MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enfi Structured version   Visualization version   GIF version

Theorem enfi 8973
Description: Equinumerous sets have the same finiteness. For a shorter proof using ax-pow 5288, see enfiALT 8974. (Contributed by NM, 22-Aug-2008.) Avoid ax-pow 5288. (Revised by BTernaryTau, 23-Sep-2024.)
Assertion
Ref Expression
enfi (𝐴𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin))

Proof of Theorem enfi
StepHypRef Expression
1 ensymfib 8970 . . . . 5 (𝐴 ∈ Fin → (𝐴𝐵𝐵𝐴))
21pm5.32i 575 . . . 4 ((𝐴 ∈ Fin ∧ 𝐴𝐵) ↔ (𝐴 ∈ Fin ∧ 𝐵𝐴))
3 enfii 8972 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
42, 3sylbi 216 . . 3 ((𝐴 ∈ Fin ∧ 𝐴𝐵) → 𝐵 ∈ Fin)
54expcom 414 . 2 (𝐴𝐵 → (𝐴 ∈ Fin → 𝐵 ∈ Fin))
6 enfii 8972 . . 3 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴 ∈ Fin)
76expcom 414 . 2 (𝐴𝐵 → (𝐵 ∈ Fin → 𝐴 ∈ Fin))
85, 7impbid 211 1 (𝐴𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106   class class class wbr 5074  cen 8730  Fincfn 8733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-1o 8297  df-en 8734  df-fin 8737
This theorem is referenced by:  enfiiOLD  9039  wofib  9304  en2eleq  9764  sdom2en01  10058  fin23lem21  10095  enfin1ai  10140  fin17  10150  isfin7-2  10152  engch  10384  uzinf  13685  hasheni  14062  isfinite4  14077  symggen  19078  psgnunilem1  19101  dfod2  19171  odhash  19179  gsumval3lem2  19507  gsumval3  19508  cyggic  20780  cusgrfilem3  27824  unidifsnel  30883  unidifsnne  30884  derangen  33134  erdsze2lem1  33165  phpreu  35761  lindsdom  35771  poimirlem30  35807  diophin  40594  diophren  40635  fiphp3d  40641  fiuneneq  41022
  Copyright terms: Public domain W3C validator