MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enfiALT Structured version   Visualization version   GIF version

Theorem enfiALT 9200
Description: Shorter proof of enfi 9199 using ax-pow 5335. (Contributed by NM, 22-Aug-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
enfiALT (𝐴𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin))

Proof of Theorem enfiALT
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 enen1 9129 . . 3 (𝐴𝐵 → (𝐴𝑥𝐵𝑥))
21rexbidv 3164 . 2 (𝐴𝐵 → (∃𝑥 ∈ ω 𝐴𝑥 ↔ ∃𝑥 ∈ ω 𝐵𝑥))
3 isfi 8988 . 2 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
4 isfi 8988 . 2 (𝐵 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐵𝑥)
52, 3, 43bitr4g 314 1 (𝐴𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2108  wrex 3060   class class class wbr 5119  ωcom 7859  cen 8954  Fincfn 8957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-er 8717  df-en 8958  df-fin 8961
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator