Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > qusring2 | Structured version Visualization version GIF version |
Description: The quotient structure of a ring is a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) |
Ref | Expression |
---|---|
qusring2.u | ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) |
qusring2.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
qusring2.p | ⊢ + = (+g‘𝑅) |
qusring2.t | ⊢ · = (.r‘𝑅) |
qusring2.o | ⊢ 1 = (1r‘𝑅) |
qusring2.r | ⊢ (𝜑 → ∼ Er 𝑉) |
qusring2.e1 | ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 + 𝑏) ∼ (𝑝 + 𝑞))) |
qusring2.e2 | ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) |
qusring2.x | ⊢ (𝜑 → 𝑅 ∈ Ring) |
Ref | Expression |
---|---|
qusring2 | ⊢ (𝜑 → (𝑈 ∈ Ring ∧ [ 1 ] ∼ = (1r‘𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusring2.u | . . . 4 ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) | |
2 | qusring2.v | . . . 4 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
3 | eqid 2738 | . . . 4 ⊢ (𝑢 ∈ 𝑉 ↦ [𝑢] ∼ ) = (𝑢 ∈ 𝑉 ↦ [𝑢] ∼ ) | |
4 | qusring2.r | . . . . 5 ⊢ (𝜑 → ∼ Er 𝑉) | |
5 | fvex 6769 | . . . . . 6 ⊢ (Base‘𝑅) ∈ V | |
6 | 2, 5 | eqeltrdi 2847 | . . . . 5 ⊢ (𝜑 → 𝑉 ∈ V) |
7 | erex 8480 | . . . . 5 ⊢ ( ∼ Er 𝑉 → (𝑉 ∈ V → ∼ ∈ V)) | |
8 | 4, 6, 7 | sylc 65 | . . . 4 ⊢ (𝜑 → ∼ ∈ V) |
9 | qusring2.x | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
10 | 1, 2, 3, 8, 9 | qusval 17170 | . . 3 ⊢ (𝜑 → 𝑈 = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ ) “s 𝑅)) |
11 | qusring2.p | . . 3 ⊢ + = (+g‘𝑅) | |
12 | qusring2.t | . . 3 ⊢ · = (.r‘𝑅) | |
13 | qusring2.o | . . 3 ⊢ 1 = (1r‘𝑅) | |
14 | 1, 2, 3, 8, 9 | quslem 17171 | . . 3 ⊢ (𝜑 → (𝑢 ∈ 𝑉 ↦ [𝑢] ∼ ):𝑉–onto→(𝑉 / ∼ )) |
15 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝑅 ∈ Ring) |
16 | simprl 767 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝑥 ∈ 𝑉) | |
17 | 2 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝑉 = (Base‘𝑅)) |
18 | 16, 17 | eleqtrd 2841 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝑥 ∈ (Base‘𝑅)) |
19 | simprr 769 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝑦 ∈ 𝑉) | |
20 | 19, 17 | eleqtrd 2841 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝑦 ∈ (Base‘𝑅)) |
21 | eqid 2738 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
22 | 21, 11 | ringacl 19732 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥 + 𝑦) ∈ (Base‘𝑅)) |
23 | 15, 18, 20, 22 | syl3anc 1369 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥 + 𝑦) ∈ (Base‘𝑅)) |
24 | 23, 17 | eleqtrrd 2842 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥 + 𝑦) ∈ 𝑉) |
25 | qusring2.e1 | . . . 4 ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 + 𝑏) ∼ (𝑝 + 𝑞))) | |
26 | 4, 6, 3, 24, 25 | ercpbl 17177 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → ((((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑎) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑝) ∧ ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑏) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑞)) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘(𝑎 + 𝑏)) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘(𝑝 + 𝑞)))) |
27 | 21, 12 | ringcl 19715 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥 · 𝑦) ∈ (Base‘𝑅)) |
28 | 15, 18, 20, 27 | syl3anc 1369 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥 · 𝑦) ∈ (Base‘𝑅)) |
29 | 28, 17 | eleqtrrd 2842 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥 · 𝑦) ∈ 𝑉) |
30 | qusring2.e2 | . . . 4 ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) | |
31 | 4, 6, 3, 29, 30 | ercpbl 17177 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → ((((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑎) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑝) ∧ ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑏) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑞)) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘(𝑎 · 𝑏)) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘(𝑝 · 𝑞)))) |
32 | 10, 2, 11, 12, 13, 14, 26, 31, 9 | imasring 19773 | . 2 ⊢ (𝜑 → (𝑈 ∈ Ring ∧ ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘ 1 ) = (1r‘𝑈))) |
33 | 4, 6, 3 | divsfval 17175 | . . . . 5 ⊢ (𝜑 → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘ 1 ) = [ 1 ] ∼ ) |
34 | 33 | eqcomd 2744 | . . . 4 ⊢ (𝜑 → [ 1 ] ∼ = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘ 1 )) |
35 | 34 | eqeq1d 2740 | . . 3 ⊢ (𝜑 → ([ 1 ] ∼ = (1r‘𝑈) ↔ ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘ 1 ) = (1r‘𝑈))) |
36 | 35 | anbi2d 628 | . 2 ⊢ (𝜑 → ((𝑈 ∈ Ring ∧ [ 1 ] ∼ = (1r‘𝑈)) ↔ (𝑈 ∈ Ring ∧ ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘ 1 ) = (1r‘𝑈)))) |
37 | 32, 36 | mpbird 256 | 1 ⊢ (𝜑 → (𝑈 ∈ Ring ∧ [ 1 ] ∼ = (1r‘𝑈))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 class class class wbr 5070 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 Er wer 8453 [cec 8454 / cqs 8455 Basecbs 16840 +gcplusg 16888 .rcmulr 16889 /s cqus 17133 1rcur 19652 Ringcrg 19698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-ec 8458 df-qs 8462 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-0g 17069 df-imas 17136 df-qus 17137 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-mgp 19636 df-ur 19653 df-ring 19700 |
This theorem is referenced by: qus1 20419 |
Copyright terms: Public domain | W3C validator |