![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > enref | Structured version Visualization version GIF version |
Description: Equinumerosity is reflexive. Theorem 1 of [Suppes] p. 92. (Contributed by NM, 25-Sep-2004.) |
Ref | Expression |
---|---|
enref.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
enref | ⊢ 𝐴 ≈ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enref.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | enrefg 9044 | . 2 ⊢ (𝐴 ∈ V → 𝐴 ≈ 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ≈ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 class class class wbr 5166 ≈ cen 9000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-en 9004 |
This theorem is referenced by: ener 9061 en0ALT 9080 pwen 9216 phplem2OLD 9281 phplem3OLD 9282 isinfOLD 9324 karden 9964 mappwen 10181 nnadju 10267 infmap2 10286 ackbij1lem5 10292 axcc4dom 10510 domtriomlem 10511 cfpwsdom 10653 0tsk 10824 fzennn 14019 qnnen 16261 rpnnen 16275 rexpen 16276 lmisfree 21885 met2ndci 24556 lgseisenlem2 27438 poimirlem9 37589 poimirlem26 37606 1aryenef 48379 2aryenef 48390 |
Copyright terms: Public domain | W3C validator |