| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qusgrp2 | Structured version Visualization version GIF version | ||
| Description: Prove that a quotient structure is a group. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| qusgrp2.u | ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) |
| qusgrp2.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
| qusgrp2.p | ⊢ (𝜑 → + = (+g‘𝑅)) |
| qusgrp2.r | ⊢ (𝜑 → ∼ Er 𝑉) |
| qusgrp2.x | ⊢ (𝜑 → 𝑅 ∈ 𝑋) |
| qusgrp2.e | ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 + 𝑏) ∼ (𝑝 + 𝑞))) |
| qusgrp2.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥 + 𝑦) ∈ 𝑉) |
| qusgrp2.2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝑥 + 𝑦) + 𝑧) ∼ (𝑥 + (𝑦 + 𝑧))) |
| qusgrp2.3 | ⊢ (𝜑 → 0 ∈ 𝑉) |
| qusgrp2.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ( 0 + 𝑥) ∼ 𝑥) |
| qusgrp2.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝑁 ∈ 𝑉) |
| qusgrp2.6 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝑁 + 𝑥) ∼ 0 ) |
| Ref | Expression |
|---|---|
| qusgrp2 | ⊢ (𝜑 → (𝑈 ∈ Grp ∧ [ 0 ] ∼ = (0g‘𝑈))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusgrp2.u | . . . 4 ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) | |
| 2 | qusgrp2.v | . . . 4 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
| 3 | eqid 2729 | . . . 4 ⊢ (𝑢 ∈ 𝑉 ↦ [𝑢] ∼ ) = (𝑢 ∈ 𝑉 ↦ [𝑢] ∼ ) | |
| 4 | qusgrp2.r | . . . . 5 ⊢ (𝜑 → ∼ Er 𝑉) | |
| 5 | fvex 6871 | . . . . . 6 ⊢ (Base‘𝑅) ∈ V | |
| 6 | 2, 5 | eqeltrdi 2836 | . . . . 5 ⊢ (𝜑 → 𝑉 ∈ V) |
| 7 | erex 8695 | . . . . 5 ⊢ ( ∼ Er 𝑉 → (𝑉 ∈ V → ∼ ∈ V)) | |
| 8 | 4, 6, 7 | sylc 65 | . . . 4 ⊢ (𝜑 → ∼ ∈ V) |
| 9 | qusgrp2.x | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑋) | |
| 10 | 1, 2, 3, 8, 9 | qusval 17505 | . . 3 ⊢ (𝜑 → 𝑈 = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ ) “s 𝑅)) |
| 11 | qusgrp2.p | . . 3 ⊢ (𝜑 → + = (+g‘𝑅)) | |
| 12 | 1, 2, 3, 8, 9 | quslem 17506 | . . 3 ⊢ (𝜑 → (𝑢 ∈ 𝑉 ↦ [𝑢] ∼ ):𝑉–onto→(𝑉 / ∼ )) |
| 13 | qusgrp2.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥 + 𝑦) ∈ 𝑉) | |
| 14 | 13 | 3expb 1120 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥 + 𝑦) ∈ 𝑉) |
| 15 | qusgrp2.e | . . . 4 ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 + 𝑏) ∼ (𝑝 + 𝑞))) | |
| 16 | 4, 6, 3, 14, 15 | ercpbl 17512 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → ((((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑎) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑝) ∧ ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑏) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑞)) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘(𝑎 + 𝑏)) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘(𝑝 + 𝑞)))) |
| 17 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ∼ Er 𝑉) |
| 18 | qusgrp2.2 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝑥 + 𝑦) + 𝑧) ∼ (𝑥 + (𝑦 + 𝑧))) | |
| 19 | 17, 18 | erthi 8727 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → [((𝑥 + 𝑦) + 𝑧)] ∼ = [(𝑥 + (𝑦 + 𝑧))] ∼ ) |
| 20 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑉 ∈ V) |
| 21 | 17, 20, 3 | divsfval 17510 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘((𝑥 + 𝑦) + 𝑧)) = [((𝑥 + 𝑦) + 𝑧)] ∼ ) |
| 22 | 17, 20, 3 | divsfval 17510 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘(𝑥 + (𝑦 + 𝑧))) = [(𝑥 + (𝑦 + 𝑧))] ∼ ) |
| 23 | 19, 21, 22 | 3eqtr4d 2774 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘((𝑥 + 𝑦) + 𝑧)) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘(𝑥 + (𝑦 + 𝑧)))) |
| 24 | qusgrp2.3 | . . 3 ⊢ (𝜑 → 0 ∈ 𝑉) | |
| 25 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ∼ Er 𝑉) |
| 26 | qusgrp2.4 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ( 0 + 𝑥) ∼ 𝑥) | |
| 27 | 25, 26 | erthi 8727 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → [( 0 + 𝑥)] ∼ = [𝑥] ∼ ) |
| 28 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝑉 ∈ V) |
| 29 | 25, 28, 3 | divsfval 17510 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘( 0 + 𝑥)) = [( 0 + 𝑥)] ∼ ) |
| 30 | 25, 28, 3 | divsfval 17510 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑥) = [𝑥] ∼ ) |
| 31 | 27, 29, 30 | 3eqtr4d 2774 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘( 0 + 𝑥)) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑥)) |
| 32 | qusgrp2.5 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝑁 ∈ 𝑉) | |
| 33 | qusgrp2.6 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝑁 + 𝑥) ∼ 0 ) | |
| 34 | 25, 33 | ersym 8683 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 0 ∼ (𝑁 + 𝑥)) |
| 35 | 25, 34 | erthi 8727 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → [ 0 ] ∼ = [(𝑁 + 𝑥)] ∼ ) |
| 36 | 25, 28, 3 | divsfval 17510 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘ 0 ) = [ 0 ] ∼ ) |
| 37 | 25, 28, 3 | divsfval 17510 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘(𝑁 + 𝑥)) = [(𝑁 + 𝑥)] ∼ ) |
| 38 | 35, 36, 37 | 3eqtr4rd 2775 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘(𝑁 + 𝑥)) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘ 0 )) |
| 39 | 10, 2, 11, 12, 16, 9, 13, 23, 24, 31, 32, 38 | imasgrp2 18987 | . 2 ⊢ (𝜑 → (𝑈 ∈ Grp ∧ ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘ 0 ) = (0g‘𝑈))) |
| 40 | 4, 6, 3 | divsfval 17510 | . . . . 5 ⊢ (𝜑 → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘ 0 ) = [ 0 ] ∼ ) |
| 41 | 40 | eqcomd 2735 | . . . 4 ⊢ (𝜑 → [ 0 ] ∼ = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘ 0 )) |
| 42 | 41 | eqeq1d 2731 | . . 3 ⊢ (𝜑 → ([ 0 ] ∼ = (0g‘𝑈) ↔ ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘ 0 ) = (0g‘𝑈))) |
| 43 | 42 | anbi2d 630 | . 2 ⊢ (𝜑 → ((𝑈 ∈ Grp ∧ [ 0 ] ∼ = (0g‘𝑈)) ↔ (𝑈 ∈ Grp ∧ ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘ 0 ) = (0g‘𝑈)))) |
| 44 | 39, 43 | mpbird 257 | 1 ⊢ (𝜑 → (𝑈 ∈ Grp ∧ [ 0 ] ∼ = (0g‘𝑈))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3447 class class class wbr 5107 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 Er wer 8668 [cec 8669 / cqs 8670 Basecbs 17179 +gcplusg 17220 0gc0g 17402 /s cqus 17468 Grpcgrp 18865 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-ec 8673 df-qs 8677 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-0g 17404 df-imas 17471 df-qus 17472 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 |
| This theorem is referenced by: qusgrp 19118 frgp0 19690 pi1grplem 24949 |
| Copyright terms: Public domain | W3C validator |