Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oninfint Structured version   Visualization version   GIF version

Theorem oninfint 43197
Description: The infimum of a non-empty class of ordinals is the intersection of that class. (Contributed by RP, 23-Jan-2025.)
Assertion
Ref Expression
oninfint ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → inf(𝐴, On, E ) = 𝐴)

Proof of Theorem oninfint
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 epweon 7810 . . 3 E We On
2 weso 5691 . . 3 ( E We On → E Or On)
31, 2mp1i 13 . 2 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → E Or On)
4 oninton 7831 . 2 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → 𝐴 ∈ On)
5 onint 7826 . 2 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → 𝐴𝐴)
6 intss1 4987 . . . . 5 (𝑥𝐴 𝐴𝑥)
76adantl 481 . . . 4 (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝐴𝑥)
8 simpl 482 . . . . . 6 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ On)
98sselda 4008 . . . . 5 (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ On)
10 ontri1 6429 . . . . 5 (( 𝐴 ∈ On ∧ 𝑥 ∈ On) → ( 𝐴𝑥 ↔ ¬ 𝑥 𝐴))
114, 9, 10syl2an2r 684 . . . 4 (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → ( 𝐴𝑥 ↔ ¬ 𝑥 𝐴))
127, 11mpbid 232 . . 3 (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → ¬ 𝑥 𝐴)
13 epelg 5600 . . . . 5 ( 𝐴 ∈ On → (𝑥 E 𝐴𝑥 𝐴))
144, 13syl 17 . . . 4 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → (𝑥 E 𝐴𝑥 𝐴))
1514adantr 480 . . 3 (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → (𝑥 E 𝐴𝑥 𝐴))
1612, 15mtbird 325 . 2 (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → ¬ 𝑥 E 𝐴)
173, 4, 5, 16infmin 9563 1 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → inf(𝐴, On, E ) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wss 3976  c0 4352   cint 4970   class class class wbr 5166   E cep 5598   Or wor 5606   We wwe 5651  Oncon0 6395  infcinf 9510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-cnv 5708  df-ord 6398  df-on 6399  df-iota 6525  df-riota 7404  df-sup 9511  df-inf 9512
This theorem is referenced by:  oninfunirab  43198
  Copyright terms: Public domain W3C validator