Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqfnfvd | Structured version Visualization version GIF version |
Description: Deduction for equality of functions. (Contributed by Mario Carneiro, 24-Jul-2014.) |
Ref | Expression |
---|---|
eqfnfvd.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
eqfnfvd.2 | ⊢ (𝜑 → 𝐺 Fn 𝐴) |
eqfnfvd.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
Ref | Expression |
---|---|
eqfnfvd | ⊢ (𝜑 → 𝐹 = 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqfnfvd.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) | |
2 | 1 | ralrimiva 3109 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) |
3 | eqfnfvd.1 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
4 | eqfnfvd.2 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐴) | |
5 | eqfnfv 6903 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) | |
6 | 3, 4, 5 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
7 | 2, 6 | mpbird 256 | 1 ⊢ (𝜑 → 𝐹 = 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ∀wral 3065 Fn wfn 6425 ‘cfv 6430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-fv 6438 |
This theorem is referenced by: foeqcnvco 7165 f1eqcocnv 7166 f1eqcocnvOLD 7167 offveq 7548 tfrlem1 8191 updjudhcoinlf 9674 updjudhcoinrg 9675 ackbij2lem2 9980 ackbij2lem3 9981 fpwwe2lem7 10377 seqfeq2 13727 seqfeq 13729 seqfeq3 13754 ccatlid 14272 ccatrid 14273 ccatass 14274 ccatswrd 14362 swrdccat2 14363 pfxid 14378 ccatpfx 14395 pfxccat1 14396 swrdswrd 14399 cats1un 14415 swrdccatin1 14419 swrdccatin2 14423 pfxccatin12 14427 revccat 14460 revrev 14461 cshco 14530 swrdco 14531 seqshft 14777 seq1st 16257 xpsfeq 17255 yonedainv 17980 pwsco1mhm 18451 f1otrspeq 19036 pmtrfinv 19050 symgtrinv 19061 frgpup3lem 19364 ablfac1eu 19657 psgndiflemB 20786 frlmup1 20986 frlmup3 20988 frlmup4 20989 psrlidm 21153 psrridm 21154 psrass1 21155 subrgascl 21255 evlslem1 21273 mavmulass 21679 upxp 22755 uptx 22757 cnextfres1 23200 ovolshftlem1 24654 volsup 24701 dvidlem 25060 dvrec 25100 dveq0 25145 dv11cn 25146 ftc1cn 25188 coemulc 25397 aannenlem1 25469 ulmuni 25532 ulmdv 25543 ostthlem1 26756 nvinvfval 28981 sspn 29077 kbass2 30458 xppreima2 30967 fdifsuppconst 31002 psgnfzto1stlem 31346 cycpmco2 31379 cyc3co2 31386 indpreima 31972 esumcvg 32033 signstres 32533 hgt750lemb 32615 revpfxsfxrev 33056 subfacp1lem4 33124 cvmliftmolem2 33223 msubff1 33497 iprodefisumlem 33685 poimirlem8 35764 poimirlem13 35769 poimirlem14 35770 ftc1cnnc 35828 eqlkr3 37094 cdleme51finvN 38549 sticksstones11 40092 metakunt33 40137 ofun 40191 frlmvscadiccat 40217 evlsbagval 40255 fsuppind 40259 ismrcd2 40501 rfovcnvf1od 41565 dssmapntrcls 41691 dvconstbi 41905 fsumsermpt 43074 icccncfext 43382 voliooicof 43491 etransclem35 43764 rrxsnicc 43795 ovolval4lem1 44141 fcores 44512 zrinitorngc 45510 zrtermorngc 45511 zrtermoringc 45580 1arymaptf1 45940 2arymaptf1 45951 |
Copyright terms: Public domain | W3C validator |