![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqfunfv | Structured version Visualization version GIF version |
Description: Equality of functions is determined by their values. (Contributed by Scott Fenton, 19-Jun-2011.) |
Ref | Expression |
---|---|
eqfunfv | ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → (𝐹 = 𝐺 ↔ (dom 𝐹 = dom 𝐺 ∧ ∀𝑥 ∈ dom 𝐹(𝐹‘𝑥) = (𝐺‘𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfn 6608 | . 2 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
2 | funfn 6608 | . 2 ⊢ (Fun 𝐺 ↔ 𝐺 Fn dom 𝐺) | |
3 | eqfnfv2 7065 | . 2 ⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐺 Fn dom 𝐺) → (𝐹 = 𝐺 ↔ (dom 𝐹 = dom 𝐺 ∧ ∀𝑥 ∈ dom 𝐹(𝐹‘𝑥) = (𝐺‘𝑥)))) | |
4 | 1, 2, 3 | syl2anb 597 | 1 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → (𝐹 = 𝐺 ↔ (dom 𝐹 = dom 𝐺 ∧ ∀𝑥 ∈ dom 𝐹(𝐹‘𝑥) = (𝐺‘𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∀wral 3067 dom cdm 5700 Fun wfun 6567 Fn wfn 6568 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-fv 6581 |
This theorem is referenced by: fveqressseq 7113 fnprb 7245 fntpb 7246 symgfixf1 19479 nosepon 27728 nolesgn2ores 27735 nogesgn1ores 27737 nosupres 27770 nosupbnd2lem1 27778 noinfres 27785 noinfbnd2lem1 27793 noetasuplem4 27799 noetainflem4 27803 comptiunov2i 43668 |
Copyright terms: Public domain | W3C validator |