| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqfnfvd | Structured version Visualization version GIF version | ||
| Description: Deduction for equality of functions. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| Ref | Expression |
|---|---|
| eqfnfvd.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| eqfnfvd.2 | ⊢ (𝜑 → 𝐺 Fn 𝐴) |
| eqfnfvd.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
| Ref | Expression |
|---|---|
| eqfnfvd | ⊢ (𝜑 → 𝐹 = 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqfnfvd.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) | |
| 2 | 1 | ralrimiva 3132 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) |
| 3 | eqfnfvd.1 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 4 | eqfnfvd.2 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐴) | |
| 5 | eqfnfv 7021 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) | |
| 6 | 3, 4, 5 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
| 7 | 2, 6 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹 = 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 Fn wfn 6526 ‘cfv 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-fv 6539 |
| This theorem is referenced by: foeqcnvco 7293 f1eqcocnv 7294 offveq 7697 tfrlem1 8390 updjudhcoinlf 9946 updjudhcoinrg 9947 ackbij2lem2 10253 ackbij2lem3 10254 fpwwe2lem7 10651 seqfeq2 14043 seqfeq 14045 seqfeq3 14070 ccatlid 14604 ccatrid 14605 ccatass 14606 ccatswrd 14686 swrdccat2 14687 pfxid 14702 ccatpfx 14719 pfxccat1 14720 swrdswrd 14723 cats1un 14739 swrdccatin1 14743 swrdccatin2 14747 pfxccatin12 14751 revccat 14784 revrev 14785 cshco 14855 swrdco 14856 seqshft 15104 seq1st 16590 xpsfeq 17577 yonedainv 18293 pwsco1mhm 18810 ghmquskerco 19267 f1otrspeq 19428 pmtrfinv 19442 symgtrinv 19453 frgpup3lem 19758 ablfac1eu 20056 zrinitorngc 20602 zrtermorngc 20603 zrtermoringc 20635 psgndiflemB 21560 frlmup1 21758 frlmup3 21760 frlmup4 21761 psrlidm 21922 psrridm 21923 psrass1 21924 subrgascl 22024 evlslem1 22040 psdmplcl 22100 psdvsca 22102 mavmulass 22487 upxp 23561 uptx 23563 cnextfres1 24006 ovolshftlem1 25462 volsup 25509 dvidlem 25868 dvrec 25911 dveq0 25957 dv11cn 25958 ftc1cn 26002 coemulc 26212 aannenlem1 26288 ulmuni 26353 ulmdv 26364 ostthlem1 27590 nvinvfval 30621 sspn 30717 kbass2 32098 xppreima2 32629 fdifsuppconst 32666 indpreima 32842 psgnfzto1stlem 33111 cycpmco2 33144 cyc3co2 33151 ply1gsumz 33608 esumcvg 34117 signstres 34607 hgt750lemb 34688 revpfxsfxrev 35138 subfacp1lem4 35205 cvmliftmolem2 35304 msubff1 35578 iprodefisumlem 35757 poimirlem8 37652 poimirlem13 37657 poimirlem14 37658 ftc1cnnc 37716 eqlkr3 39119 cdleme51finvN 40575 sticksstones11 42169 aks6d1c6lem4 42186 metakunt33 42250 ofun 42287 frlmvscadiccat 42529 fiabv 42559 evlsvvval 42586 fsuppind 42613 ismrcd2 42722 ofoafo 43380 ofoaid1 43382 ofoaid2 43383 ofoaass 43384 ofoacom 43385 naddcnffo 43388 naddcnfcom 43390 naddcnfid1 43391 naddcnfass 43393 rfovcnvf1od 44028 dssmapntrcls 44152 dvconstbi 44358 fsumsermpt 45608 icccncfext 45916 voliooicof 46025 etransclem35 46298 rrxsnicc 46329 ovolval4lem1 46678 fcores 47096 1arymaptf1 48622 2arymaptf1 48633 tposideq 48863 fucoid 49259 |
| Copyright terms: Public domain | W3C validator |