![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqfnfv2f | Structured version Visualization version GIF version |
Description: Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). This version of eqfnfv 6621 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 29-Jan-2004.) |
Ref | Expression |
---|---|
eqfnfv2f.1 | ⊢ Ⅎ𝑥𝐹 |
eqfnfv2f.2 | ⊢ Ⅎ𝑥𝐺 |
Ref | Expression |
---|---|
eqfnfv2f | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqfnfv 6621 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑧 ∈ 𝐴 (𝐹‘𝑧) = (𝐺‘𝑧))) | |
2 | eqfnfv2f.1 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
3 | nfcv 2926 | . . . . 5 ⊢ Ⅎ𝑥𝑧 | |
4 | 2, 3 | nffv 6503 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑧) |
5 | eqfnfv2f.2 | . . . . 5 ⊢ Ⅎ𝑥𝐺 | |
6 | 5, 3 | nffv 6503 | . . . 4 ⊢ Ⅎ𝑥(𝐺‘𝑧) |
7 | 4, 6 | nfeq 2937 | . . 3 ⊢ Ⅎ𝑥(𝐹‘𝑧) = (𝐺‘𝑧) |
8 | nfv 1873 | . . 3 ⊢ Ⅎ𝑧(𝐹‘𝑥) = (𝐺‘𝑥) | |
9 | fveq2 6493 | . . . 4 ⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) | |
10 | fveq2 6493 | . . . 4 ⊢ (𝑧 = 𝑥 → (𝐺‘𝑧) = (𝐺‘𝑥)) | |
11 | 9, 10 | eqeq12d 2787 | . . 3 ⊢ (𝑧 = 𝑥 → ((𝐹‘𝑧) = (𝐺‘𝑧) ↔ (𝐹‘𝑥) = (𝐺‘𝑥))) |
12 | 7, 8, 11 | cbvral 3373 | . 2 ⊢ (∀𝑧 ∈ 𝐴 (𝐹‘𝑧) = (𝐺‘𝑧) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) |
13 | 1, 12 | syl6bb 279 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1507 Ⅎwnfc 2910 ∀wral 3082 Fn wfn 6177 ‘cfv 6182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-nul 4174 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-br 4924 df-opab 4986 df-mpt 5003 df-id 5305 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-iota 6146 df-fun 6184 df-fn 6185 df-fv 6190 |
This theorem is referenced by: aacllem 44209 |
Copyright terms: Public domain | W3C validator |