| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qusaddvallem | Structured version Visualization version GIF version | ||
| Description: Value of an operation defined on a quotient structure. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| qusaddf.u | ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) |
| qusaddf.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
| qusaddf.r | ⊢ (𝜑 → ∼ Er 𝑉) |
| qusaddf.z | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
| qusaddf.e | ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) |
| qusaddf.c | ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) |
| qusaddflem.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) |
| qusaddflem.g | ⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) |
| Ref | Expression |
|---|---|
| qusaddvallem | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋] ∼ ∙ [𝑌] ∼ ) = [(𝑋 · 𝑌)] ∼ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusaddf.u | . . . 4 ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) | |
| 2 | qusaddf.v | . . . 4 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
| 3 | qusaddflem.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) | |
| 4 | qusaddf.r | . . . . 5 ⊢ (𝜑 → ∼ Er 𝑉) | |
| 5 | fvex 6871 | . . . . . 6 ⊢ (Base‘𝑅) ∈ V | |
| 6 | 2, 5 | eqeltrdi 2836 | . . . . 5 ⊢ (𝜑 → 𝑉 ∈ V) |
| 7 | erex 8695 | . . . . 5 ⊢ ( ∼ Er 𝑉 → (𝑉 ∈ V → ∼ ∈ V)) | |
| 8 | 4, 6, 7 | sylc 65 | . . . 4 ⊢ (𝜑 → ∼ ∈ V) |
| 9 | qusaddf.z | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
| 10 | 1, 2, 3, 8, 9 | quslem 17506 | . . 3 ⊢ (𝜑 → 𝐹:𝑉–onto→(𝑉 / ∼ )) |
| 11 | qusaddf.c | . . . 4 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) | |
| 12 | qusaddf.e | . . . 4 ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) | |
| 13 | 4, 6, 3, 11, 12 | ercpbl 17512 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) |
| 14 | qusaddflem.g | . . 3 ⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) | |
| 15 | 10, 13, 14 | imasaddvallem 17492 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝐹‘𝑋) ∙ (𝐹‘𝑌)) = (𝐹‘(𝑋 · 𝑌))) |
| 16 | 4 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ∼ Er 𝑉) |
| 17 | 6 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 𝑉 ∈ V) |
| 18 | 16, 17, 3 | divsfval 17510 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝐹‘𝑋) = [𝑋] ∼ ) |
| 19 | 16, 17, 3 | divsfval 17510 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝐹‘𝑌) = [𝑌] ∼ ) |
| 20 | 18, 19 | oveq12d 7405 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝐹‘𝑋) ∙ (𝐹‘𝑌)) = ([𝑋] ∼ ∙ [𝑌] ∼ )) |
| 21 | 16, 17, 3 | divsfval 17510 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝐹‘(𝑋 · 𝑌)) = [(𝑋 · 𝑌)] ∼ ) |
| 22 | 15, 20, 21 | 3eqtr3d 2772 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋] ∼ ∙ [𝑌] ∼ ) = [(𝑋 · 𝑌)] ∼ ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3447 {csn 4589 〈cop 4595 ∪ ciun 4955 class class class wbr 5107 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 Er wer 8668 [cec 8669 / cqs 8670 Basecbs 17179 /s cqus 17468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fo 6517 df-fv 6519 df-ov 7390 df-er 8671 df-ec 8673 df-qs 8677 |
| This theorem is referenced by: qusaddval 17516 qusmulval 17518 |
| Copyright terms: Public domain | W3C validator |