![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > enref | Structured version Visualization version GIF version |
Description: Equinumerosity is reflexive. Theorem 1 of [Suppes] p. 92. (Contributed by NM, 25-Sep-2004.) |
Ref | Expression |
---|---|
enref.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
enref | ⊢ 𝐴 ≈ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enref.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | enrefg 8977 | . 2 ⊢ (𝐴 ∈ V → 𝐴 ≈ 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ≈ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 Vcvv 3475 class class class wbr 5148 ≈ cen 8933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-12 2172 ax-ext 2704 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-en 8937 |
This theorem is referenced by: ener 8994 en0ALT 9012 pwen 9147 phplem2OLD 9215 phplem3OLD 9216 isinfOLD 9258 pssnnOLD 9262 karden 9887 mappwen 10104 nnadju 10189 infmap2 10210 ackbij1lem5 10216 axcc4dom 10433 domtriomlem 10434 cfpwsdom 10576 0tsk 10747 fzennn 13930 qnnen 16153 rpnnen 16167 rexpen 16168 lmisfree 21389 met2ndci 24023 lgseisenlem2 26869 poimirlem9 36486 poimirlem26 36503 1aryenef 47285 2aryenef 47296 |
Copyright terms: Public domain | W3C validator |