MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enfi Structured version   Visualization version   GIF version

Theorem enfi 9186
Description: Equinumerous sets have the same finiteness. For a shorter proof using ax-pow 5362, see enfiALT 9187. (Contributed by NM, 22-Aug-2008.) Avoid ax-pow 5362. (Revised by BTernaryTau, 23-Sep-2024.)
Assertion
Ref Expression
enfi (𝐴𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin))

Proof of Theorem enfi
StepHypRef Expression
1 ensymfib 9183 . . . . 5 (𝐴 ∈ Fin → (𝐴𝐵𝐵𝐴))
21pm5.32i 575 . . . 4 ((𝐴 ∈ Fin ∧ 𝐴𝐵) ↔ (𝐴 ∈ Fin ∧ 𝐵𝐴))
3 enfii 9185 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
42, 3sylbi 216 . . 3 ((𝐴 ∈ Fin ∧ 𝐴𝐵) → 𝐵 ∈ Fin)
54expcom 414 . 2 (𝐴𝐵 → (𝐴 ∈ Fin → 𝐵 ∈ Fin))
6 enfii 9185 . . 3 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴 ∈ Fin)
76expcom 414 . 2 (𝐴𝐵 → (𝐵 ∈ Fin → 𝐴 ∈ Fin))
85, 7impbid 211 1 (𝐴𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106   class class class wbr 5147  cen 8932  Fincfn 8935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-om 7852  df-1o 8462  df-en 8936  df-fin 8939
This theorem is referenced by:  enfiiOLD  9260  wofib  9536  en2eleq  9999  sdom2en01  10293  fin23lem21  10330  enfin1ai  10375  fin17  10385  isfin7-2  10387  engch  10619  uzinf  13926  hasheni  14304  isfinite4  14318  symggen  19332  psgnunilem1  19355  dfod2  19426  odhash  19436  gsumval3lem2  19768  gsumval3  19769  cyggic  21119  cusgrfilem3  28703  unidifsnel  31759  unidifsnne  31760  derangen  34151  erdsze2lem1  34182  phpreu  36460  lindsdom  36470  poimirlem30  36506  diophin  41495  diophren  41536  fiphp3d  41542  fiuneneq  41924
  Copyright terms: Public domain W3C validator