Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqfnfvd | Structured version Visualization version GIF version |
Description: Deduction for equality of functions. (Contributed by Mario Carneiro, 24-Jul-2014.) |
Ref | Expression |
---|---|
eqfnfvd.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
eqfnfvd.2 | ⊢ (𝜑 → 𝐺 Fn 𝐴) |
eqfnfvd.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
Ref | Expression |
---|---|
eqfnfvd | ⊢ (𝜑 → 𝐹 = 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqfnfvd.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) | |
2 | 1 | ralrimiva 3140 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) |
3 | eqfnfvd.1 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
4 | eqfnfvd.2 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐴) | |
5 | eqfnfv 6941 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) | |
6 | 3, 4, 5 | syl2anc 585 | . 2 ⊢ (𝜑 → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
7 | 2, 6 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹 = 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ∀wral 3062 Fn wfn 6453 ‘cfv 6458 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-fv 6466 |
This theorem is referenced by: foeqcnvco 7204 f1eqcocnv 7205 f1eqcocnvOLD 7206 offveq 7589 tfrlem1 8238 updjudhcoinlf 9734 updjudhcoinrg 9735 ackbij2lem2 10042 ackbij2lem3 10043 fpwwe2lem7 10439 seqfeq2 13792 seqfeq 13794 seqfeq3 13819 ccatlid 14336 ccatrid 14337 ccatass 14338 ccatswrd 14426 swrdccat2 14427 pfxid 14442 ccatpfx 14459 pfxccat1 14460 swrdswrd 14463 cats1un 14479 swrdccatin1 14483 swrdccatin2 14487 pfxccatin12 14491 revccat 14524 revrev 14525 cshco 14594 swrdco 14595 seqshft 14841 seq1st 16321 xpsfeq 17319 yonedainv 18044 pwsco1mhm 18515 f1otrspeq 19100 pmtrfinv 19114 symgtrinv 19125 frgpup3lem 19428 ablfac1eu 19721 psgndiflemB 20850 frlmup1 21050 frlmup3 21052 frlmup4 21053 psrlidm 21217 psrridm 21218 psrass1 21219 subrgascl 21319 evlslem1 21337 mavmulass 21743 upxp 22819 uptx 22821 cnextfres1 23264 ovolshftlem1 24718 volsup 24765 dvidlem 25124 dvrec 25164 dveq0 25209 dv11cn 25210 ftc1cn 25252 coemulc 25461 aannenlem1 25533 ulmuni 25596 ulmdv 25607 ostthlem1 26820 nvinvfval 29047 sspn 29143 kbass2 30524 xppreima2 31033 fdifsuppconst 31068 psgnfzto1stlem 31412 cycpmco2 31445 cyc3co2 31452 indpreima 32038 esumcvg 32099 signstres 32599 hgt750lemb 32681 revpfxsfxrev 33122 subfacp1lem4 33190 cvmliftmolem2 33289 msubff1 33563 iprodefisumlem 33751 poimirlem8 35829 poimirlem13 35834 poimirlem14 35835 ftc1cnnc 35893 eqlkr3 37157 cdleme51finvN 38612 sticksstones11 40154 metakunt33 40199 ofun 40248 frlmvscadiccat 40274 evlsbagval 40312 fsuppind 40316 ismrcd2 40558 rfovcnvf1od 41650 dssmapntrcls 41776 dvconstbi 41990 fsumsermpt 43169 icccncfext 43477 voliooicof 43586 etransclem35 43859 rrxsnicc 43890 ovolval4lem1 44237 fcores 44619 zrinitorngc 45616 zrtermorngc 45617 zrtermoringc 45686 1arymaptf1 46046 2arymaptf1 46057 |
Copyright terms: Public domain | W3C validator |