| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > enfiALT | Structured version Visualization version GIF version | ||
| Description: Shorter proof of enfi 9157 using ax-pow 5323. (Contributed by NM, 22-Aug-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| enfiALT | ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enen1 9087 | . . 3 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ≈ 𝑥 ↔ 𝐵 ≈ 𝑥)) | |
| 2 | 1 | rexbidv 3158 | . 2 ⊢ (𝐴 ≈ 𝐵 → (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 ↔ ∃𝑥 ∈ ω 𝐵 ≈ 𝑥)) |
| 3 | isfi 8950 | . 2 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) | |
| 4 | isfi 8950 | . 2 ⊢ (𝐵 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐵 ≈ 𝑥) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 ∃wrex 3054 class class class wbr 5110 ωcom 7845 ≈ cen 8918 Fincfn 8921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-er 8674 df-en 8922 df-fin 8925 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |