MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enref Structured version   Visualization version   GIF version

Theorem enref 8902
Description: Equinumerosity is reflexive. Theorem 1 of [Suppes] p. 92. (Contributed by NM, 25-Sep-2004.)
Hypothesis
Ref Expression
enref.1 𝐴 ∈ V
Assertion
Ref Expression
enref 𝐴𝐴

Proof of Theorem enref
StepHypRef Expression
1 enref.1 . 2 𝐴 ∈ V
2 enrefg 8901 . 2 (𝐴 ∈ V → 𝐴𝐴)
31, 2ax-mp 5 1 𝐴𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2110  Vcvv 3434   class class class wbr 5089  cen 8861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-en 8865
This theorem is referenced by:  ener  8918  en0ALT  8936  pwen  9058  karden  9780  mappwen  9995  nnadju  10081  infmap2  10100  ackbij1lem5  10106  axcc4dom  10324  domtriomlem  10325  cfpwsdom  10467  0tsk  10638  fzennn  13867  qnnen  16114  rpnnen  16128  rexpen  16129  lmisfree  21772  met2ndci  24430  lgseisenlem2  27307  poimirlem9  37648  poimirlem26  37665  1aryenef  48656  2aryenef  48667
  Copyright terms: Public domain W3C validator