| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqfnfvd | Structured version Visualization version GIF version | ||
| Description: Deduction for equality of functions. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| Ref | Expression |
|---|---|
| eqfnfvd.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| eqfnfvd.2 | ⊢ (𝜑 → 𝐺 Fn 𝐴) |
| eqfnfvd.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
| Ref | Expression |
|---|---|
| eqfnfvd | ⊢ (𝜑 → 𝐹 = 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqfnfvd.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) | |
| 2 | 1 | ralrimiva 3126 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) |
| 3 | eqfnfvd.1 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 4 | eqfnfvd.2 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐴) | |
| 5 | eqfnfv 7006 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) | |
| 6 | 3, 4, 5 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
| 7 | 2, 6 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹 = 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 Fn wfn 6509 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-fv 6522 |
| This theorem is referenced by: foeqcnvco 7278 f1eqcocnv 7279 offveq 7682 tfrlem1 8347 updjudhcoinlf 9892 updjudhcoinrg 9893 ackbij2lem2 10199 ackbij2lem3 10200 fpwwe2lem7 10597 seqfeq2 13997 seqfeq 13999 seqfeq3 14024 ccatlid 14558 ccatrid 14559 ccatass 14560 ccatswrd 14640 swrdccat2 14641 pfxid 14656 ccatpfx 14673 pfxccat1 14674 swrdswrd 14677 cats1un 14693 swrdccatin1 14697 swrdccatin2 14701 pfxccatin12 14705 revccat 14738 revrev 14739 cshco 14809 swrdco 14810 seqshft 15058 seq1st 16548 xpsfeq 17533 yonedainv 18249 pwsco1mhm 18766 ghmquskerco 19223 f1otrspeq 19384 pmtrfinv 19398 symgtrinv 19409 frgpup3lem 19714 ablfac1eu 20012 zrinitorngc 20558 zrtermorngc 20559 zrtermoringc 20591 psgndiflemB 21516 frlmup1 21714 frlmup3 21716 frlmup4 21717 psrlidm 21878 psrridm 21879 psrass1 21880 subrgascl 21980 evlslem1 21996 psdmplcl 22056 psdvsca 22058 mavmulass 22443 upxp 23517 uptx 23519 cnextfres1 23962 ovolshftlem1 25417 volsup 25464 dvidlem 25823 dvrec 25866 dveq0 25912 dv11cn 25913 ftc1cn 25957 coemulc 26167 aannenlem1 26243 ulmuni 26308 ulmdv 26319 ostthlem1 27545 nvinvfval 30576 sspn 30672 kbass2 32053 xppreima2 32582 fdifsuppconst 32619 indpreima 32795 psgnfzto1stlem 33064 cycpmco2 33097 cyc3co2 33104 ply1gsumz 33571 esumcvg 34083 signstres 34573 hgt750lemb 34654 revpfxsfxrev 35110 subfacp1lem4 35177 cvmliftmolem2 35276 msubff1 35550 iprodefisumlem 35734 poimirlem8 37629 poimirlem13 37634 poimirlem14 37635 ftc1cnnc 37693 eqlkr3 39101 cdleme51finvN 40557 sticksstones11 42151 aks6d1c6lem4 42168 ofun 42231 frlmvscadiccat 42501 fiabv 42531 evlsvvval 42558 fsuppind 42585 ismrcd2 42694 ofoafo 43352 ofoaid1 43354 ofoaid2 43355 ofoaass 43356 ofoacom 43357 naddcnffo 43360 naddcnfcom 43362 naddcnfid1 43363 naddcnfass 43365 rfovcnvf1od 44000 dssmapntrcls 44124 dvconstbi 44330 fsumsermpt 45584 icccncfext 45892 voliooicof 46001 etransclem35 46274 rrxsnicc 46305 ovolval4lem1 46654 fcores 47072 1arymaptf1 48635 2arymaptf1 48646 tposideq 48880 fucoid 49341 prcofdiag1 49386 prcofdiag 49387 oppfdiag1 49407 oppfdiag 49409 funcsn 49534 |
| Copyright terms: Public domain | W3C validator |