![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqfnfvd | Structured version Visualization version GIF version |
Description: Deduction for equality of functions. (Contributed by Mario Carneiro, 24-Jul-2014.) |
Ref | Expression |
---|---|
eqfnfvd.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
eqfnfvd.2 | ⊢ (𝜑 → 𝐺 Fn 𝐴) |
eqfnfvd.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
Ref | Expression |
---|---|
eqfnfvd | ⊢ (𝜑 → 𝐹 = 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqfnfvd.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) | |
2 | 1 | ralrimiva 3152 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) |
3 | eqfnfvd.1 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
4 | eqfnfvd.2 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐴) | |
5 | eqfnfv 7064 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) | |
6 | 3, 4, 5 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
7 | 2, 6 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹 = 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 Fn wfn 6568 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-fv 6581 |
This theorem is referenced by: foeqcnvco 7336 f1eqcocnv 7337 offveq 7739 tfrlem1 8432 updjudhcoinlf 10001 updjudhcoinrg 10002 ackbij2lem2 10308 ackbij2lem3 10309 fpwwe2lem7 10706 seqfeq2 14076 seqfeq 14078 seqfeq3 14103 ccatlid 14634 ccatrid 14635 ccatass 14636 ccatswrd 14716 swrdccat2 14717 pfxid 14732 ccatpfx 14749 pfxccat1 14750 swrdswrd 14753 cats1un 14769 swrdccatin1 14773 swrdccatin2 14777 pfxccatin12 14781 revccat 14814 revrev 14815 cshco 14885 swrdco 14886 seqshft 15134 seq1st 16618 xpsfeq 17623 yonedainv 18351 pwsco1mhm 18867 ghmquskerco 19324 f1otrspeq 19489 pmtrfinv 19503 symgtrinv 19514 frgpup3lem 19819 ablfac1eu 20117 zrinitorngc 20664 zrtermorngc 20665 zrtermoringc 20697 psgndiflemB 21641 frlmup1 21841 frlmup3 21843 frlmup4 21844 psrlidm 22005 psrridm 22006 psrass1 22007 subrgascl 22113 evlslem1 22129 psdmplcl 22189 psdvsca 22191 mavmulass 22576 upxp 23652 uptx 23654 cnextfres1 24097 ovolshftlem1 25563 volsup 25610 dvidlem 25970 dvrec 26013 dveq0 26059 dv11cn 26060 ftc1cn 26104 coemulc 26314 aannenlem1 26388 ulmuni 26453 ulmdv 26464 ostthlem1 27689 nvinvfval 30672 sspn 30768 kbass2 32149 xppreima2 32669 fdifsuppconst 32701 psgnfzto1stlem 33093 cycpmco2 33126 cyc3co2 33133 ply1gsumz 33584 indpreima 33989 esumcvg 34050 signstres 34552 hgt750lemb 34633 revpfxsfxrev 35083 subfacp1lem4 35151 cvmliftmolem2 35250 msubff1 35524 iprodefisumlem 35702 poimirlem8 37588 poimirlem13 37593 poimirlem14 37594 ftc1cnnc 37652 eqlkr3 39057 cdleme51finvN 40513 sticksstones11 42113 aks6d1c6lem4 42130 metakunt33 42194 ofun 42231 frlmvscadiccat 42461 fiabv 42491 evlsvvval 42518 fsuppind 42545 ismrcd2 42655 ofoafo 43318 ofoaid1 43320 ofoaid2 43321 ofoaass 43322 ofoacom 43323 naddcnffo 43326 naddcnfcom 43328 naddcnfid1 43329 naddcnfass 43331 rfovcnvf1od 43966 dssmapntrcls 44090 dvconstbi 44303 fsumsermpt 45500 icccncfext 45808 voliooicof 45917 etransclem35 46190 rrxsnicc 46221 ovolval4lem1 46570 fcores 46982 1arymaptf1 48376 2arymaptf1 48387 |
Copyright terms: Public domain | W3C validator |