![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qusaddflem | Structured version Visualization version GIF version |
Description: The operation of a quotient structure is a function. (Contributed by Mario Carneiro, 24-Feb-2015.) |
Ref | Expression |
---|---|
qusaddf.u | โข (๐ โ ๐ = (๐ /s โผ )) |
qusaddf.v | โข (๐ โ ๐ = (Baseโ๐ )) |
qusaddf.r | โข (๐ โ โผ Er ๐) |
qusaddf.z | โข (๐ โ ๐ โ ๐) |
qusaddf.e | โข (๐ โ ((๐ โผ ๐ โง ๐ โผ ๐) โ (๐ ยท ๐) โผ (๐ ยท ๐))) |
qusaddf.c | โข ((๐ โง (๐ โ ๐ โง ๐ โ ๐)) โ (๐ ยท ๐) โ ๐) |
qusaddflem.f | โข ๐น = (๐ฅ โ ๐ โฆ [๐ฅ] โผ ) |
qusaddflem.g | โข (๐ โ โ = โช ๐ โ ๐ โช ๐ โ ๐ {โจโจ(๐นโ๐), (๐นโ๐)โฉ, (๐นโ(๐ ยท ๐))โฉ}) |
Ref | Expression |
---|---|
qusaddflem | โข (๐ โ โ :((๐ / โผ ) ร (๐ / โผ ))โถ(๐ / โผ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusaddf.u | . . 3 โข (๐ โ ๐ = (๐ /s โผ )) | |
2 | qusaddf.v | . . 3 โข (๐ โ ๐ = (Baseโ๐ )) | |
3 | qusaddflem.f | . . 3 โข ๐น = (๐ฅ โ ๐ โฆ [๐ฅ] โผ ) | |
4 | qusaddf.r | . . . 4 โข (๐ โ โผ Er ๐) | |
5 | fvex 6898 | . . . . 5 โข (Baseโ๐ ) โ V | |
6 | 2, 5 | eqeltrdi 2835 | . . . 4 โข (๐ โ ๐ โ V) |
7 | erex 8729 | . . . 4 โข ( โผ Er ๐ โ (๐ โ V โ โผ โ V)) | |
8 | 4, 6, 7 | sylc 65 | . . 3 โข (๐ โ โผ โ V) |
9 | qusaddf.z | . . 3 โข (๐ โ ๐ โ ๐) | |
10 | 1, 2, 3, 8, 9 | quslem 17498 | . 2 โข (๐ โ ๐น:๐โontoโ(๐ / โผ )) |
11 | qusaddf.c | . . 3 โข ((๐ โง (๐ โ ๐ โง ๐ โ ๐)) โ (๐ ยท ๐) โ ๐) | |
12 | qusaddf.e | . . 3 โข (๐ โ ((๐ โผ ๐ โง ๐ โผ ๐) โ (๐ ยท ๐) โผ (๐ ยท ๐))) | |
13 | 4, 6, 3, 11, 12 | ercpbl 17504 | . 2 โข ((๐ โง (๐ โ ๐ โง ๐ โ ๐) โง (๐ โ ๐ โง ๐ โ ๐)) โ (((๐นโ๐) = (๐นโ๐) โง (๐นโ๐) = (๐นโ๐)) โ (๐นโ(๐ ยท ๐)) = (๐นโ(๐ ยท ๐)))) |
14 | qusaddflem.g | . 2 โข (๐ โ โ = โช ๐ โ ๐ โช ๐ โ ๐ {โจโจ(๐นโ๐), (๐นโ๐)โฉ, (๐นโ(๐ ยท ๐))โฉ}) | |
15 | 10, 13, 14, 11 | imasaddflem 17485 | 1 โข (๐ โ โ :((๐ / โผ ) ร (๐ / โผ ))โถ(๐ / โผ )) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 395 = wceq 1533 โ wcel 2098 Vcvv 3468 {csn 4623 โจcop 4629 โช ciun 4990 class class class wbr 5141 โฆ cmpt 5224 ร cxp 5667 โถwf 6533 โcfv 6537 (class class class)co 7405 Er wer 8702 [cec 8703 / cqs 8704 Basecbs 17153 /s cqus 17460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-fo 6543 df-fv 6545 df-ov 7408 df-er 8705 df-ec 8707 df-qs 8711 |
This theorem is referenced by: qusaddf 17509 qusmulf 17511 |
Copyright terms: Public domain | W3C validator |