Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > enfi | Structured version Visualization version GIF version |
Description: Equinumerous sets have the same finiteness. For a shorter proof using ax-pow 5283, see enfiALT 8934. (Contributed by NM, 22-Aug-2008.) Avoid ax-pow 5283. (Revised by BTernaryTau, 23-Sep-2024.) |
Ref | Expression |
---|---|
enfi | ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensymfib 8930 | . . . . 5 ⊢ (𝐴 ∈ Fin → (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴)) | |
2 | 1 | pm5.32i 574 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵) ↔ (𝐴 ∈ Fin ∧ 𝐵 ≈ 𝐴)) |
3 | enfii 8932 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≈ 𝐴) → 𝐵 ∈ Fin) | |
4 | 2, 3 | sylbi 216 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵) → 𝐵 ∈ Fin) |
5 | 4 | expcom 413 | . 2 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Fin → 𝐵 ∈ Fin)) |
6 | enfii 8932 | . . 3 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≈ 𝐵) → 𝐴 ∈ Fin) | |
7 | 6 | expcom 413 | . 2 ⊢ (𝐴 ≈ 𝐵 → (𝐵 ∈ Fin → 𝐴 ∈ Fin)) |
8 | 5, 7 | impbid 211 | 1 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 class class class wbr 5070 ≈ cen 8688 Fincfn 8691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-om 7688 df-1o 8267 df-en 8692 df-fin 8695 |
This theorem is referenced by: enfiiOLD 8968 wofib 9234 en2eleq 9695 sdom2en01 9989 fin23lem21 10026 enfin1ai 10071 fin17 10081 isfin7-2 10083 engch 10315 uzinf 13613 hasheni 13990 isfinite4 14005 symggen 18993 psgnunilem1 19016 dfod2 19086 odhash 19094 gsumval3lem2 19422 gsumval3 19423 cyggic 20692 cusgrfilem3 27727 unidifsnel 30784 unidifsnne 30785 derangen 33034 erdsze2lem1 33065 phpreu 35688 lindsdom 35698 poimirlem30 35734 diophin 40510 diophren 40551 fiphp3d 40557 fiuneneq 40938 |
Copyright terms: Public domain | W3C validator |