Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > enfi | Structured version Visualization version GIF version |
Description: Equinumerous sets have the same finiteness. For a shorter proof using ax-pow 5288, see enfiALT 8974. (Contributed by NM, 22-Aug-2008.) Avoid ax-pow 5288. (Revised by BTernaryTau, 23-Sep-2024.) |
Ref | Expression |
---|---|
enfi | ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensymfib 8970 | . . . . 5 ⊢ (𝐴 ∈ Fin → (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴)) | |
2 | 1 | pm5.32i 575 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵) ↔ (𝐴 ∈ Fin ∧ 𝐵 ≈ 𝐴)) |
3 | enfii 8972 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≈ 𝐴) → 𝐵 ∈ Fin) | |
4 | 2, 3 | sylbi 216 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵) → 𝐵 ∈ Fin) |
5 | 4 | expcom 414 | . 2 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Fin → 𝐵 ∈ Fin)) |
6 | enfii 8972 | . . 3 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≈ 𝐵) → 𝐴 ∈ Fin) | |
7 | 6 | expcom 414 | . 2 ⊢ (𝐴 ≈ 𝐵 → (𝐵 ∈ Fin → 𝐴 ∈ Fin)) |
8 | 5, 7 | impbid 211 | 1 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 class class class wbr 5074 ≈ cen 8730 Fincfn 8733 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-om 7713 df-1o 8297 df-en 8734 df-fin 8737 |
This theorem is referenced by: enfiiOLD 9039 wofib 9304 en2eleq 9764 sdom2en01 10058 fin23lem21 10095 enfin1ai 10140 fin17 10150 isfin7-2 10152 engch 10384 uzinf 13685 hasheni 14062 isfinite4 14077 symggen 19078 psgnunilem1 19101 dfod2 19171 odhash 19179 gsumval3lem2 19507 gsumval3 19508 cyggic 20780 cusgrfilem3 27824 unidifsnel 30883 unidifsnne 30884 derangen 33134 erdsze2lem1 33165 phpreu 35761 lindsdom 35771 poimirlem30 35807 diophin 40594 diophren 40635 fiphp3d 40641 fiuneneq 41022 |
Copyright terms: Public domain | W3C validator |