MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qusring2 Structured version   Visualization version   GIF version

Theorem qusring2 19638
Description: The quotient structure of a ring is a ring. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
qusring2.u (𝜑𝑈 = (𝑅 /s ))
qusring2.v (𝜑𝑉 = (Base‘𝑅))
qusring2.p + = (+g𝑅)
qusring2.t · = (.r𝑅)
qusring2.o 1 = (1r𝑅)
qusring2.r (𝜑 Er 𝑉)
qusring2.e1 (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 + 𝑏) (𝑝 + 𝑞)))
qusring2.e2 (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 · 𝑏) (𝑝 · 𝑞)))
qusring2.x (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
qusring2 (𝜑 → (𝑈 ∈ Ring ∧ [ 1 ] = (1r𝑈)))
Distinct variable groups:   𝑞,𝑝, +   1 ,𝑝,𝑞   𝑎,𝑏,𝑝,𝑞,𝑈   𝑉,𝑎,𝑏,𝑝,𝑞   ,𝑎,𝑏,𝑝,𝑞   𝜑,𝑎,𝑏,𝑝,𝑞   · ,𝑝,𝑞   𝑅,𝑝,𝑞
Allowed substitution hints:   + (𝑎,𝑏)   𝑅(𝑎,𝑏)   · (𝑎,𝑏)   1 (𝑎,𝑏)

Proof of Theorem qusring2
Dummy variables 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusring2.u . . . 4 (𝜑𝑈 = (𝑅 /s ))
2 qusring2.v . . . 4 (𝜑𝑉 = (Base‘𝑅))
3 eqid 2737 . . . 4 (𝑢𝑉 ↦ [𝑢] ) = (𝑢𝑉 ↦ [𝑢] )
4 qusring2.r . . . . 5 (𝜑 Er 𝑉)
5 fvex 6730 . . . . . 6 (Base‘𝑅) ∈ V
62, 5eqeltrdi 2846 . . . . 5 (𝜑𝑉 ∈ V)
7 erex 8415 . . . . 5 ( Er 𝑉 → (𝑉 ∈ V → ∈ V))
84, 6, 7sylc 65 . . . 4 (𝜑 ∈ V)
9 qusring2.x . . . 4 (𝜑𝑅 ∈ Ring)
101, 2, 3, 8, 9qusval 17047 . . 3 (𝜑𝑈 = ((𝑢𝑉 ↦ [𝑢] ) “s 𝑅))
11 qusring2.p . . 3 + = (+g𝑅)
12 qusring2.t . . 3 · = (.r𝑅)
13 qusring2.o . . 3 1 = (1r𝑅)
141, 2, 3, 8, 9quslem 17048 . . 3 (𝜑 → (𝑢𝑉 ↦ [𝑢] ):𝑉onto→(𝑉 / ))
159adantr 484 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑅 ∈ Ring)
16 simprl 771 . . . . . . 7 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑥𝑉)
172adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑉 = (Base‘𝑅))
1816, 17eleqtrd 2840 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑥 ∈ (Base‘𝑅))
19 simprr 773 . . . . . . 7 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑦𝑉)
2019, 17eleqtrd 2840 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑦 ∈ (Base‘𝑅))
21 eqid 2737 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
2221, 11ringacl 19596 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥 + 𝑦) ∈ (Base‘𝑅))
2315, 18, 20, 22syl3anc 1373 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥 + 𝑦) ∈ (Base‘𝑅))
2423, 17eleqtrrd 2841 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥 + 𝑦) ∈ 𝑉)
25 qusring2.e1 . . . 4 (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 + 𝑏) (𝑝 + 𝑞)))
264, 6, 3, 24, 25ercpbl 17054 . . 3 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → ((((𝑢𝑉 ↦ [𝑢] )‘𝑎) = ((𝑢𝑉 ↦ [𝑢] )‘𝑝) ∧ ((𝑢𝑉 ↦ [𝑢] )‘𝑏) = ((𝑢𝑉 ↦ [𝑢] )‘𝑞)) → ((𝑢𝑉 ↦ [𝑢] )‘(𝑎 + 𝑏)) = ((𝑢𝑉 ↦ [𝑢] )‘(𝑝 + 𝑞))))
2721, 12ringcl 19579 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥 · 𝑦) ∈ (Base‘𝑅))
2815, 18, 20, 27syl3anc 1373 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥 · 𝑦) ∈ (Base‘𝑅))
2928, 17eleqtrrd 2841 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥 · 𝑦) ∈ 𝑉)
30 qusring2.e2 . . . 4 (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 · 𝑏) (𝑝 · 𝑞)))
314, 6, 3, 29, 30ercpbl 17054 . . 3 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → ((((𝑢𝑉 ↦ [𝑢] )‘𝑎) = ((𝑢𝑉 ↦ [𝑢] )‘𝑝) ∧ ((𝑢𝑉 ↦ [𝑢] )‘𝑏) = ((𝑢𝑉 ↦ [𝑢] )‘𝑞)) → ((𝑢𝑉 ↦ [𝑢] )‘(𝑎 · 𝑏)) = ((𝑢𝑉 ↦ [𝑢] )‘(𝑝 · 𝑞))))
3210, 2, 11, 12, 13, 14, 26, 31, 9imasring 19637 . 2 (𝜑 → (𝑈 ∈ Ring ∧ ((𝑢𝑉 ↦ [𝑢] )‘ 1 ) = (1r𝑈)))
334, 6, 3divsfval 17052 . . . . 5 (𝜑 → ((𝑢𝑉 ↦ [𝑢] )‘ 1 ) = [ 1 ] )
3433eqcomd 2743 . . . 4 (𝜑 → [ 1 ] = ((𝑢𝑉 ↦ [𝑢] )‘ 1 ))
3534eqeq1d 2739 . . 3 (𝜑 → ([ 1 ] = (1r𝑈) ↔ ((𝑢𝑉 ↦ [𝑢] )‘ 1 ) = (1r𝑈)))
3635anbi2d 632 . 2 (𝜑 → ((𝑈 ∈ Ring ∧ [ 1 ] = (1r𝑈)) ↔ (𝑈 ∈ Ring ∧ ((𝑢𝑉 ↦ [𝑢] )‘ 1 ) = (1r𝑈))))
3732, 36mpbird 260 1 (𝜑 → (𝑈 ∈ Ring ∧ [ 1 ] = (1r𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  Vcvv 3408   class class class wbr 5053  cmpt 5135  cfv 6380  (class class class)co 7213   Er wer 8388  [cec 8389   / cqs 8390  Basecbs 16760  +gcplusg 16802  .rcmulr 16803   /s cqus 17010  1rcur 19516  Ringcrg 19562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-ec 8393  df-qs 8397  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-sup 9058  df-inf 9059  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-fz 13096  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-plusg 16815  df-mulr 16816  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-0g 16946  df-imas 17013  df-qus 17014  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-grp 18368  df-minusg 18369  df-mgp 19505  df-ur 19517  df-ring 19564
This theorem is referenced by:  qus1  20273
  Copyright terms: Public domain W3C validator