![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqfnfvd | Structured version Visualization version GIF version |
Description: Deduction for equality of functions. (Contributed by Mario Carneiro, 24-Jul-2014.) |
Ref | Expression |
---|---|
eqfnfvd.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
eqfnfvd.2 | ⊢ (𝜑 → 𝐺 Fn 𝐴) |
eqfnfvd.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
Ref | Expression |
---|---|
eqfnfvd | ⊢ (𝜑 → 𝐹 = 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqfnfvd.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) | |
2 | 1 | ralrimiva 3138 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) |
3 | eqfnfvd.1 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
4 | eqfnfvd.2 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐴) | |
5 | eqfnfv 7023 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) | |
6 | 3, 4, 5 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
7 | 2, 6 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹 = 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3053 Fn wfn 6529 ‘cfv 6534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-fv 6542 |
This theorem is referenced by: foeqcnvco 7291 f1eqcocnv 7292 f1eqcocnvOLD 7293 offveq 7688 tfrlem1 8372 updjudhcoinlf 9924 updjudhcoinrg 9925 ackbij2lem2 10232 ackbij2lem3 10233 fpwwe2lem7 10629 seqfeq2 13989 seqfeq 13991 seqfeq3 14016 ccatlid 14534 ccatrid 14535 ccatass 14536 ccatswrd 14616 swrdccat2 14617 pfxid 14632 ccatpfx 14649 pfxccat1 14650 swrdswrd 14653 cats1un 14669 swrdccatin1 14673 swrdccatin2 14677 pfxccatin12 14681 revccat 14714 revrev 14715 cshco 14785 swrdco 14786 seqshft 15030 seq1st 16507 xpsfeq 17510 yonedainv 18238 pwsco1mhm 18749 f1otrspeq 19359 pmtrfinv 19373 symgtrinv 19384 frgpup3lem 19689 ablfac1eu 19987 zrinitorngc 20530 zrtermorngc 20531 zrtermoringc 20563 psgndiflemB 21463 frlmup1 21663 frlmup3 21665 frlmup4 21666 psrlidm 21835 psrridm 21836 psrass1 21837 subrgascl 21939 evlslem1 21957 psdmplcl 22015 psdvsca 22017 mavmulass 22375 upxp 23451 uptx 23453 cnextfres1 23896 ovolshftlem1 25362 volsup 25409 dvidlem 25768 dvrec 25811 dveq0 25857 dv11cn 25858 ftc1cn 25902 coemulc 26111 aannenlem1 26184 ulmuni 26247 ulmdv 26258 ostthlem1 27479 nvinvfval 30365 sspn 30461 kbass2 31842 xppreima2 32348 fdifsuppconst 32383 psgnfzto1stlem 32730 cycpmco2 32763 cyc3co2 32770 ghmquskerco 33001 ply1gsumz 33138 indpreima 33515 esumcvg 33576 signstres 34078 hgt750lemb 34159 revpfxsfxrev 34597 subfacp1lem4 34665 cvmliftmolem2 34764 msubff1 35038 iprodefisumlem 35206 poimirlem8 36990 poimirlem13 36995 poimirlem14 36996 ftc1cnnc 37054 eqlkr3 38465 cdleme51finvN 39921 sticksstones11 41469 metakunt33 41514 ofun 41555 frlmvscadiccat 41577 evlsvvval 41628 fsuppind 41655 ismrcd2 41951 ofoafo 42620 ofoaid1 42622 ofoaid2 42623 ofoaass 42624 ofoacom 42625 naddcnffo 42628 naddcnfcom 42630 naddcnfid1 42631 naddcnfass 42633 rfovcnvf1od 43269 dssmapntrcls 43393 dvconstbi 43607 fsumsermpt 44805 icccncfext 45113 voliooicof 45222 etransclem35 45495 rrxsnicc 45526 ovolval4lem1 45875 fcores 46287 1arymaptf1 47541 2arymaptf1 47552 |
Copyright terms: Public domain | W3C validator |