MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqfnfv2f Structured version   Visualization version   GIF version

Theorem eqfnfv2f 7010
Description: Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). This version of eqfnfv 7006 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 29-Jan-2004.)
Hypotheses
Ref Expression
eqfnfv2f.1 𝑥𝐹
eqfnfv2f.2 𝑥𝐺
Assertion
Ref Expression
eqfnfv2f ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem eqfnfv2f
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqfnfv 7006 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧)))
2 eqfnfv2f.1 . . . . 5 𝑥𝐹
3 nfcv 2892 . . . . 5 𝑥𝑧
42, 3nffv 6871 . . . 4 𝑥(𝐹𝑧)
5 eqfnfv2f.2 . . . . 5 𝑥𝐺
65, 3nffv 6871 . . . 4 𝑥(𝐺𝑧)
74, 6nfeq 2906 . . 3 𝑥(𝐹𝑧) = (𝐺𝑧)
8 nfv 1914 . . 3 𝑧(𝐹𝑥) = (𝐺𝑥)
9 fveq2 6861 . . . 4 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
10 fveq2 6861 . . . 4 (𝑧 = 𝑥 → (𝐺𝑧) = (𝐺𝑥))
119, 10eqeq12d 2746 . . 3 (𝑧 = 𝑥 → ((𝐹𝑧) = (𝐺𝑧) ↔ (𝐹𝑥) = (𝐺𝑥)))
127, 8, 11cbvralw 3282 . 2 (∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧) ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))
131, 12bitrdi 287 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wnfc 2877  wral 3045   Fn wfn 6509  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-fv 6522
This theorem is referenced by:  aacllem  49794
  Copyright terms: Public domain W3C validator