MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qusaddflem Structured version   Visualization version   GIF version

Theorem qusaddflem 17568
Description: The operation of a quotient structure is a function. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
qusaddf.u (𝜑𝑈 = (𝑅 /s ))
qusaddf.v (𝜑𝑉 = (Base‘𝑅))
qusaddf.r (𝜑 Er 𝑉)
qusaddf.z (𝜑𝑅𝑍)
qusaddf.e (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 · 𝑏) (𝑝 · 𝑞)))
qusaddf.c ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → (𝑝 · 𝑞) ∈ 𝑉)
qusaddflem.f 𝐹 = (𝑥𝑉 ↦ [𝑥] )
qusaddflem.g (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
Assertion
Ref Expression
qusaddflem (𝜑 :((𝑉 / ) × (𝑉 / ))⟶(𝑉 / ))
Distinct variable groups:   𝑎,𝑏,𝑝,𝑞,𝑥,   𝐹,𝑎,𝑏,𝑝,𝑞   𝜑,𝑎,𝑏,𝑝,𝑞,𝑥   𝑉,𝑎,𝑏,𝑝,𝑞,𝑥   𝑅,𝑝,𝑞,𝑥   · ,𝑝,𝑞,𝑥   ,𝑎,𝑏,𝑝,𝑞
Allowed substitution hints:   𝑅(𝑎,𝑏)   (𝑥)   · (𝑎,𝑏)   𝑈(𝑥,𝑞,𝑝,𝑎,𝑏)   𝐹(𝑥)   𝑍(𝑥,𝑞,𝑝,𝑎,𝑏)

Proof of Theorem qusaddflem
StepHypRef Expression
1 qusaddf.u . . 3 (𝜑𝑈 = (𝑅 /s ))
2 qusaddf.v . . 3 (𝜑𝑉 = (Base‘𝑅))
3 qusaddflem.f . . 3 𝐹 = (𝑥𝑉 ↦ [𝑥] )
4 qusaddf.r . . . 4 (𝜑 Er 𝑉)
5 fvex 6899 . . . . 5 (Base‘𝑅) ∈ V
62, 5eqeltrdi 2841 . . . 4 (𝜑𝑉 ∈ V)
7 erex 8751 . . . 4 ( Er 𝑉 → (𝑉 ∈ V → ∈ V))
84, 6, 7sylc 65 . . 3 (𝜑 ∈ V)
9 qusaddf.z . . 3 (𝜑𝑅𝑍)
101, 2, 3, 8, 9quslem 17559 . 2 (𝜑𝐹:𝑉onto→(𝑉 / ))
11 qusaddf.c . . 3 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → (𝑝 · 𝑞) ∈ 𝑉)
12 qusaddf.e . . 3 (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 · 𝑏) (𝑝 · 𝑞)))
134, 6, 3, 11, 12ercpbl 17565 . 2 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞))))
14 qusaddflem.g . 2 (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
1510, 13, 14, 11imasaddflem 17546 1 (𝜑 :((𝑉 / ) × (𝑉 / ))⟶(𝑉 / ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3463  {csn 4606  cop 4612   ciun 4971   class class class wbr 5123  cmpt 5205   × cxp 5663  wf 6537  cfv 6541  (class class class)co 7413   Er wer 8724  [cec 8725   / cqs 8726  Basecbs 17229   /s cqus 17521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-fo 6547  df-fv 6549  df-ov 7416  df-er 8727  df-ec 8729  df-qs 8733
This theorem is referenced by:  qusaddf  17570  qusmulf  17572
  Copyright terms: Public domain W3C validator