| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > enref | Structured version Visualization version GIF version | ||
| Description: Equinumerosity is reflexive. Theorem 1 of [Suppes] p. 92. (Contributed by NM, 25-Sep-2004.) |
| Ref | Expression |
|---|---|
| enref.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| enref | ⊢ 𝐴 ≈ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enref.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | enrefg 8912 | . 2 ⊢ (𝐴 ∈ V → 𝐴 ≈ 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ≈ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 class class class wbr 5093 ≈ cen 8872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-en 8876 |
| This theorem is referenced by: ener 8929 en0ALT 8947 pwen 9069 karden 9794 mappwen 10009 nnadju 10095 infmap2 10114 ackbij1lem5 10120 axcc4dom 10338 domtriomlem 10339 cfpwsdom 10481 0tsk 10652 fzennn 13881 qnnen 16128 rpnnen 16142 rexpen 16143 lmisfree 21785 met2ndci 24443 lgseisenlem2 27320 poimirlem9 37675 poimirlem26 37692 1aryenef 48751 2aryenef 48762 |
| Copyright terms: Public domain | W3C validator |