MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enref Structured version   Visualization version   GIF version

Theorem enref 8978
Description: Equinumerosity is reflexive. Theorem 1 of [Suppes] p. 92. (Contributed by NM, 25-Sep-2004.)
Hypothesis
Ref Expression
enref.1 𝐴 ∈ V
Assertion
Ref Expression
enref 𝐴𝐴

Proof of Theorem enref
StepHypRef Expression
1 enref.1 . 2 𝐴 ∈ V
2 enrefg 8977 . 2 (𝐴 ∈ V → 𝐴𝐴)
31, 2ax-mp 5 1 𝐴𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  Vcvv 3475   class class class wbr 5148  cen 8933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2704  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-en 8937
This theorem is referenced by:  ener  8994  en0ALT  9012  pwen  9147  phplem2OLD  9215  phplem3OLD  9216  isinfOLD  9258  pssnnOLD  9262  karden  9887  mappwen  10104  nnadju  10189  infmap2  10210  ackbij1lem5  10216  axcc4dom  10433  domtriomlem  10434  cfpwsdom  10576  0tsk  10747  fzennn  13930  qnnen  16153  rpnnen  16167  rexpen  16168  lmisfree  21389  met2ndci  24023  lgseisenlem2  26869  poimirlem9  36486  poimirlem26  36503  1aryenef  47285  2aryenef  47296
  Copyright terms: Public domain W3C validator