MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qusgrp2 Structured version   Visualization version   GIF version

Theorem qusgrp2 18940
Description: Prove that a quotient structure is a group. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
qusgrp2.u (𝜑𝑈 = (𝑅 /s ))
qusgrp2.v (𝜑𝑉 = (Base‘𝑅))
qusgrp2.p (𝜑+ = (+g𝑅))
qusgrp2.r (𝜑 Er 𝑉)
qusgrp2.x (𝜑𝑅𝑋)
qusgrp2.e (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 + 𝑏) (𝑝 + 𝑞)))
qusgrp2.1 ((𝜑𝑥𝑉𝑦𝑉) → (𝑥 + 𝑦) ∈ 𝑉)
qusgrp2.2 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑥 + 𝑦) + 𝑧) (𝑥 + (𝑦 + 𝑧)))
qusgrp2.3 (𝜑0𝑉)
qusgrp2.4 ((𝜑𝑥𝑉) → ( 0 + 𝑥) 𝑥)
qusgrp2.5 ((𝜑𝑥𝑉) → 𝑁𝑉)
qusgrp2.6 ((𝜑𝑥𝑉) → (𝑁 + 𝑥) 0 )
Assertion
Ref Expression
qusgrp2 (𝜑 → (𝑈 ∈ Grp ∧ [ 0 ] = (0g𝑈)))
Distinct variable groups:   𝑎,𝑏,𝑝,𝑞,𝑥,𝑦,𝑧,   0 ,𝑎,𝑏,𝑝,𝑞,𝑥   𝑁,𝑝   𝑅,𝑝,𝑞   + ,𝑎,𝑏,𝑝,𝑞,𝑥,𝑦   𝜑,𝑎,𝑏,𝑝,𝑞,𝑥,𝑦,𝑧   𝑉,𝑎,𝑏,𝑝,𝑞,𝑥,𝑦,𝑧   𝑈,𝑎,𝑏,𝑝,𝑞,𝑥,𝑦,𝑧
Allowed substitution hints:   + (𝑧)   𝑅(𝑥,𝑦,𝑧,𝑎,𝑏)   𝑁(𝑥,𝑦,𝑧,𝑞,𝑎,𝑏)   𝑋(𝑥,𝑦,𝑧,𝑞,𝑝,𝑎,𝑏)   0 (𝑦,𝑧)

Proof of Theorem qusgrp2
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 qusgrp2.u . . . 4 (𝜑𝑈 = (𝑅 /s ))
2 qusgrp2.v . . . 4 (𝜑𝑉 = (Base‘𝑅))
3 eqid 2732 . . . 4 (𝑢𝑉 ↦ [𝑢] ) = (𝑢𝑉 ↦ [𝑢] )
4 qusgrp2.r . . . . 5 (𝜑 Er 𝑉)
5 fvex 6904 . . . . . 6 (Base‘𝑅) ∈ V
62, 5eqeltrdi 2841 . . . . 5 (𝜑𝑉 ∈ V)
7 erex 8726 . . . . 5 ( Er 𝑉 → (𝑉 ∈ V → ∈ V))
84, 6, 7sylc 65 . . . 4 (𝜑 ∈ V)
9 qusgrp2.x . . . 4 (𝜑𝑅𝑋)
101, 2, 3, 8, 9qusval 17487 . . 3 (𝜑𝑈 = ((𝑢𝑉 ↦ [𝑢] ) “s 𝑅))
11 qusgrp2.p . . 3 (𝜑+ = (+g𝑅))
121, 2, 3, 8, 9quslem 17488 . . 3 (𝜑 → (𝑢𝑉 ↦ [𝑢] ):𝑉onto→(𝑉 / ))
13 qusgrp2.1 . . . . 5 ((𝜑𝑥𝑉𝑦𝑉) → (𝑥 + 𝑦) ∈ 𝑉)
14133expb 1120 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥 + 𝑦) ∈ 𝑉)
15 qusgrp2.e . . . 4 (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 + 𝑏) (𝑝 + 𝑞)))
164, 6, 3, 14, 15ercpbl 17494 . . 3 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → ((((𝑢𝑉 ↦ [𝑢] )‘𝑎) = ((𝑢𝑉 ↦ [𝑢] )‘𝑝) ∧ ((𝑢𝑉 ↦ [𝑢] )‘𝑏) = ((𝑢𝑉 ↦ [𝑢] )‘𝑞)) → ((𝑢𝑉 ↦ [𝑢] )‘(𝑎 + 𝑏)) = ((𝑢𝑉 ↦ [𝑢] )‘(𝑝 + 𝑞))))
174adantr 481 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → Er 𝑉)
18 qusgrp2.2 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑥 + 𝑦) + 𝑧) (𝑥 + (𝑦 + 𝑧)))
1917, 18erthi 8753 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → [((𝑥 + 𝑦) + 𝑧)] = [(𝑥 + (𝑦 + 𝑧))] )
206adantr 481 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑉 ∈ V)
2117, 20, 3divsfval 17492 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑢𝑉 ↦ [𝑢] )‘((𝑥 + 𝑦) + 𝑧)) = [((𝑥 + 𝑦) + 𝑧)] )
2217, 20, 3divsfval 17492 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑢𝑉 ↦ [𝑢] )‘(𝑥 + (𝑦 + 𝑧))) = [(𝑥 + (𝑦 + 𝑧))] )
2319, 21, 223eqtr4d 2782 . . 3 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑢𝑉 ↦ [𝑢] )‘((𝑥 + 𝑦) + 𝑧)) = ((𝑢𝑉 ↦ [𝑢] )‘(𝑥 + (𝑦 + 𝑧))))
24 qusgrp2.3 . . 3 (𝜑0𝑉)
254adantr 481 . . . . 5 ((𝜑𝑥𝑉) → Er 𝑉)
26 qusgrp2.4 . . . . 5 ((𝜑𝑥𝑉) → ( 0 + 𝑥) 𝑥)
2725, 26erthi 8753 . . . 4 ((𝜑𝑥𝑉) → [( 0 + 𝑥)] = [𝑥] )
286adantr 481 . . . . 5 ((𝜑𝑥𝑉) → 𝑉 ∈ V)
2925, 28, 3divsfval 17492 . . . 4 ((𝜑𝑥𝑉) → ((𝑢𝑉 ↦ [𝑢] )‘( 0 + 𝑥)) = [( 0 + 𝑥)] )
3025, 28, 3divsfval 17492 . . . 4 ((𝜑𝑥𝑉) → ((𝑢𝑉 ↦ [𝑢] )‘𝑥) = [𝑥] )
3127, 29, 303eqtr4d 2782 . . 3 ((𝜑𝑥𝑉) → ((𝑢𝑉 ↦ [𝑢] )‘( 0 + 𝑥)) = ((𝑢𝑉 ↦ [𝑢] )‘𝑥))
32 qusgrp2.5 . . 3 ((𝜑𝑥𝑉) → 𝑁𝑉)
33 qusgrp2.6 . . . . . 6 ((𝜑𝑥𝑉) → (𝑁 + 𝑥) 0 )
3425, 33ersym 8714 . . . . 5 ((𝜑𝑥𝑉) → 0 (𝑁 + 𝑥))
3525, 34erthi 8753 . . . 4 ((𝜑𝑥𝑉) → [ 0 ] = [(𝑁 + 𝑥)] )
3625, 28, 3divsfval 17492 . . . 4 ((𝜑𝑥𝑉) → ((𝑢𝑉 ↦ [𝑢] )‘ 0 ) = [ 0 ] )
3725, 28, 3divsfval 17492 . . . 4 ((𝜑𝑥𝑉) → ((𝑢𝑉 ↦ [𝑢] )‘(𝑁 + 𝑥)) = [(𝑁 + 𝑥)] )
3835, 36, 373eqtr4rd 2783 . . 3 ((𝜑𝑥𝑉) → ((𝑢𝑉 ↦ [𝑢] )‘(𝑁 + 𝑥)) = ((𝑢𝑉 ↦ [𝑢] )‘ 0 ))
3910, 2, 11, 12, 16, 9, 13, 23, 24, 31, 32, 38imasgrp2 18937 . 2 (𝜑 → (𝑈 ∈ Grp ∧ ((𝑢𝑉 ↦ [𝑢] )‘ 0 ) = (0g𝑈)))
404, 6, 3divsfval 17492 . . . . 5 (𝜑 → ((𝑢𝑉 ↦ [𝑢] )‘ 0 ) = [ 0 ] )
4140eqcomd 2738 . . . 4 (𝜑 → [ 0 ] = ((𝑢𝑉 ↦ [𝑢] )‘ 0 ))
4241eqeq1d 2734 . . 3 (𝜑 → ([ 0 ] = (0g𝑈) ↔ ((𝑢𝑉 ↦ [𝑢] )‘ 0 ) = (0g𝑈)))
4342anbi2d 629 . 2 (𝜑 → ((𝑈 ∈ Grp ∧ [ 0 ] = (0g𝑈)) ↔ (𝑈 ∈ Grp ∧ ((𝑢𝑉 ↦ [𝑢] )‘ 0 ) = (0g𝑈))))
4439, 43mpbird 256 1 (𝜑 → (𝑈 ∈ Grp ∧ [ 0 ] = (0g𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  Vcvv 3474   class class class wbr 5148  cmpt 5231  cfv 6543  (class class class)co 7408   Er wer 8699  [cec 8700   / cqs 8701  Basecbs 17143  +gcplusg 17196  0gc0g 17384   /s cqus 17450  Grpcgrp 18818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-ec 8704  df-qs 8708  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-sup 9436  df-inf 9437  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-n0 12472  df-z 12558  df-dec 12677  df-uz 12822  df-fz 13484  df-struct 17079  df-slot 17114  df-ndx 17126  df-base 17144  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-0g 17386  df-imas 17453  df-qus 17454  df-mgm 18560  df-sgrp 18609  df-mnd 18625  df-grp 18821
This theorem is referenced by:  qusgrp  19064  frgp0  19627  pi1grplem  24564
  Copyright terms: Public domain W3C validator