MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqfunfv Structured version   Visualization version   GIF version

Theorem eqfunfv 7011
Description: Equality of functions is determined by their values. (Contributed by Scott Fenton, 19-Jun-2011.)
Assertion
Ref Expression
eqfunfv ((Fun 𝐹 ∧ Fun 𝐺) → (𝐹 = 𝐺 ↔ (dom 𝐹 = dom 𝐺 ∧ ∀𝑥 ∈ dom 𝐹(𝐹𝑥) = (𝐺𝑥))))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺

Proof of Theorem eqfunfv
StepHypRef Expression
1 funfn 6549 . 2 (Fun 𝐹𝐹 Fn dom 𝐹)
2 funfn 6549 . 2 (Fun 𝐺𝐺 Fn dom 𝐺)
3 eqfnfv2 7007 . 2 ((𝐹 Fn dom 𝐹𝐺 Fn dom 𝐺) → (𝐹 = 𝐺 ↔ (dom 𝐹 = dom 𝐺 ∧ ∀𝑥 ∈ dom 𝐹(𝐹𝑥) = (𝐺𝑥))))
41, 2, 3syl2anb 598 1 ((Fun 𝐹 ∧ Fun 𝐺) → (𝐹 = 𝐺 ↔ (dom 𝐹 = dom 𝐺 ∧ ∀𝑥 ∈ dom 𝐹(𝐹𝑥) = (𝐺𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wral 3045  dom cdm 5641  Fun wfun 6508   Fn wfn 6509  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-fv 6522
This theorem is referenced by:  fveqressseq  7054  fnprb  7185  fntpb  7186  symgfixf1  19374  nosepon  27584  nolesgn2ores  27591  nogesgn1ores  27593  nosupres  27626  nosupbnd2lem1  27634  noinfres  27641  noinfbnd2lem1  27649  noetasuplem4  27655  noetainflem4  27659  comptiunov2i  43702
  Copyright terms: Public domain W3C validator