| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > enfiALT | Structured version Visualization version GIF version | ||
| Description: Shorter proof of enfi 9107 using ax-pow 5307. (Contributed by NM, 22-Aug-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| enfiALT | ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enen1 9041 | . . 3 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ≈ 𝑥 ↔ 𝐵 ≈ 𝑥)) | |
| 2 | 1 | rexbidv 3157 | . 2 ⊢ (𝐴 ≈ 𝐵 → (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 ↔ ∃𝑥 ∈ ω 𝐵 ≈ 𝑥)) |
| 3 | isfi 8908 | . 2 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) | |
| 4 | isfi 8908 | . 2 ⊢ (𝐵 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐵 ≈ 𝑥) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2113 ∃wrex 3057 class class class wbr 5095 ωcom 7805 ≈ cen 8876 Fincfn 8879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-er 8631 df-en 8880 df-fin 8883 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |