| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqfnfvd | Structured version Visualization version GIF version | ||
| Description: Deduction for equality of functions. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| Ref | Expression |
|---|---|
| eqfnfvd.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| eqfnfvd.2 | ⊢ (𝜑 → 𝐺 Fn 𝐴) |
| eqfnfvd.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
| Ref | Expression |
|---|---|
| eqfnfvd | ⊢ (𝜑 → 𝐹 = 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqfnfvd.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) | |
| 2 | 1 | ralrimiva 3121 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) |
| 3 | eqfnfvd.1 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 4 | eqfnfvd.2 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐴) | |
| 5 | eqfnfv 6965 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) | |
| 6 | 3, 4, 5 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
| 7 | 2, 6 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹 = 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Fn wfn 6477 ‘cfv 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-fv 6490 |
| This theorem is referenced by: foeqcnvco 7237 f1eqcocnv 7238 offveq 7639 tfrlem1 8298 updjudhcoinlf 9828 updjudhcoinrg 9829 ackbij2lem2 10133 ackbij2lem3 10134 fpwwe2lem7 10531 seqfeq2 13932 seqfeq 13934 seqfeq3 13959 ccatlid 14493 ccatrid 14494 ccatass 14495 ccatswrd 14575 swrdccat2 14576 pfxid 14591 ccatpfx 14607 pfxccat1 14608 swrdswrd 14611 cats1un 14627 swrdccatin1 14631 swrdccatin2 14635 pfxccatin12 14639 revccat 14672 revrev 14673 cshco 14743 swrdco 14744 seqshft 14992 seq1st 16482 xpsfeq 17467 yonedainv 18187 pwsco1mhm 18706 ghmquskerco 19163 f1otrspeq 19326 pmtrfinv 19340 symgtrinv 19351 frgpup3lem 19656 ablfac1eu 19954 zrinitorngc 20527 zrtermorngc 20528 zrtermoringc 20560 psgndiflemB 21507 frlmup1 21705 frlmup3 21707 frlmup4 21708 psrlidm 21869 psrridm 21870 psrass1 21871 subrgascl 21971 evlslem1 21987 psdmplcl 22047 psdvsca 22049 mavmulass 22434 upxp 23508 uptx 23510 cnextfres1 23953 ovolshftlem1 25408 volsup 25455 dvidlem 25814 dvrec 25857 dveq0 25903 dv11cn 25904 ftc1cn 25948 coemulc 26158 aannenlem1 26234 ulmuni 26299 ulmdv 26310 ostthlem1 27536 nvinvfval 30584 sspn 30680 kbass2 32061 xppreima2 32594 fdifsuppconst 32631 indpreima 32808 psgnfzto1stlem 33042 cycpmco2 33075 cyc3co2 33082 ply1gsumz 33531 esumcvg 34053 signstres 34543 hgt750lemb 34624 revpfxsfxrev 35089 subfacp1lem4 35156 cvmliftmolem2 35255 msubff1 35529 iprodefisumlem 35713 poimirlem8 37608 poimirlem13 37613 poimirlem14 37614 ftc1cnnc 37672 eqlkr3 39080 cdleme51finvN 40535 sticksstones11 42129 aks6d1c6lem4 42146 ofun 42209 frlmvscadiccat 42479 fiabv 42509 evlsvvval 42536 fsuppind 42563 ismrcd2 42672 ofoafo 43329 ofoaid1 43331 ofoaid2 43332 ofoaass 43333 ofoacom 43334 naddcnffo 43337 naddcnfcom 43339 naddcnfid1 43340 naddcnfass 43342 rfovcnvf1od 43977 dssmapntrcls 44101 dvconstbi 44307 fsumsermpt 45560 icccncfext 45868 voliooicof 45977 etransclem35 46250 rrxsnicc 46281 ovolval4lem1 46630 fcores 47051 1arymaptf1 48627 2arymaptf1 48638 tposideq 48872 fucoid 49333 prcofdiag1 49378 prcofdiag 49379 oppfdiag1 49399 oppfdiag 49401 funcsn 49526 |
| Copyright terms: Public domain | W3C validator |