| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oninfint | Structured version Visualization version GIF version | ||
| Description: The infimum of a non-empty class of ordinals is the intersection of that class. (Contributed by RP, 23-Jan-2025.) |
| Ref | Expression |
|---|---|
| oninfint | ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → inf(𝐴, On, E ) = ∩ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epweon 7751 | . . 3 ⊢ E We On | |
| 2 | weso 5629 | . . 3 ⊢ ( E We On → E Or On) | |
| 3 | 1, 2 | mp1i 13 | . 2 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → E Or On) |
| 4 | oninton 7771 | . 2 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ On) | |
| 5 | onint 7766 | . 2 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ 𝐴) | |
| 6 | intss1 4927 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝑥) | |
| 7 | 6 | adantl 481 | . . . 4 ⊢ (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ 𝐴) → ∩ 𝐴 ⊆ 𝑥) |
| 8 | simpl 482 | . . . . . 6 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ On) | |
| 9 | 8 | sselda 3946 | . . . . 5 ⊢ (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ On) |
| 10 | ontri1 6366 | . . . . 5 ⊢ ((∩ 𝐴 ∈ On ∧ 𝑥 ∈ On) → (∩ 𝐴 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ ∩ 𝐴)) | |
| 11 | 4, 9, 10 | syl2an2r 685 | . . . 4 ⊢ (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ 𝐴) → (∩ 𝐴 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ ∩ 𝐴)) |
| 12 | 7, 11 | mpbid 232 | . . 3 ⊢ (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥 ∈ ∩ 𝐴) |
| 13 | epelg 5539 | . . . . 5 ⊢ (∩ 𝐴 ∈ On → (𝑥 E ∩ 𝐴 ↔ 𝑥 ∈ ∩ 𝐴)) | |
| 14 | 4, 13 | syl 17 | . . . 4 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → (𝑥 E ∩ 𝐴 ↔ 𝑥 ∈ ∩ 𝐴)) |
| 15 | 14 | adantr 480 | . . 3 ⊢ (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ 𝐴) → (𝑥 E ∩ 𝐴 ↔ 𝑥 ∈ ∩ 𝐴)) |
| 16 | 12, 15 | mtbird 325 | . 2 ⊢ (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥 E ∩ 𝐴) |
| 17 | 3, 4, 5, 16 | infmin 9447 | 1 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → inf(𝐴, On, E ) = ∩ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ⊆ wss 3914 ∅c0 4296 ∩ cint 4910 class class class wbr 5107 E cep 5537 Or wor 5545 We wwe 5590 Oncon0 6332 infcinf 9392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-br 5108 df-opab 5170 df-tr 5215 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-cnv 5646 df-ord 6335 df-on 6336 df-iota 6464 df-riota 7344 df-sup 9393 df-inf 9394 |
| This theorem is referenced by: oninfunirab 43226 |
| Copyright terms: Public domain | W3C validator |