![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > enfiALT | Structured version Visualization version GIF version |
Description: Shorter proof of enfi 9215 using ax-pow 5365. (Contributed by NM, 22-Aug-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
enfiALT | ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enen1 9142 | . . 3 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ≈ 𝑥 ↔ 𝐵 ≈ 𝑥)) | |
2 | 1 | rexbidv 3175 | . 2 ⊢ (𝐴 ≈ 𝐵 → (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 ↔ ∃𝑥 ∈ ω 𝐵 ≈ 𝑥)) |
3 | isfi 8997 | . 2 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) | |
4 | isfi 8997 | . 2 ⊢ (𝐵 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐵 ≈ 𝑥) | |
5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2099 ∃wrex 3067 class class class wbr 5148 ωcom 7870 ≈ cen 8961 Fincfn 8964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-er 8725 df-en 8965 df-fin 8968 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |