620 met2ndci 23237 lgseisenlem2 26072 poimirlem9 35380 poimirlem26 35397 1aryenef 45473 2aryenef 45484 |
Copyright terms: Public domain | W3C validator |