MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qusaddflem Structured version   Visualization version   GIF version

Theorem qusaddflem 17507
Description: The operation of a quotient structure is a function. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
qusaddf.u (๐œ‘ โ†’ ๐‘ˆ = (๐‘… /s โˆผ ))
qusaddf.v (๐œ‘ โ†’ ๐‘‰ = (Baseโ€˜๐‘…))
qusaddf.r (๐œ‘ โ†’ โˆผ Er ๐‘‰)
qusaddf.z (๐œ‘ โ†’ ๐‘… โˆˆ ๐‘)
qusaddf.e (๐œ‘ โ†’ ((๐‘Ž โˆผ ๐‘ โˆง ๐‘ โˆผ ๐‘ž) โ†’ (๐‘Ž ยท ๐‘) โˆผ (๐‘ ยท ๐‘ž)))
qusaddf.c ((๐œ‘ โˆง (๐‘ โˆˆ ๐‘‰ โˆง ๐‘ž โˆˆ ๐‘‰)) โ†’ (๐‘ ยท ๐‘ž) โˆˆ ๐‘‰)
qusaddflem.f ๐น = (๐‘ฅ โˆˆ ๐‘‰ โ†ฆ [๐‘ฅ] โˆผ )
qusaddflem.g (๐œ‘ โ†’ โˆ™ = โˆช ๐‘ โˆˆ ๐‘‰ โˆช ๐‘ž โˆˆ ๐‘‰ {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ})
Assertion
Ref Expression
qusaddflem (๐œ‘ โ†’ โˆ™ :((๐‘‰ / โˆผ ) ร— (๐‘‰ / โˆผ ))โŸถ(๐‘‰ / โˆผ ))
Distinct variable groups:   ๐‘Ž,๐‘,๐‘,๐‘ž,๐‘ฅ, โˆผ   ๐น,๐‘Ž,๐‘,๐‘,๐‘ž   ๐œ‘,๐‘Ž,๐‘,๐‘,๐‘ž,๐‘ฅ   ๐‘‰,๐‘Ž,๐‘,๐‘,๐‘ž,๐‘ฅ   ๐‘…,๐‘,๐‘ž,๐‘ฅ   ยท ,๐‘,๐‘ž,๐‘ฅ   โˆ™ ,๐‘Ž,๐‘,๐‘,๐‘ž
Allowed substitution hints:   ๐‘…(๐‘Ž,๐‘)   โˆ™ (๐‘ฅ)   ยท (๐‘Ž,๐‘)   ๐‘ˆ(๐‘ฅ,๐‘ž,๐‘,๐‘Ž,๐‘)   ๐น(๐‘ฅ)   ๐‘(๐‘ฅ,๐‘ž,๐‘,๐‘Ž,๐‘)

Proof of Theorem qusaddflem
StepHypRef Expression
1 qusaddf.u . . 3 (๐œ‘ โ†’ ๐‘ˆ = (๐‘… /s โˆผ ))
2 qusaddf.v . . 3 (๐œ‘ โ†’ ๐‘‰ = (Baseโ€˜๐‘…))
3 qusaddflem.f . . 3 ๐น = (๐‘ฅ โˆˆ ๐‘‰ โ†ฆ [๐‘ฅ] โˆผ )
4 qusaddf.r . . . 4 (๐œ‘ โ†’ โˆผ Er ๐‘‰)
5 fvex 6898 . . . . 5 (Baseโ€˜๐‘…) โˆˆ V
62, 5eqeltrdi 2835 . . . 4 (๐œ‘ โ†’ ๐‘‰ โˆˆ V)
7 erex 8729 . . . 4 ( โˆผ Er ๐‘‰ โ†’ (๐‘‰ โˆˆ V โ†’ โˆผ โˆˆ V))
84, 6, 7sylc 65 . . 3 (๐œ‘ โ†’ โˆผ โˆˆ V)
9 qusaddf.z . . 3 (๐œ‘ โ†’ ๐‘… โˆˆ ๐‘)
101, 2, 3, 8, 9quslem 17498 . 2 (๐œ‘ โ†’ ๐น:๐‘‰โ€“ontoโ†’(๐‘‰ / โˆผ ))
11 qusaddf.c . . 3 ((๐œ‘ โˆง (๐‘ โˆˆ ๐‘‰ โˆง ๐‘ž โˆˆ ๐‘‰)) โ†’ (๐‘ ยท ๐‘ž) โˆˆ ๐‘‰)
12 qusaddf.e . . 3 (๐œ‘ โ†’ ((๐‘Ž โˆผ ๐‘ โˆง ๐‘ โˆผ ๐‘ž) โ†’ (๐‘Ž ยท ๐‘) โˆผ (๐‘ ยท ๐‘ž)))
134, 6, 3, 11, 12ercpbl 17504 . 2 ((๐œ‘ โˆง (๐‘Ž โˆˆ ๐‘‰ โˆง ๐‘ โˆˆ ๐‘‰) โˆง (๐‘ โˆˆ ๐‘‰ โˆง ๐‘ž โˆˆ ๐‘‰)) โ†’ (((๐นโ€˜๐‘Ž) = (๐นโ€˜๐‘) โˆง (๐นโ€˜๐‘) = (๐นโ€˜๐‘ž)) โ†’ (๐นโ€˜(๐‘Ž ยท ๐‘)) = (๐นโ€˜(๐‘ ยท ๐‘ž))))
14 qusaddflem.g . 2 (๐œ‘ โ†’ โˆ™ = โˆช ๐‘ โˆˆ ๐‘‰ โˆช ๐‘ž โˆˆ ๐‘‰ {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ})
1510, 13, 14, 11imasaddflem 17485 1 (๐œ‘ โ†’ โˆ™ :((๐‘‰ / โˆผ ) ร— (๐‘‰ / โˆผ ))โŸถ(๐‘‰ / โˆผ ))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 395   = wceq 1533   โˆˆ wcel 2098  Vcvv 3468  {csn 4623  โŸจcop 4629  โˆช ciun 4990   class class class wbr 5141   โ†ฆ cmpt 5224   ร— cxp 5667  โŸถwf 6533  โ€˜cfv 6537  (class class class)co 7405   Er wer 8702  [cec 8703   / cqs 8704  Basecbs 17153   /s cqus 17460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-fo 6543  df-fv 6545  df-ov 7408  df-er 8705  df-ec 8707  df-qs 8711
This theorem is referenced by:  qusaddf  17509  qusmulf  17511
  Copyright terms: Public domain W3C validator