MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enref Structured version   Visualization version   GIF version

Theorem enref 8956
Description: Equinumerosity is reflexive. Theorem 1 of [Suppes] p. 92. (Contributed by NM, 25-Sep-2004.)
Hypothesis
Ref Expression
enref.1 𝐴 ∈ V
Assertion
Ref Expression
enref 𝐴𝐴

Proof of Theorem enref
StepHypRef Expression
1 enref.1 . 2 𝐴 ∈ V
2 enrefg 8955 . 2 (𝐴 ∈ V → 𝐴𝐴)
31, 2ax-mp 5 1 𝐴𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3447   class class class wbr 5107  cen 8915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-en 8919
This theorem is referenced by:  ener  8972  en0ALT  8990  pwen  9114  isinfOLD  9208  karden  9848  mappwen  10065  nnadju  10151  infmap2  10170  ackbij1lem5  10176  axcc4dom  10394  domtriomlem  10395  cfpwsdom  10537  0tsk  10708  fzennn  13933  qnnen  16181  rpnnen  16195  rexpen  16196  lmisfree  21751  met2ndci  24410  lgseisenlem2  27287  poimirlem9  37623  poimirlem26  37640  1aryenef  48634  2aryenef  48645
  Copyright terms: Public domain W3C validator