Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oninfint Structured version   Visualization version   GIF version

Theorem oninfint 42713
Description: The infimum of a non-empty class of ordinals is the intersection of that class. (Contributed by RP, 23-Jan-2025.)
Assertion
Ref Expression
oninfint ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → inf(𝐴, On, E ) = 𝐴)

Proof of Theorem oninfint
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 epweon 7785 . . 3 E We On
2 weso 5673 . . 3 ( E We On → E Or On)
31, 2mp1i 13 . 2 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → E Or On)
4 oninton 7806 . 2 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → 𝐴 ∈ On)
5 onint 7801 . 2 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → 𝐴𝐴)
6 intss1 4970 . . . . 5 (𝑥𝐴 𝐴𝑥)
76adantl 480 . . . 4 (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝐴𝑥)
8 simpl 481 . . . . . 6 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ On)
98sselda 3982 . . . . 5 (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ On)
10 ontri1 6408 . . . . 5 (( 𝐴 ∈ On ∧ 𝑥 ∈ On) → ( 𝐴𝑥 ↔ ¬ 𝑥 𝐴))
114, 9, 10syl2an2r 683 . . . 4 (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → ( 𝐴𝑥 ↔ ¬ 𝑥 𝐴))
127, 11mpbid 231 . . 3 (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → ¬ 𝑥 𝐴)
13 epelg 5587 . . . . 5 ( 𝐴 ∈ On → (𝑥 E 𝐴𝑥 𝐴))
144, 13syl 17 . . . 4 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → (𝑥 E 𝐴𝑥 𝐴))
1514adantr 479 . . 3 (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → (𝑥 E 𝐴𝑥 𝐴))
1612, 15mtbird 324 . 2 (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → ¬ 𝑥 E 𝐴)
173, 4, 5, 16infmin 9527 1 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → inf(𝐴, On, E ) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wne 2937  wss 3949  c0 4326   cint 4953   class class class wbr 5152   E cep 5585   Or wor 5593   We wwe 5636  Oncon0 6374  infcinf 9474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-br 5153  df-opab 5215  df-tr 5270  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-cnv 5690  df-ord 6377  df-on 6378  df-iota 6505  df-riota 7382  df-sup 9475  df-inf 9476
This theorem is referenced by:  oninfunirab  42714
  Copyright terms: Public domain W3C validator