MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qusgrp2 Structured version   Visualization version   GIF version

Theorem qusgrp2 17894
Description: Prove that a quotient structure is a group. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
qusgrp2.u (𝜑𝑈 = (𝑅 /s ))
qusgrp2.v (𝜑𝑉 = (Base‘𝑅))
qusgrp2.p (𝜑+ = (+g𝑅))
qusgrp2.r (𝜑 Er 𝑉)
qusgrp2.x (𝜑𝑅𝑋)
qusgrp2.e (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 + 𝑏) (𝑝 + 𝑞)))
qusgrp2.1 ((𝜑𝑥𝑉𝑦𝑉) → (𝑥 + 𝑦) ∈ 𝑉)
qusgrp2.2 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑥 + 𝑦) + 𝑧) (𝑥 + (𝑦 + 𝑧)))
qusgrp2.3 (𝜑0𝑉)
qusgrp2.4 ((𝜑𝑥𝑉) → ( 0 + 𝑥) 𝑥)
qusgrp2.5 ((𝜑𝑥𝑉) → 𝑁𝑉)
qusgrp2.6 ((𝜑𝑥𝑉) → (𝑁 + 𝑥) 0 )
Assertion
Ref Expression
qusgrp2 (𝜑 → (𝑈 ∈ Grp ∧ [ 0 ] = (0g𝑈)))
Distinct variable groups:   𝑎,𝑏,𝑝,𝑞,𝑥,𝑦,𝑧,   0 ,𝑎,𝑏,𝑝,𝑞,𝑥   𝑁,𝑝   𝑅,𝑝,𝑞   + ,𝑎,𝑏,𝑝,𝑞,𝑥,𝑦   𝜑,𝑎,𝑏,𝑝,𝑞,𝑥,𝑦,𝑧   𝑉,𝑎,𝑏,𝑝,𝑞,𝑥,𝑦,𝑧   𝑈,𝑎,𝑏,𝑝,𝑞,𝑥,𝑦,𝑧
Allowed substitution hints:   + (𝑧)   𝑅(𝑥,𝑦,𝑧,𝑎,𝑏)   𝑁(𝑥,𝑦,𝑧,𝑞,𝑎,𝑏)   𝑋(𝑥,𝑦,𝑧,𝑞,𝑝,𝑎,𝑏)   0 (𝑦,𝑧)

Proof of Theorem qusgrp2
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 qusgrp2.u . . . 4 (𝜑𝑈 = (𝑅 /s ))
2 qusgrp2.v . . . 4 (𝜑𝑉 = (Base‘𝑅))
3 eqid 2825 . . . 4 (𝑢𝑉 ↦ [𝑢] ) = (𝑢𝑉 ↦ [𝑢] )
4 qusgrp2.r . . . . 5 (𝜑 Er 𝑉)
5 fvex 6450 . . . . . 6 (Base‘𝑅) ∈ V
62, 5syl6eqel 2914 . . . . 5 (𝜑𝑉 ∈ V)
7 erex 8038 . . . . 5 ( Er 𝑉 → (𝑉 ∈ V → ∈ V))
84, 6, 7sylc 65 . . . 4 (𝜑 ∈ V)
9 qusgrp2.x . . . 4 (𝜑𝑅𝑋)
101, 2, 3, 8, 9qusval 16562 . . 3 (𝜑𝑈 = ((𝑢𝑉 ↦ [𝑢] ) “s 𝑅))
11 qusgrp2.p . . 3 (𝜑+ = (+g𝑅))
121, 2, 3, 8, 9quslem 16563 . . 3 (𝜑 → (𝑢𝑉 ↦ [𝑢] ):𝑉onto→(𝑉 / ))
13 qusgrp2.1 . . . . 5 ((𝜑𝑥𝑉𝑦𝑉) → (𝑥 + 𝑦) ∈ 𝑉)
14133expb 1153 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥 + 𝑦) ∈ 𝑉)
15 qusgrp2.e . . . 4 (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 + 𝑏) (𝑝 + 𝑞)))
164, 6, 3, 14, 15ercpbl 16569 . . 3 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → ((((𝑢𝑉 ↦ [𝑢] )‘𝑎) = ((𝑢𝑉 ↦ [𝑢] )‘𝑝) ∧ ((𝑢𝑉 ↦ [𝑢] )‘𝑏) = ((𝑢𝑉 ↦ [𝑢] )‘𝑞)) → ((𝑢𝑉 ↦ [𝑢] )‘(𝑎 + 𝑏)) = ((𝑢𝑉 ↦ [𝑢] )‘(𝑝 + 𝑞))))
174adantr 474 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → Er 𝑉)
18 qusgrp2.2 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑥 + 𝑦) + 𝑧) (𝑥 + (𝑦 + 𝑧)))
1917, 18erthi 8063 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → [((𝑥 + 𝑦) + 𝑧)] = [(𝑥 + (𝑦 + 𝑧))] )
206adantr 474 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑉 ∈ V)
2117, 20, 3divsfval 16567 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑢𝑉 ↦ [𝑢] )‘((𝑥 + 𝑦) + 𝑧)) = [((𝑥 + 𝑦) + 𝑧)] )
2217, 20, 3divsfval 16567 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑢𝑉 ↦ [𝑢] )‘(𝑥 + (𝑦 + 𝑧))) = [(𝑥 + (𝑦 + 𝑧))] )
2319, 21, 223eqtr4d 2871 . . 3 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑢𝑉 ↦ [𝑢] )‘((𝑥 + 𝑦) + 𝑧)) = ((𝑢𝑉 ↦ [𝑢] )‘(𝑥 + (𝑦 + 𝑧))))
24 qusgrp2.3 . . 3 (𝜑0𝑉)
254adantr 474 . . . . 5 ((𝜑𝑥𝑉) → Er 𝑉)
26 qusgrp2.4 . . . . 5 ((𝜑𝑥𝑉) → ( 0 + 𝑥) 𝑥)
2725, 26erthi 8063 . . . 4 ((𝜑𝑥𝑉) → [( 0 + 𝑥)] = [𝑥] )
286adantr 474 . . . . 5 ((𝜑𝑥𝑉) → 𝑉 ∈ V)
2925, 28, 3divsfval 16567 . . . 4 ((𝜑𝑥𝑉) → ((𝑢𝑉 ↦ [𝑢] )‘( 0 + 𝑥)) = [( 0 + 𝑥)] )
3025, 28, 3divsfval 16567 . . . 4 ((𝜑𝑥𝑉) → ((𝑢𝑉 ↦ [𝑢] )‘𝑥) = [𝑥] )
3127, 29, 303eqtr4d 2871 . . 3 ((𝜑𝑥𝑉) → ((𝑢𝑉 ↦ [𝑢] )‘( 0 + 𝑥)) = ((𝑢𝑉 ↦ [𝑢] )‘𝑥))
32 qusgrp2.5 . . 3 ((𝜑𝑥𝑉) → 𝑁𝑉)
33 qusgrp2.6 . . . . . 6 ((𝜑𝑥𝑉) → (𝑁 + 𝑥) 0 )
3425, 33ersym 8026 . . . . 5 ((𝜑𝑥𝑉) → 0 (𝑁 + 𝑥))
3525, 34erthi 8063 . . . 4 ((𝜑𝑥𝑉) → [ 0 ] = [(𝑁 + 𝑥)] )
3625, 28, 3divsfval 16567 . . . 4 ((𝜑𝑥𝑉) → ((𝑢𝑉 ↦ [𝑢] )‘ 0 ) = [ 0 ] )
3725, 28, 3divsfval 16567 . . . 4 ((𝜑𝑥𝑉) → ((𝑢𝑉 ↦ [𝑢] )‘(𝑁 + 𝑥)) = [(𝑁 + 𝑥)] )
3835, 36, 373eqtr4rd 2872 . . 3 ((𝜑𝑥𝑉) → ((𝑢𝑉 ↦ [𝑢] )‘(𝑁 + 𝑥)) = ((𝑢𝑉 ↦ [𝑢] )‘ 0 ))
3910, 2, 11, 12, 16, 9, 13, 23, 24, 31, 32, 38imasgrp2 17891 . 2 (𝜑 → (𝑈 ∈ Grp ∧ ((𝑢𝑉 ↦ [𝑢] )‘ 0 ) = (0g𝑈)))
404, 6, 3divsfval 16567 . . . . 5 (𝜑 → ((𝑢𝑉 ↦ [𝑢] )‘ 0 ) = [ 0 ] )
4140eqcomd 2831 . . . 4 (𝜑 → [ 0 ] = ((𝑢𝑉 ↦ [𝑢] )‘ 0 ))
4241eqeq1d 2827 . . 3 (𝜑 → ([ 0 ] = (0g𝑈) ↔ ((𝑢𝑉 ↦ [𝑢] )‘ 0 ) = (0g𝑈)))
4342anbi2d 622 . 2 (𝜑 → ((𝑈 ∈ Grp ∧ [ 0 ] = (0g𝑈)) ↔ (𝑈 ∈ Grp ∧ ((𝑢𝑉 ↦ [𝑢] )‘ 0 ) = (0g𝑈))))
4439, 43mpbird 249 1 (𝜑 → (𝑈 ∈ Grp ∧ [ 0 ] = (0g𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1111   = wceq 1656  wcel 2164  Vcvv 3414   class class class wbr 4875  cmpt 4954  cfv 6127  (class class class)co 6910   Er wer 8011  [cec 8012   / cqs 8013  Basecbs 16229  +gcplusg 16312  0gc0g 16460   /s cqus 16525  Grpcgrp 17783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-oadd 7835  df-er 8014  df-ec 8016  df-qs 8020  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-sup 8623  df-inf 8624  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-nn 11358  df-2 11421  df-3 11422  df-4 11423  df-5 11424  df-6 11425  df-7 11426  df-8 11427  df-9 11428  df-n0 11626  df-z 11712  df-dec 11829  df-uz 11976  df-fz 12627  df-struct 16231  df-ndx 16232  df-slot 16233  df-base 16235  df-plusg 16325  df-mulr 16326  df-sca 16328  df-vsca 16329  df-ip 16330  df-tset 16331  df-ple 16332  df-ds 16334  df-0g 16462  df-imas 16528  df-qus 16529  df-mgm 17602  df-sgrp 17644  df-mnd 17655  df-grp 17786
This theorem is referenced by:  qusgrp  18007  frgp0  18533  pi1grplem  23225
  Copyright terms: Public domain W3C validator