MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqfunfv Structured version   Visualization version   GIF version

Theorem eqfunfv 7033
Description: Equality of functions is determined by their values. (Contributed by Scott Fenton, 19-Jun-2011.)
Assertion
Ref Expression
eqfunfv ((Fun 𝐹 ∧ Fun 𝐺) → (𝐹 = 𝐺 ↔ (dom 𝐹 = dom 𝐺 ∧ ∀𝑥 ∈ dom 𝐹(𝐹𝑥) = (𝐺𝑥))))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺

Proof of Theorem eqfunfv
StepHypRef Expression
1 funfn 6575 . 2 (Fun 𝐹𝐹 Fn dom 𝐹)
2 funfn 6575 . 2 (Fun 𝐺𝐺 Fn dom 𝐺)
3 eqfnfv2 7029 . 2 ((𝐹 Fn dom 𝐹𝐺 Fn dom 𝐺) → (𝐹 = 𝐺 ↔ (dom 𝐹 = dom 𝐺 ∧ ∀𝑥 ∈ dom 𝐹(𝐹𝑥) = (𝐺𝑥))))
41, 2, 3syl2anb 599 1 ((Fun 𝐹 ∧ Fun 𝐺) → (𝐹 = 𝐺 ↔ (dom 𝐹 = dom 𝐺 ∧ ∀𝑥 ∈ dom 𝐹(𝐹𝑥) = (𝐺𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wral 3062  dom cdm 5675  Fun wfun 6534   Fn wfn 6535  cfv 6540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-fv 6548
This theorem is referenced by:  fveqressseq  7077  fnprb  7205  fntpb  7206  symgfixf1  19298  nosepon  27148  nolesgn2ores  27155  nogesgn1ores  27157  nosupres  27190  nosupbnd2lem1  27198  noinfres  27205  noinfbnd2lem1  27213  noetasuplem4  27219  noetainflem4  27223  comptiunov2i  42390
  Copyright terms: Public domain W3C validator