| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > enfi | Structured version Visualization version GIF version | ||
| Description: Equinumerous sets have the same finiteness. For a shorter proof using ax-pow 5307, see enfiALT 9112. (Contributed by NM, 22-Aug-2008.) Avoid ax-pow 5307. (Revised by BTernaryTau, 23-Sep-2024.) |
| Ref | Expression |
|---|---|
| enfi | ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensymfib 9108 | . . . . 5 ⊢ (𝐴 ∈ Fin → (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴)) | |
| 2 | 1 | pm5.32i 574 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵) ↔ (𝐴 ∈ Fin ∧ 𝐵 ≈ 𝐴)) |
| 3 | enfii 9110 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≈ 𝐴) → 𝐵 ∈ Fin) | |
| 4 | 2, 3 | sylbi 217 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵) → 𝐵 ∈ Fin) |
| 5 | 4 | expcom 413 | . 2 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Fin → 𝐵 ∈ Fin)) |
| 6 | enfii 9110 | . . 3 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≈ 𝐵) → 𝐴 ∈ Fin) | |
| 7 | 6 | expcom 413 | . 2 ⊢ (𝐴 ≈ 𝐵 → (𝐵 ∈ Fin → 𝐴 ∈ Fin)) |
| 8 | 5, 7 | impbid 212 | 1 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5095 ≈ cen 8876 Fincfn 8879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-om 7807 df-1o 8395 df-en 8880 df-fin 8883 |
| This theorem is referenced by: wofib 9456 en2eleq 9921 sdom2en01 10215 fin23lem21 10252 enfin1ai 10297 fin17 10307 isfin7-2 10309 engch 10541 uzinf 13890 hasheni 14273 isfinite4 14287 symggen 19367 psgnunilem1 19390 dfod2 19461 odhash 19471 gsumval3lem2 19803 gsumval3 19804 cyggic 21497 cusgrfilem3 29421 unidifsnel 32497 unidifsnne 32498 derangen 35147 erdsze2lem1 35178 phpreu 37586 lindsdom 37596 poimirlem30 37632 diophin 42748 diophren 42789 fiphp3d 42795 fiuneneq 43168 |
| Copyright terms: Public domain | W3C validator |