| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqfnfvd | Structured version Visualization version GIF version | ||
| Description: Deduction for equality of functions. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| Ref | Expression |
|---|---|
| eqfnfvd.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| eqfnfvd.2 | ⊢ (𝜑 → 𝐺 Fn 𝐴) |
| eqfnfvd.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
| Ref | Expression |
|---|---|
| eqfnfvd | ⊢ (𝜑 → 𝐹 = 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqfnfvd.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) | |
| 2 | 1 | ralrimiva 3125 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) |
| 3 | eqfnfvd.1 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 4 | eqfnfvd.2 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐴) | |
| 5 | eqfnfv 6985 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) | |
| 6 | 3, 4, 5 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
| 7 | 2, 6 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹 = 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Fn wfn 6494 ‘cfv 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-fv 6507 |
| This theorem is referenced by: foeqcnvco 7257 f1eqcocnv 7258 offveq 7659 tfrlem1 8321 updjudhcoinlf 9861 updjudhcoinrg 9862 ackbij2lem2 10168 ackbij2lem3 10169 fpwwe2lem7 10566 seqfeq2 13966 seqfeq 13968 seqfeq3 13993 ccatlid 14527 ccatrid 14528 ccatass 14529 ccatswrd 14609 swrdccat2 14610 pfxid 14625 ccatpfx 14642 pfxccat1 14643 swrdswrd 14646 cats1un 14662 swrdccatin1 14666 swrdccatin2 14670 pfxccatin12 14674 revccat 14707 revrev 14708 cshco 14778 swrdco 14779 seqshft 15027 seq1st 16517 xpsfeq 17502 yonedainv 18218 pwsco1mhm 18735 ghmquskerco 19192 f1otrspeq 19353 pmtrfinv 19367 symgtrinv 19378 frgpup3lem 19683 ablfac1eu 19981 zrinitorngc 20527 zrtermorngc 20528 zrtermoringc 20560 psgndiflemB 21485 frlmup1 21683 frlmup3 21685 frlmup4 21686 psrlidm 21847 psrridm 21848 psrass1 21849 subrgascl 21949 evlslem1 21965 psdmplcl 22025 psdvsca 22027 mavmulass 22412 upxp 23486 uptx 23488 cnextfres1 23931 ovolshftlem1 25386 volsup 25433 dvidlem 25792 dvrec 25835 dveq0 25881 dv11cn 25882 ftc1cn 25926 coemulc 26136 aannenlem1 26212 ulmuni 26277 ulmdv 26288 ostthlem1 27514 nvinvfval 30542 sspn 30638 kbass2 32019 xppreima2 32548 fdifsuppconst 32585 indpreima 32761 psgnfzto1stlem 33030 cycpmco2 33063 cyc3co2 33070 ply1gsumz 33537 esumcvg 34049 signstres 34539 hgt750lemb 34620 revpfxsfxrev 35076 subfacp1lem4 35143 cvmliftmolem2 35242 msubff1 35516 iprodefisumlem 35700 poimirlem8 37595 poimirlem13 37600 poimirlem14 37601 ftc1cnnc 37659 eqlkr3 39067 cdleme51finvN 40523 sticksstones11 42117 aks6d1c6lem4 42134 ofun 42197 frlmvscadiccat 42467 fiabv 42497 evlsvvval 42524 fsuppind 42551 ismrcd2 42660 ofoafo 43318 ofoaid1 43320 ofoaid2 43321 ofoaass 43322 ofoacom 43323 naddcnffo 43326 naddcnfcom 43328 naddcnfid1 43329 naddcnfass 43331 rfovcnvf1od 43966 dssmapntrcls 44090 dvconstbi 44296 fsumsermpt 45550 icccncfext 45858 voliooicof 45967 etransclem35 46240 rrxsnicc 46271 ovolval4lem1 46620 fcores 47041 1arymaptf1 48604 2arymaptf1 48615 tposideq 48849 fucoid 49310 prcofdiag1 49355 prcofdiag 49356 oppfdiag1 49376 oppfdiag 49378 funcsn 49503 |
| Copyright terms: Public domain | W3C validator |