MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enfi Structured version   Visualization version   GIF version

Theorem enfi 9107
Description: Equinumerous sets have the same finiteness. For a shorter proof using ax-pow 5307, see enfiALT 9108. (Contributed by NM, 22-Aug-2008.) Avoid ax-pow 5307. (Revised by BTernaryTau, 23-Sep-2024.)
Assertion
Ref Expression
enfi (𝐴𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin))

Proof of Theorem enfi
StepHypRef Expression
1 ensymfib 9104 . . . . 5 (𝐴 ∈ Fin → (𝐴𝐵𝐵𝐴))
21pm5.32i 574 . . . 4 ((𝐴 ∈ Fin ∧ 𝐴𝐵) ↔ (𝐴 ∈ Fin ∧ 𝐵𝐴))
3 enfii 9106 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
42, 3sylbi 217 . . 3 ((𝐴 ∈ Fin ∧ 𝐴𝐵) → 𝐵 ∈ Fin)
54expcom 413 . 2 (𝐴𝐵 → (𝐴 ∈ Fin → 𝐵 ∈ Fin))
6 enfii 9106 . . 3 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴 ∈ Fin)
76expcom 413 . 2 (𝐴𝐵 → (𝐵 ∈ Fin → 𝐴 ∈ Fin))
85, 7impbid 212 1 (𝐴𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2113   class class class wbr 5095  cen 8876  Fincfn 8879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-om 7806  df-1o 8394  df-en 8880  df-fin 8883
This theorem is referenced by:  wofib  9442  en2eleq  9910  sdom2en01  10204  fin23lem21  10241  enfin1ai  10286  fin17  10296  isfin7-2  10298  engch  10530  uzinf  13879  hasheni  14262  isfinite4  14276  symggen  19390  psgnunilem1  19413  dfod2  19484  odhash  19494  gsumval3lem2  19826  gsumval3  19827  cyggic  21518  cusgrfilem3  29457  unidifsnel  32536  unidifsnne  32537  derangen  35288  erdsze2lem1  35319  phpreu  37717  lindsdom  37727  poimirlem30  37763  diophin  42929  diophren  42970  fiphp3d  42976  fiuneneq  43349
  Copyright terms: Public domain W3C validator