MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enref Structured version   Visualization version   GIF version

Theorem enref 9045
Description: Equinumerosity is reflexive. Theorem 1 of [Suppes] p. 92. (Contributed by NM, 25-Sep-2004.)
Hypothesis
Ref Expression
enref.1 𝐴 ∈ V
Assertion
Ref Expression
enref 𝐴𝐴

Proof of Theorem enref
StepHypRef Expression
1 enref.1 . 2 𝐴 ∈ V
2 enrefg 9044 . 2 (𝐴 ∈ V → 𝐴𝐴)
31, 2ax-mp 5 1 𝐴𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  Vcvv 3488   class class class wbr 5166  cen 9000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-en 9004
This theorem is referenced by:  ener  9061  en0ALT  9080  pwen  9216  phplem2OLD  9281  phplem3OLD  9282  isinfOLD  9324  karden  9964  mappwen  10181  nnadju  10267  infmap2  10286  ackbij1lem5  10292  axcc4dom  10510  domtriomlem  10511  cfpwsdom  10653  0tsk  10824  fzennn  14019  qnnen  16261  rpnnen  16275  rexpen  16276  lmisfree  21885  met2ndci  24556  lgseisenlem2  27438  poimirlem9  37589  poimirlem26  37606  1aryenef  48379  2aryenef  48390
  Copyright terms: Public domain W3C validator