| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > enfi | Structured version Visualization version GIF version | ||
| Description: Equinumerous sets have the same finiteness. For a shorter proof using ax-pow 5298, see enfiALT 9092. (Contributed by NM, 22-Aug-2008.) Avoid ax-pow 5298. (Revised by BTernaryTau, 23-Sep-2024.) |
| Ref | Expression |
|---|---|
| enfi | ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensymfib 9088 | . . . . 5 ⊢ (𝐴 ∈ Fin → (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴)) | |
| 2 | 1 | pm5.32i 574 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵) ↔ (𝐴 ∈ Fin ∧ 𝐵 ≈ 𝐴)) |
| 3 | enfii 9090 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≈ 𝐴) → 𝐵 ∈ Fin) | |
| 4 | 2, 3 | sylbi 217 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵) → 𝐵 ∈ Fin) |
| 5 | 4 | expcom 413 | . 2 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Fin → 𝐵 ∈ Fin)) |
| 6 | enfii 9090 | . . 3 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≈ 𝐵) → 𝐴 ∈ Fin) | |
| 7 | 6 | expcom 413 | . 2 ⊢ (𝐴 ≈ 𝐵 → (𝐵 ∈ Fin → 𝐴 ∈ Fin)) |
| 8 | 5, 7 | impbid 212 | 1 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 class class class wbr 5086 ≈ cen 8861 Fincfn 8864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-om 7792 df-1o 8380 df-en 8865 df-fin 8868 |
| This theorem is referenced by: wofib 9426 en2eleq 9894 sdom2en01 10188 fin23lem21 10225 enfin1ai 10270 fin17 10280 isfin7-2 10282 engch 10514 uzinf 13867 hasheni 14250 isfinite4 14264 symggen 19377 psgnunilem1 19400 dfod2 19471 odhash 19481 gsumval3lem2 19813 gsumval3 19814 cyggic 21504 cusgrfilem3 29431 unidifsnel 32507 unidifsnne 32508 derangen 35208 erdsze2lem1 35239 phpreu 37644 lindsdom 37654 poimirlem30 37690 diophin 42805 diophren 42846 fiphp3d 42852 fiuneneq 43225 |
| Copyright terms: Public domain | W3C validator |