![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqfnfvd | Structured version Visualization version GIF version |
Description: Deduction for equality of functions. (Contributed by Mario Carneiro, 24-Jul-2014.) |
Ref | Expression |
---|---|
eqfnfvd.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
eqfnfvd.2 | ⊢ (𝜑 → 𝐺 Fn 𝐴) |
eqfnfvd.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
Ref | Expression |
---|---|
eqfnfvd | ⊢ (𝜑 → 𝐹 = 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqfnfvd.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) | |
2 | 1 | ralrimiva 3143 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) |
3 | eqfnfvd.1 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
4 | eqfnfvd.2 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐴) | |
5 | eqfnfv 7050 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) | |
6 | 3, 4, 5 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
7 | 2, 6 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹 = 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ∀wral 3058 Fn wfn 6557 ‘cfv 6562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-fv 6570 |
This theorem is referenced by: foeqcnvco 7319 f1eqcocnv 7320 offveq 7722 tfrlem1 8414 updjudhcoinlf 9969 updjudhcoinrg 9970 ackbij2lem2 10276 ackbij2lem3 10277 fpwwe2lem7 10674 seqfeq2 14062 seqfeq 14064 seqfeq3 14089 ccatlid 14620 ccatrid 14621 ccatass 14622 ccatswrd 14702 swrdccat2 14703 pfxid 14718 ccatpfx 14735 pfxccat1 14736 swrdswrd 14739 cats1un 14755 swrdccatin1 14759 swrdccatin2 14763 pfxccatin12 14767 revccat 14800 revrev 14801 cshco 14871 swrdco 14872 seqshft 15120 seq1st 16604 xpsfeq 17609 yonedainv 18337 pwsco1mhm 18857 ghmquskerco 19314 f1otrspeq 19479 pmtrfinv 19493 symgtrinv 19504 frgpup3lem 19809 ablfac1eu 20107 zrinitorngc 20658 zrtermorngc 20659 zrtermoringc 20691 psgndiflemB 21635 frlmup1 21835 frlmup3 21837 frlmup4 21838 psrlidm 21999 psrridm 22000 psrass1 22001 subrgascl 22107 evlslem1 22123 psdmplcl 22183 psdvsca 22185 mavmulass 22570 upxp 23646 uptx 23648 cnextfres1 24091 ovolshftlem1 25557 volsup 25604 dvidlem 25964 dvrec 26007 dveq0 26053 dv11cn 26054 ftc1cn 26098 coemulc 26308 aannenlem1 26384 ulmuni 26449 ulmdv 26460 ostthlem1 27685 nvinvfval 30668 sspn 30764 kbass2 32145 xppreima2 32667 fdifsuppconst 32703 psgnfzto1stlem 33102 cycpmco2 33135 cyc3co2 33142 ply1gsumz 33598 indpreima 34005 esumcvg 34066 signstres 34568 hgt750lemb 34649 revpfxsfxrev 35099 subfacp1lem4 35167 cvmliftmolem2 35266 msubff1 35540 iprodefisumlem 35719 poimirlem8 37614 poimirlem13 37619 poimirlem14 37620 ftc1cnnc 37678 eqlkr3 39082 cdleme51finvN 40538 sticksstones11 42137 aks6d1c6lem4 42154 metakunt33 42218 ofun 42255 frlmvscadiccat 42492 fiabv 42522 evlsvvval 42549 fsuppind 42576 ismrcd2 42686 ofoafo 43345 ofoaid1 43347 ofoaid2 43348 ofoaass 43349 ofoacom 43350 naddcnffo 43353 naddcnfcom 43355 naddcnfid1 43356 naddcnfass 43358 rfovcnvf1od 43993 dssmapntrcls 44117 dvconstbi 44329 fsumsermpt 45534 icccncfext 45842 voliooicof 45951 etransclem35 46224 rrxsnicc 46255 ovolval4lem1 46604 fcores 47016 1arymaptf1 48491 2arymaptf1 48502 |
Copyright terms: Public domain | W3C validator |