| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqfnfvd | Structured version Visualization version GIF version | ||
| Description: Deduction for equality of functions. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| Ref | Expression |
|---|---|
| eqfnfvd.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| eqfnfvd.2 | ⊢ (𝜑 → 𝐺 Fn 𝐴) |
| eqfnfvd.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
| Ref | Expression |
|---|---|
| eqfnfvd | ⊢ (𝜑 → 𝐹 = 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqfnfvd.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) | |
| 2 | 1 | ralrimiva 3124 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) |
| 3 | eqfnfvd.1 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 4 | eqfnfvd.2 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐴) | |
| 5 | eqfnfv 6959 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) | |
| 6 | 3, 4, 5 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
| 7 | 2, 6 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹 = 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Fn wfn 6471 ‘cfv 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-fv 6484 |
| This theorem is referenced by: foeqcnvco 7229 f1eqcocnv 7230 offveq 7631 tfrlem1 8290 updjudhcoinlf 9820 updjudhcoinrg 9821 ackbij2lem2 10125 ackbij2lem3 10126 fpwwe2lem7 10523 seqfeq2 13927 seqfeq 13929 seqfeq3 13954 ccatlid 14489 ccatrid 14490 ccatass 14491 ccatswrd 14571 swrdccat2 14572 pfxid 14587 ccatpfx 14603 pfxccat1 14604 swrdswrd 14607 cats1un 14623 swrdccatin1 14627 swrdccatin2 14631 pfxccatin12 14635 revccat 14668 revrev 14669 cshco 14738 swrdco 14739 seqshft 14987 seq1st 16477 xpsfeq 17462 yonedainv 18182 pwsco1mhm 18735 ghmquskerco 19191 f1otrspeq 19354 pmtrfinv 19368 symgtrinv 19379 frgpup3lem 19684 ablfac1eu 19982 zrinitorngc 20552 zrtermorngc 20553 zrtermoringc 20585 psgndiflemB 21532 frlmup1 21730 frlmup3 21732 frlmup4 21733 psrlidm 21894 psrridm 21895 psrass1 21896 subrgascl 21996 evlslem1 22012 psdmplcl 22072 psdvsca 22074 mavmulass 22459 upxp 23533 uptx 23535 cnextfres1 23978 ovolshftlem1 25432 volsup 25479 dvidlem 25838 dvrec 25881 dveq0 25927 dv11cn 25928 ftc1cn 25972 coemulc 26182 aannenlem1 26258 ulmuni 26323 ulmdv 26334 ostthlem1 27560 nvinvfval 30612 sspn 30708 kbass2 32089 xppreima2 32625 fdifsuppconst 32662 indpreima 32838 psgnfzto1stlem 33061 cycpmco2 33094 cyc3co2 33101 ply1gsumz 33551 esumcvg 34091 signstres 34580 hgt750lemb 34661 revpfxsfxrev 35152 subfacp1lem4 35219 cvmliftmolem2 35318 msubff1 35592 iprodefisumlem 35776 poimirlem8 37668 poimirlem13 37673 poimirlem14 37674 ftc1cnnc 37732 eqlkr3 39140 cdleme51finvN 40595 sticksstones11 42189 aks6d1c6lem4 42206 ofun 42269 frlmvscadiccat 42539 fiabv 42569 evlsvvval 42596 fsuppind 42623 ismrcd2 42732 ofoafo 43389 ofoaid1 43391 ofoaid2 43392 ofoaass 43393 ofoacom 43394 naddcnffo 43397 naddcnfcom 43399 naddcnfid1 43400 naddcnfass 43402 rfovcnvf1od 44037 dssmapntrcls 44161 dvconstbi 44367 fsumsermpt 45619 icccncfext 45925 voliooicof 46034 etransclem35 46307 rrxsnicc 46338 ovolval4lem1 46687 fcores 47098 1arymaptf1 48674 2arymaptf1 48685 tposideq 48919 fucoid 49380 prcofdiag1 49425 prcofdiag 49426 oppfdiag1 49446 oppfdiag 49448 funcsn 49573 |
| Copyright terms: Public domain | W3C validator |