![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qusgrp2 | Structured version Visualization version GIF version |
Description: Prove that a quotient structure is a group. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
qusgrp2.u | ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) |
qusgrp2.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
qusgrp2.p | ⊢ (𝜑 → + = (+g‘𝑅)) |
qusgrp2.r | ⊢ (𝜑 → ∼ Er 𝑉) |
qusgrp2.x | ⊢ (𝜑 → 𝑅 ∈ 𝑋) |
qusgrp2.e | ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 + 𝑏) ∼ (𝑝 + 𝑞))) |
qusgrp2.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥 + 𝑦) ∈ 𝑉) |
qusgrp2.2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝑥 + 𝑦) + 𝑧) ∼ (𝑥 + (𝑦 + 𝑧))) |
qusgrp2.3 | ⊢ (𝜑 → 0 ∈ 𝑉) |
qusgrp2.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ( 0 + 𝑥) ∼ 𝑥) |
qusgrp2.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝑁 ∈ 𝑉) |
qusgrp2.6 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝑁 + 𝑥) ∼ 0 ) |
Ref | Expression |
---|---|
qusgrp2 | ⊢ (𝜑 → (𝑈 ∈ Grp ∧ [ 0 ] ∼ = (0g‘𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusgrp2.u | . . . 4 ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) | |
2 | qusgrp2.v | . . . 4 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
3 | eqid 2731 | . . . 4 ⊢ (𝑢 ∈ 𝑉 ↦ [𝑢] ∼ ) = (𝑢 ∈ 𝑉 ↦ [𝑢] ∼ ) | |
4 | qusgrp2.r | . . . . 5 ⊢ (𝜑 → ∼ Er 𝑉) | |
5 | fvex 6904 | . . . . . 6 ⊢ (Base‘𝑅) ∈ V | |
6 | 2, 5 | eqeltrdi 2840 | . . . . 5 ⊢ (𝜑 → 𝑉 ∈ V) |
7 | erex 8733 | . . . . 5 ⊢ ( ∼ Er 𝑉 → (𝑉 ∈ V → ∼ ∈ V)) | |
8 | 4, 6, 7 | sylc 65 | . . . 4 ⊢ (𝜑 → ∼ ∈ V) |
9 | qusgrp2.x | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑋) | |
10 | 1, 2, 3, 8, 9 | qusval 17495 | . . 3 ⊢ (𝜑 → 𝑈 = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ ) “s 𝑅)) |
11 | qusgrp2.p | . . 3 ⊢ (𝜑 → + = (+g‘𝑅)) | |
12 | 1, 2, 3, 8, 9 | quslem 17496 | . . 3 ⊢ (𝜑 → (𝑢 ∈ 𝑉 ↦ [𝑢] ∼ ):𝑉–onto→(𝑉 / ∼ )) |
13 | qusgrp2.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥 + 𝑦) ∈ 𝑉) | |
14 | 13 | 3expb 1119 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥 + 𝑦) ∈ 𝑉) |
15 | qusgrp2.e | . . . 4 ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 + 𝑏) ∼ (𝑝 + 𝑞))) | |
16 | 4, 6, 3, 14, 15 | ercpbl 17502 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → ((((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑎) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑝) ∧ ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑏) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑞)) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘(𝑎 + 𝑏)) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘(𝑝 + 𝑞)))) |
17 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ∼ Er 𝑉) |
18 | qusgrp2.2 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝑥 + 𝑦) + 𝑧) ∼ (𝑥 + (𝑦 + 𝑧))) | |
19 | 17, 18 | erthi 8760 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → [((𝑥 + 𝑦) + 𝑧)] ∼ = [(𝑥 + (𝑦 + 𝑧))] ∼ ) |
20 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑉 ∈ V) |
21 | 17, 20, 3 | divsfval 17500 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘((𝑥 + 𝑦) + 𝑧)) = [((𝑥 + 𝑦) + 𝑧)] ∼ ) |
22 | 17, 20, 3 | divsfval 17500 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘(𝑥 + (𝑦 + 𝑧))) = [(𝑥 + (𝑦 + 𝑧))] ∼ ) |
23 | 19, 21, 22 | 3eqtr4d 2781 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘((𝑥 + 𝑦) + 𝑧)) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘(𝑥 + (𝑦 + 𝑧)))) |
24 | qusgrp2.3 | . . 3 ⊢ (𝜑 → 0 ∈ 𝑉) | |
25 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ∼ Er 𝑉) |
26 | qusgrp2.4 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ( 0 + 𝑥) ∼ 𝑥) | |
27 | 25, 26 | erthi 8760 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → [( 0 + 𝑥)] ∼ = [𝑥] ∼ ) |
28 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝑉 ∈ V) |
29 | 25, 28, 3 | divsfval 17500 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘( 0 + 𝑥)) = [( 0 + 𝑥)] ∼ ) |
30 | 25, 28, 3 | divsfval 17500 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑥) = [𝑥] ∼ ) |
31 | 27, 29, 30 | 3eqtr4d 2781 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘( 0 + 𝑥)) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑥)) |
32 | qusgrp2.5 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝑁 ∈ 𝑉) | |
33 | qusgrp2.6 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝑁 + 𝑥) ∼ 0 ) | |
34 | 25, 33 | ersym 8721 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 0 ∼ (𝑁 + 𝑥)) |
35 | 25, 34 | erthi 8760 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → [ 0 ] ∼ = [(𝑁 + 𝑥)] ∼ ) |
36 | 25, 28, 3 | divsfval 17500 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘ 0 ) = [ 0 ] ∼ ) |
37 | 25, 28, 3 | divsfval 17500 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘(𝑁 + 𝑥)) = [(𝑁 + 𝑥)] ∼ ) |
38 | 35, 36, 37 | 3eqtr4rd 2782 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘(𝑁 + 𝑥)) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘ 0 )) |
39 | 10, 2, 11, 12, 16, 9, 13, 23, 24, 31, 32, 38 | imasgrp2 18981 | . 2 ⊢ (𝜑 → (𝑈 ∈ Grp ∧ ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘ 0 ) = (0g‘𝑈))) |
40 | 4, 6, 3 | divsfval 17500 | . . . . 5 ⊢ (𝜑 → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘ 0 ) = [ 0 ] ∼ ) |
41 | 40 | eqcomd 2737 | . . . 4 ⊢ (𝜑 → [ 0 ] ∼ = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘ 0 )) |
42 | 41 | eqeq1d 2733 | . . 3 ⊢ (𝜑 → ([ 0 ] ∼ = (0g‘𝑈) ↔ ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘ 0 ) = (0g‘𝑈))) |
43 | 42 | anbi2d 628 | . 2 ⊢ (𝜑 → ((𝑈 ∈ Grp ∧ [ 0 ] ∼ = (0g‘𝑈)) ↔ (𝑈 ∈ Grp ∧ ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘ 0 ) = (0g‘𝑈)))) |
44 | 39, 43 | mpbird 257 | 1 ⊢ (𝜑 → (𝑈 ∈ Grp ∧ [ 0 ] ∼ = (0g‘𝑈))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 Vcvv 3473 class class class wbr 5148 ↦ cmpt 5231 ‘cfv 6543 (class class class)co 7412 Er wer 8706 [cec 8707 / cqs 8708 Basecbs 17151 +gcplusg 17204 0gc0g 17392 /s cqus 17458 Grpcgrp 18861 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-ec 8711 df-qs 8715 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-sup 9443 df-inf 9444 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-dec 12685 df-uz 12830 df-fz 13492 df-struct 17087 df-slot 17122 df-ndx 17134 df-base 17152 df-plusg 17217 df-mulr 17218 df-sca 17220 df-vsca 17221 df-ip 17222 df-tset 17223 df-ple 17224 df-ds 17226 df-0g 17394 df-imas 17461 df-qus 17462 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-grp 18864 |
This theorem is referenced by: qusgrp 19108 frgp0 19676 pi1grplem 24895 |
Copyright terms: Public domain | W3C validator |