MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qusgrp2 Structured version   Visualization version   GIF version

Theorem qusgrp2 18870
Description: Prove that a quotient structure is a group. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
qusgrp2.u (𝜑𝑈 = (𝑅 /s ))
qusgrp2.v (𝜑𝑉 = (Base‘𝑅))
qusgrp2.p (𝜑+ = (+g𝑅))
qusgrp2.r (𝜑 Er 𝑉)
qusgrp2.x (𝜑𝑅𝑋)
qusgrp2.e (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 + 𝑏) (𝑝 + 𝑞)))
qusgrp2.1 ((𝜑𝑥𝑉𝑦𝑉) → (𝑥 + 𝑦) ∈ 𝑉)
qusgrp2.2 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑥 + 𝑦) + 𝑧) (𝑥 + (𝑦 + 𝑧)))
qusgrp2.3 (𝜑0𝑉)
qusgrp2.4 ((𝜑𝑥𝑉) → ( 0 + 𝑥) 𝑥)
qusgrp2.5 ((𝜑𝑥𝑉) → 𝑁𝑉)
qusgrp2.6 ((𝜑𝑥𝑉) → (𝑁 + 𝑥) 0 )
Assertion
Ref Expression
qusgrp2 (𝜑 → (𝑈 ∈ Grp ∧ [ 0 ] = (0g𝑈)))
Distinct variable groups:   𝑎,𝑏,𝑝,𝑞,𝑥,𝑦,𝑧,   0 ,𝑎,𝑏,𝑝,𝑞,𝑥   𝑁,𝑝   𝑅,𝑝,𝑞   + ,𝑎,𝑏,𝑝,𝑞,𝑥,𝑦   𝜑,𝑎,𝑏,𝑝,𝑞,𝑥,𝑦,𝑧   𝑉,𝑎,𝑏,𝑝,𝑞,𝑥,𝑦,𝑧   𝑈,𝑎,𝑏,𝑝,𝑞,𝑥,𝑦,𝑧
Allowed substitution hints:   + (𝑧)   𝑅(𝑥,𝑦,𝑧,𝑎,𝑏)   𝑁(𝑥,𝑦,𝑧,𝑞,𝑎,𝑏)   𝑋(𝑥,𝑦,𝑧,𝑞,𝑝,𝑎,𝑏)   0 (𝑦,𝑧)

Proof of Theorem qusgrp2
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 qusgrp2.u . . . 4 (𝜑𝑈 = (𝑅 /s ))
2 qusgrp2.v . . . 4 (𝜑𝑉 = (Base‘𝑅))
3 eqid 2733 . . . 4 (𝑢𝑉 ↦ [𝑢] ) = (𝑢𝑉 ↦ [𝑢] )
4 qusgrp2.r . . . . 5 (𝜑 Er 𝑉)
5 fvex 6856 . . . . . 6 (Base‘𝑅) ∈ V
62, 5eqeltrdi 2842 . . . . 5 (𝜑𝑉 ∈ V)
7 erex 8675 . . . . 5 ( Er 𝑉 → (𝑉 ∈ V → ∈ V))
84, 6, 7sylc 65 . . . 4 (𝜑 ∈ V)
9 qusgrp2.x . . . 4 (𝜑𝑅𝑋)
101, 2, 3, 8, 9qusval 17429 . . 3 (𝜑𝑈 = ((𝑢𝑉 ↦ [𝑢] ) “s 𝑅))
11 qusgrp2.p . . 3 (𝜑+ = (+g𝑅))
121, 2, 3, 8, 9quslem 17430 . . 3 (𝜑 → (𝑢𝑉 ↦ [𝑢] ):𝑉onto→(𝑉 / ))
13 qusgrp2.1 . . . . 5 ((𝜑𝑥𝑉𝑦𝑉) → (𝑥 + 𝑦) ∈ 𝑉)
14133expb 1121 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥 + 𝑦) ∈ 𝑉)
15 qusgrp2.e . . . 4 (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 + 𝑏) (𝑝 + 𝑞)))
164, 6, 3, 14, 15ercpbl 17436 . . 3 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → ((((𝑢𝑉 ↦ [𝑢] )‘𝑎) = ((𝑢𝑉 ↦ [𝑢] )‘𝑝) ∧ ((𝑢𝑉 ↦ [𝑢] )‘𝑏) = ((𝑢𝑉 ↦ [𝑢] )‘𝑞)) → ((𝑢𝑉 ↦ [𝑢] )‘(𝑎 + 𝑏)) = ((𝑢𝑉 ↦ [𝑢] )‘(𝑝 + 𝑞))))
174adantr 482 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → Er 𝑉)
18 qusgrp2.2 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑥 + 𝑦) + 𝑧) (𝑥 + (𝑦 + 𝑧)))
1917, 18erthi 8702 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → [((𝑥 + 𝑦) + 𝑧)] = [(𝑥 + (𝑦 + 𝑧))] )
206adantr 482 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑉 ∈ V)
2117, 20, 3divsfval 17434 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑢𝑉 ↦ [𝑢] )‘((𝑥 + 𝑦) + 𝑧)) = [((𝑥 + 𝑦) + 𝑧)] )
2217, 20, 3divsfval 17434 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑢𝑉 ↦ [𝑢] )‘(𝑥 + (𝑦 + 𝑧))) = [(𝑥 + (𝑦 + 𝑧))] )
2319, 21, 223eqtr4d 2783 . . 3 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑢𝑉 ↦ [𝑢] )‘((𝑥 + 𝑦) + 𝑧)) = ((𝑢𝑉 ↦ [𝑢] )‘(𝑥 + (𝑦 + 𝑧))))
24 qusgrp2.3 . . 3 (𝜑0𝑉)
254adantr 482 . . . . 5 ((𝜑𝑥𝑉) → Er 𝑉)
26 qusgrp2.4 . . . . 5 ((𝜑𝑥𝑉) → ( 0 + 𝑥) 𝑥)
2725, 26erthi 8702 . . . 4 ((𝜑𝑥𝑉) → [( 0 + 𝑥)] = [𝑥] )
286adantr 482 . . . . 5 ((𝜑𝑥𝑉) → 𝑉 ∈ V)
2925, 28, 3divsfval 17434 . . . 4 ((𝜑𝑥𝑉) → ((𝑢𝑉 ↦ [𝑢] )‘( 0 + 𝑥)) = [( 0 + 𝑥)] )
3025, 28, 3divsfval 17434 . . . 4 ((𝜑𝑥𝑉) → ((𝑢𝑉 ↦ [𝑢] )‘𝑥) = [𝑥] )
3127, 29, 303eqtr4d 2783 . . 3 ((𝜑𝑥𝑉) → ((𝑢𝑉 ↦ [𝑢] )‘( 0 + 𝑥)) = ((𝑢𝑉 ↦ [𝑢] )‘𝑥))
32 qusgrp2.5 . . 3 ((𝜑𝑥𝑉) → 𝑁𝑉)
33 qusgrp2.6 . . . . . 6 ((𝜑𝑥𝑉) → (𝑁 + 𝑥) 0 )
3425, 33ersym 8663 . . . . 5 ((𝜑𝑥𝑉) → 0 (𝑁 + 𝑥))
3525, 34erthi 8702 . . . 4 ((𝜑𝑥𝑉) → [ 0 ] = [(𝑁 + 𝑥)] )
3625, 28, 3divsfval 17434 . . . 4 ((𝜑𝑥𝑉) → ((𝑢𝑉 ↦ [𝑢] )‘ 0 ) = [ 0 ] )
3725, 28, 3divsfval 17434 . . . 4 ((𝜑𝑥𝑉) → ((𝑢𝑉 ↦ [𝑢] )‘(𝑁 + 𝑥)) = [(𝑁 + 𝑥)] )
3835, 36, 373eqtr4rd 2784 . . 3 ((𝜑𝑥𝑉) → ((𝑢𝑉 ↦ [𝑢] )‘(𝑁 + 𝑥)) = ((𝑢𝑉 ↦ [𝑢] )‘ 0 ))
3910, 2, 11, 12, 16, 9, 13, 23, 24, 31, 32, 38imasgrp2 18867 . 2 (𝜑 → (𝑈 ∈ Grp ∧ ((𝑢𝑉 ↦ [𝑢] )‘ 0 ) = (0g𝑈)))
404, 6, 3divsfval 17434 . . . . 5 (𝜑 → ((𝑢𝑉 ↦ [𝑢] )‘ 0 ) = [ 0 ] )
4140eqcomd 2739 . . . 4 (𝜑 → [ 0 ] = ((𝑢𝑉 ↦ [𝑢] )‘ 0 ))
4241eqeq1d 2735 . . 3 (𝜑 → ([ 0 ] = (0g𝑈) ↔ ((𝑢𝑉 ↦ [𝑢] )‘ 0 ) = (0g𝑈)))
4342anbi2d 630 . 2 (𝜑 → ((𝑈 ∈ Grp ∧ [ 0 ] = (0g𝑈)) ↔ (𝑈 ∈ Grp ∧ ((𝑢𝑉 ↦ [𝑢] )‘ 0 ) = (0g𝑈))))
4439, 43mpbird 257 1 (𝜑 → (𝑈 ∈ Grp ∧ [ 0 ] = (0g𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  Vcvv 3444   class class class wbr 5106  cmpt 5189  cfv 6497  (class class class)co 7358   Er wer 8648  [cec 8649   / cqs 8650  Basecbs 17088  +gcplusg 17138  0gc0g 17326   /s cqus 17392  Grpcgrp 18753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-tp 4592  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-er 8651  df-ec 8653  df-qs 8657  df-en 8887  df-dom 8888  df-sdom 8889  df-fin 8890  df-sup 9383  df-inf 9384  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-nn 12159  df-2 12221  df-3 12222  df-4 12223  df-5 12224  df-6 12225  df-7 12226  df-8 12227  df-9 12228  df-n0 12419  df-z 12505  df-dec 12624  df-uz 12769  df-fz 13431  df-struct 17024  df-slot 17059  df-ndx 17071  df-base 17089  df-plusg 17151  df-mulr 17152  df-sca 17154  df-vsca 17155  df-ip 17156  df-tset 17157  df-ple 17158  df-ds 17160  df-0g 17328  df-imas 17395  df-qus 17396  df-mgm 18502  df-sgrp 18551  df-mnd 18562  df-grp 18756
This theorem is referenced by:  qusgrp  18990  frgp0  19547  pi1grplem  24428
  Copyright terms: Public domain W3C validator