MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qusaddvallem Structured version   Visualization version   GIF version

Theorem qusaddvallem 17262
Description: Value of an operation defined on a quotient structure. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
qusaddf.u (𝜑𝑈 = (𝑅 /s ))
qusaddf.v (𝜑𝑉 = (Base‘𝑅))
qusaddf.r (𝜑 Er 𝑉)
qusaddf.z (𝜑𝑅𝑍)
qusaddf.e (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 · 𝑏) (𝑝 · 𝑞)))
qusaddf.c ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → (𝑝 · 𝑞) ∈ 𝑉)
qusaddflem.f 𝐹 = (𝑥𝑉 ↦ [𝑥] )
qusaddflem.g (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
Assertion
Ref Expression
qusaddvallem ((𝜑𝑋𝑉𝑌𝑉) → ([𝑋] [𝑌] ) = [(𝑋 · 𝑌)] )
Distinct variable groups:   𝑎,𝑏,𝑝,𝑞,𝑥,   𝐹,𝑎,𝑏,𝑝,𝑞   𝜑,𝑎,𝑏,𝑝,𝑞,𝑥   𝑉,𝑎,𝑏,𝑝,𝑞,𝑥   𝑅,𝑝,𝑞,𝑥   · ,𝑝,𝑞,𝑥   𝑋,𝑝,𝑞,𝑥   ,𝑎,𝑏,𝑝,𝑞   𝑌,𝑝,𝑞,𝑥
Allowed substitution hints:   𝑅(𝑎,𝑏)   (𝑥)   · (𝑎,𝑏)   𝑈(𝑥,𝑞,𝑝,𝑎,𝑏)   𝐹(𝑥)   𝑋(𝑎,𝑏)   𝑌(𝑎,𝑏)   𝑍(𝑥,𝑞,𝑝,𝑎,𝑏)

Proof of Theorem qusaddvallem
StepHypRef Expression
1 qusaddf.u . . . 4 (𝜑𝑈 = (𝑅 /s ))
2 qusaddf.v . . . 4 (𝜑𝑉 = (Base‘𝑅))
3 qusaddflem.f . . . 4 𝐹 = (𝑥𝑉 ↦ [𝑥] )
4 qusaddf.r . . . . 5 (𝜑 Er 𝑉)
5 fvex 6787 . . . . . 6 (Base‘𝑅) ∈ V
62, 5eqeltrdi 2847 . . . . 5 (𝜑𝑉 ∈ V)
7 erex 8522 . . . . 5 ( Er 𝑉 → (𝑉 ∈ V → ∈ V))
84, 6, 7sylc 65 . . . 4 (𝜑 ∈ V)
9 qusaddf.z . . . 4 (𝜑𝑅𝑍)
101, 2, 3, 8, 9quslem 17254 . . 3 (𝜑𝐹:𝑉onto→(𝑉 / ))
11 qusaddf.c . . . 4 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → (𝑝 · 𝑞) ∈ 𝑉)
12 qusaddf.e . . . 4 (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 · 𝑏) (𝑝 · 𝑞)))
134, 6, 3, 11, 12ercpbl 17260 . . 3 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞))))
14 qusaddflem.g . . 3 (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
1510, 13, 14imasaddvallem 17240 . 2 ((𝜑𝑋𝑉𝑌𝑉) → ((𝐹𝑋) (𝐹𝑌)) = (𝐹‘(𝑋 · 𝑌)))
1643ad2ant1 1132 . . . 4 ((𝜑𝑋𝑉𝑌𝑉) → Er 𝑉)
1763ad2ant1 1132 . . . 4 ((𝜑𝑋𝑉𝑌𝑉) → 𝑉 ∈ V)
1816, 17, 3divsfval 17258 . . 3 ((𝜑𝑋𝑉𝑌𝑉) → (𝐹𝑋) = [𝑋] )
1916, 17, 3divsfval 17258 . . 3 ((𝜑𝑋𝑉𝑌𝑉) → (𝐹𝑌) = [𝑌] )
2018, 19oveq12d 7293 . 2 ((𝜑𝑋𝑉𝑌𝑉) → ((𝐹𝑋) (𝐹𝑌)) = ([𝑋] [𝑌] ))
2116, 17, 3divsfval 17258 . 2 ((𝜑𝑋𝑉𝑌𝑉) → (𝐹‘(𝑋 · 𝑌)) = [(𝑋 · 𝑌)] )
2215, 20, 213eqtr3d 2786 1 ((𝜑𝑋𝑉𝑌𝑉) → ([𝑋] [𝑌] ) = [(𝑋 · 𝑌)] )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  {csn 4561  cop 4567   ciun 4924   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275   Er wer 8495  [cec 8496   / cqs 8497  Basecbs 16912   /s cqus 17216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fo 6439  df-fv 6441  df-ov 7278  df-er 8498  df-ec 8500  df-qs 8504
This theorem is referenced by:  qusaddval  17264  qusmulval  17266
  Copyright terms: Public domain W3C validator