| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqfnfvd | Structured version Visualization version GIF version | ||
| Description: Deduction for equality of functions. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| Ref | Expression |
|---|---|
| eqfnfvd.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| eqfnfvd.2 | ⊢ (𝜑 → 𝐺 Fn 𝐴) |
| eqfnfvd.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
| Ref | Expression |
|---|---|
| eqfnfvd | ⊢ (𝜑 → 𝐹 = 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqfnfvd.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) | |
| 2 | 1 | ralrimiva 3125 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) |
| 3 | eqfnfvd.1 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 4 | eqfnfvd.2 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐴) | |
| 5 | eqfnfv 7003 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) | |
| 6 | 3, 4, 5 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
| 7 | 2, 6 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹 = 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Fn wfn 6506 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-fv 6519 |
| This theorem is referenced by: foeqcnvco 7275 f1eqcocnv 7276 offveq 7679 tfrlem1 8344 updjudhcoinlf 9885 updjudhcoinrg 9886 ackbij2lem2 10192 ackbij2lem3 10193 fpwwe2lem7 10590 seqfeq2 13990 seqfeq 13992 seqfeq3 14017 ccatlid 14551 ccatrid 14552 ccatass 14553 ccatswrd 14633 swrdccat2 14634 pfxid 14649 ccatpfx 14666 pfxccat1 14667 swrdswrd 14670 cats1un 14686 swrdccatin1 14690 swrdccatin2 14694 pfxccatin12 14698 revccat 14731 revrev 14732 cshco 14802 swrdco 14803 seqshft 15051 seq1st 16541 xpsfeq 17526 yonedainv 18242 pwsco1mhm 18759 ghmquskerco 19216 f1otrspeq 19377 pmtrfinv 19391 symgtrinv 19402 frgpup3lem 19707 ablfac1eu 20005 zrinitorngc 20551 zrtermorngc 20552 zrtermoringc 20584 psgndiflemB 21509 frlmup1 21707 frlmup3 21709 frlmup4 21710 psrlidm 21871 psrridm 21872 psrass1 21873 subrgascl 21973 evlslem1 21989 psdmplcl 22049 psdvsca 22051 mavmulass 22436 upxp 23510 uptx 23512 cnextfres1 23955 ovolshftlem1 25410 volsup 25457 dvidlem 25816 dvrec 25859 dveq0 25905 dv11cn 25906 ftc1cn 25950 coemulc 26160 aannenlem1 26236 ulmuni 26301 ulmdv 26312 ostthlem1 27538 nvinvfval 30569 sspn 30665 kbass2 32046 xppreima2 32575 fdifsuppconst 32612 indpreima 32788 psgnfzto1stlem 33057 cycpmco2 33090 cyc3co2 33097 ply1gsumz 33564 esumcvg 34076 signstres 34566 hgt750lemb 34647 revpfxsfxrev 35103 subfacp1lem4 35170 cvmliftmolem2 35269 msubff1 35543 iprodefisumlem 35727 poimirlem8 37622 poimirlem13 37627 poimirlem14 37628 ftc1cnnc 37686 eqlkr3 39094 cdleme51finvN 40550 sticksstones11 42144 aks6d1c6lem4 42161 ofun 42224 frlmvscadiccat 42494 fiabv 42524 evlsvvval 42551 fsuppind 42578 ismrcd2 42687 ofoafo 43345 ofoaid1 43347 ofoaid2 43348 ofoaass 43349 ofoacom 43350 naddcnffo 43353 naddcnfcom 43355 naddcnfid1 43356 naddcnfass 43358 rfovcnvf1od 43993 dssmapntrcls 44117 dvconstbi 44323 fsumsermpt 45577 icccncfext 45885 voliooicof 45994 etransclem35 46267 rrxsnicc 46298 ovolval4lem1 46647 fcores 47068 1arymaptf1 48631 2arymaptf1 48642 tposideq 48876 fucoid 49337 prcofdiag1 49382 prcofdiag 49383 oppfdiag1 49403 oppfdiag 49405 funcsn 49530 |
| Copyright terms: Public domain | W3C validator |