![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > enref | Structured version Visualization version GIF version |
Description: Equinumerosity is reflexive. Theorem 1 of [Suppes] p. 92. (Contributed by NM, 25-Sep-2004.) |
Ref | Expression |
---|---|
enref.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
enref | ⊢ 𝐴 ≈ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enref.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | enrefg 9023 | . 2 ⊢ (𝐴 ∈ V → 𝐴 ≈ 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ≈ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3478 class class class wbr 5148 ≈ cen 8981 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-en 8985 |
This theorem is referenced by: ener 9040 en0ALT 9058 pwen 9189 phplem2OLD 9253 phplem3OLD 9254 isinfOLD 9295 karden 9933 mappwen 10150 nnadju 10236 infmap2 10255 ackbij1lem5 10261 axcc4dom 10479 domtriomlem 10480 cfpwsdom 10622 0tsk 10793 fzennn 14006 qnnen 16246 rpnnen 16260 rexpen 16261 lmisfree 21880 met2ndci 24551 lgseisenlem2 27435 poimirlem9 37616 poimirlem26 37633 1aryenef 48495 2aryenef 48506 |
Copyright terms: Public domain | W3C validator |