Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > qusaddflem | Structured version Visualization version GIF version |
Description: The operation of a quotient structure is a function. (Contributed by Mario Carneiro, 24-Feb-2015.) |
Ref | Expression |
---|---|
qusaddf.u | ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) |
qusaddf.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
qusaddf.r | ⊢ (𝜑 → ∼ Er 𝑉) |
qusaddf.z | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
qusaddf.e | ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) |
qusaddf.c | ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) |
qusaddflem.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) |
qusaddflem.g | ⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) |
Ref | Expression |
---|---|
qusaddflem | ⊢ (𝜑 → ∙ :((𝑉 / ∼ ) × (𝑉 / ∼ ))⟶(𝑉 / ∼ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusaddf.u | . . 3 ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) | |
2 | qusaddf.v | . . 3 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
3 | qusaddflem.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) | |
4 | qusaddf.r | . . . 4 ⊢ (𝜑 → ∼ Er 𝑉) | |
5 | fvex 6671 | . . . . 5 ⊢ (Base‘𝑅) ∈ V | |
6 | 2, 5 | eqeltrdi 2860 | . . . 4 ⊢ (𝜑 → 𝑉 ∈ V) |
7 | erex 8323 | . . . 4 ⊢ ( ∼ Er 𝑉 → (𝑉 ∈ V → ∼ ∈ V)) | |
8 | 4, 6, 7 | sylc 65 | . . 3 ⊢ (𝜑 → ∼ ∈ V) |
9 | qusaddf.z | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
10 | 1, 2, 3, 8, 9 | quslem 16874 | . 2 ⊢ (𝜑 → 𝐹:𝑉–onto→(𝑉 / ∼ )) |
11 | qusaddf.c | . . 3 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) | |
12 | qusaddf.e | . . 3 ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) | |
13 | 4, 6, 3, 11, 12 | ercpbl 16880 | . 2 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) |
14 | qusaddflem.g | . 2 ⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) | |
15 | 10, 13, 14, 11 | imasaddflem 16861 | 1 ⊢ (𝜑 → ∙ :((𝑉 / ∼ ) × (𝑉 / ∼ ))⟶(𝑉 / ∼ )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 Vcvv 3409 {csn 4522 〈cop 4528 ∪ ciun 4883 class class class wbr 5032 ↦ cmpt 5112 × cxp 5522 ⟶wf 6331 ‘cfv 6335 (class class class)co 7150 Er wer 8296 [cec 8297 / cqs 8298 Basecbs 16541 /s cqus 16836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-fo 6341 df-fv 6343 df-ov 7153 df-er 8299 df-ec 8301 df-qs 8305 |
This theorem is referenced by: qusaddf 16885 qusmulf 16887 |
Copyright terms: Public domain | W3C validator |