MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enfi Structured version   Visualization version   GIF version

Theorem enfi 9091
Description: Equinumerous sets have the same finiteness. For a shorter proof using ax-pow 5298, see enfiALT 9092. (Contributed by NM, 22-Aug-2008.) Avoid ax-pow 5298. (Revised by BTernaryTau, 23-Sep-2024.)
Assertion
Ref Expression
enfi (𝐴𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin))

Proof of Theorem enfi
StepHypRef Expression
1 ensymfib 9088 . . . . 5 (𝐴 ∈ Fin → (𝐴𝐵𝐵𝐴))
21pm5.32i 574 . . . 4 ((𝐴 ∈ Fin ∧ 𝐴𝐵) ↔ (𝐴 ∈ Fin ∧ 𝐵𝐴))
3 enfii 9090 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
42, 3sylbi 217 . . 3 ((𝐴 ∈ Fin ∧ 𝐴𝐵) → 𝐵 ∈ Fin)
54expcom 413 . 2 (𝐴𝐵 → (𝐴 ∈ Fin → 𝐵 ∈ Fin))
6 enfii 9090 . . 3 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴 ∈ Fin)
76expcom 413 . 2 (𝐴𝐵 → (𝐵 ∈ Fin → 𝐴 ∈ Fin))
85, 7impbid 212 1 (𝐴𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2111   class class class wbr 5086  cen 8861  Fincfn 8864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-om 7792  df-1o 8380  df-en 8865  df-fin 8868
This theorem is referenced by:  wofib  9426  en2eleq  9894  sdom2en01  10188  fin23lem21  10225  enfin1ai  10270  fin17  10280  isfin7-2  10282  engch  10514  uzinf  13867  hasheni  14250  isfinite4  14264  symggen  19377  psgnunilem1  19400  dfod2  19471  odhash  19481  gsumval3lem2  19813  gsumval3  19814  cyggic  21504  cusgrfilem3  29431  unidifsnel  32507  unidifsnne  32508  derangen  35208  erdsze2lem1  35239  phpreu  37644  lindsdom  37654  poimirlem30  37690  diophin  42805  diophren  42846  fiphp3d  42852  fiuneneq  43225
  Copyright terms: Public domain W3C validator