MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqfnfv2f Structured version   Visualization version   GIF version

Theorem eqfnfv2f 7025
Description: Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). This version of eqfnfv 7021 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 29-Jan-2004.)
Hypotheses
Ref Expression
eqfnfv2f.1 𝑥𝐹
eqfnfv2f.2 𝑥𝐺
Assertion
Ref Expression
eqfnfv2f ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem eqfnfv2f
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqfnfv 7021 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧)))
2 eqfnfv2f.1 . . . . 5 𝑥𝐹
3 nfcv 2898 . . . . 5 𝑥𝑧
42, 3nffv 6886 . . . 4 𝑥(𝐹𝑧)
5 eqfnfv2f.2 . . . . 5 𝑥𝐺
65, 3nffv 6886 . . . 4 𝑥(𝐺𝑧)
74, 6nfeq 2912 . . 3 𝑥(𝐹𝑧) = (𝐺𝑧)
8 nfv 1914 . . 3 𝑧(𝐹𝑥) = (𝐺𝑥)
9 fveq2 6876 . . . 4 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
10 fveq2 6876 . . . 4 (𝑧 = 𝑥 → (𝐺𝑧) = (𝐺𝑥))
119, 10eqeq12d 2751 . . 3 (𝑧 = 𝑥 → ((𝐹𝑧) = (𝐺𝑧) ↔ (𝐹𝑥) = (𝐺𝑥)))
127, 8, 11cbvralw 3286 . 2 (∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧) ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))
131, 12bitrdi 287 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wnfc 2883  wral 3051   Fn wfn 6526  cfv 6531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-fv 6539
This theorem is referenced by:  aacllem  49665
  Copyright terms: Public domain W3C validator