![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqfunfv | Structured version Visualization version GIF version |
Description: Equality of functions is determined by their values. (Contributed by Scott Fenton, 19-Jun-2011.) |
Ref | Expression |
---|---|
eqfunfv | ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → (𝐹 = 𝐺 ↔ (dom 𝐹 = dom 𝐺 ∧ ∀𝑥 ∈ dom 𝐹(𝐹‘𝑥) = (𝐺‘𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfn 6575 | . 2 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
2 | funfn 6575 | . 2 ⊢ (Fun 𝐺 ↔ 𝐺 Fn dom 𝐺) | |
3 | eqfnfv2 7029 | . 2 ⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐺 Fn dom 𝐺) → (𝐹 = 𝐺 ↔ (dom 𝐹 = dom 𝐺 ∧ ∀𝑥 ∈ dom 𝐹(𝐹‘𝑥) = (𝐺‘𝑥)))) | |
4 | 1, 2, 3 | syl2anb 599 | 1 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → (𝐹 = 𝐺 ↔ (dom 𝐹 = dom 𝐺 ∧ ∀𝑥 ∈ dom 𝐹(𝐹‘𝑥) = (𝐺‘𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∀wral 3062 dom cdm 5675 Fun wfun 6534 Fn wfn 6535 ‘cfv 6540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-fv 6548 |
This theorem is referenced by: fveqressseq 7077 fnprb 7205 fntpb 7206 symgfixf1 19298 nosepon 27148 nolesgn2ores 27155 nogesgn1ores 27157 nosupres 27190 nosupbnd2lem1 27198 noinfres 27205 noinfbnd2lem1 27213 noetasuplem4 27219 noetainflem4 27223 comptiunov2i 42390 |
Copyright terms: Public domain | W3C validator |