|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > qusring2 | Structured version Visualization version GIF version | ||
| Description: The quotient structure of a ring is a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) | 
| Ref | Expression | 
|---|---|
| qusring2.u | ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) | 
| qusring2.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | 
| qusring2.p | ⊢ + = (+g‘𝑅) | 
| qusring2.t | ⊢ · = (.r‘𝑅) | 
| qusring2.o | ⊢ 1 = (1r‘𝑅) | 
| qusring2.r | ⊢ (𝜑 → ∼ Er 𝑉) | 
| qusring2.e1 | ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 + 𝑏) ∼ (𝑝 + 𝑞))) | 
| qusring2.e2 | ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) | 
| qusring2.x | ⊢ (𝜑 → 𝑅 ∈ Ring) | 
| Ref | Expression | 
|---|---|
| qusring2 | ⊢ (𝜑 → (𝑈 ∈ Ring ∧ [ 1 ] ∼ = (1r‘𝑈))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | qusring2.u | . . . 4 ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) | |
| 2 | qusring2.v | . . . 4 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
| 3 | eqid 2737 | . . . 4 ⊢ (𝑢 ∈ 𝑉 ↦ [𝑢] ∼ ) = (𝑢 ∈ 𝑉 ↦ [𝑢] ∼ ) | |
| 4 | qusring2.r | . . . . 5 ⊢ (𝜑 → ∼ Er 𝑉) | |
| 5 | fvex 6919 | . . . . . 6 ⊢ (Base‘𝑅) ∈ V | |
| 6 | 2, 5 | eqeltrdi 2849 | . . . . 5 ⊢ (𝜑 → 𝑉 ∈ V) | 
| 7 | erex 8769 | . . . . 5 ⊢ ( ∼ Er 𝑉 → (𝑉 ∈ V → ∼ ∈ V)) | |
| 8 | 4, 6, 7 | sylc 65 | . . . 4 ⊢ (𝜑 → ∼ ∈ V) | 
| 9 | qusring2.x | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 10 | 1, 2, 3, 8, 9 | qusval 17587 | . . 3 ⊢ (𝜑 → 𝑈 = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ ) “s 𝑅)) | 
| 11 | qusring2.p | . . 3 ⊢ + = (+g‘𝑅) | |
| 12 | qusring2.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 13 | qusring2.o | . . 3 ⊢ 1 = (1r‘𝑅) | |
| 14 | 1, 2, 3, 8, 9 | quslem 17588 | . . 3 ⊢ (𝜑 → (𝑢 ∈ 𝑉 ↦ [𝑢] ∼ ):𝑉–onto→(𝑉 / ∼ )) | 
| 15 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝑅 ∈ Ring) | 
| 16 | simprl 771 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝑥 ∈ 𝑉) | |
| 17 | 2 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝑉 = (Base‘𝑅)) | 
| 18 | 16, 17 | eleqtrd 2843 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝑥 ∈ (Base‘𝑅)) | 
| 19 | simprr 773 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝑦 ∈ 𝑉) | |
| 20 | 19, 17 | eleqtrd 2843 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝑦 ∈ (Base‘𝑅)) | 
| 21 | eqid 2737 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 22 | 21, 11 | ringacl 20275 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥 + 𝑦) ∈ (Base‘𝑅)) | 
| 23 | 15, 18, 20, 22 | syl3anc 1373 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥 + 𝑦) ∈ (Base‘𝑅)) | 
| 24 | 23, 17 | eleqtrrd 2844 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥 + 𝑦) ∈ 𝑉) | 
| 25 | qusring2.e1 | . . . 4 ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 + 𝑏) ∼ (𝑝 + 𝑞))) | |
| 26 | 4, 6, 3, 24, 25 | ercpbl 17594 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → ((((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑎) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑝) ∧ ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑏) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑞)) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘(𝑎 + 𝑏)) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘(𝑝 + 𝑞)))) | 
| 27 | 21, 12 | ringcl 20247 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥 · 𝑦) ∈ (Base‘𝑅)) | 
| 28 | 15, 18, 20, 27 | syl3anc 1373 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥 · 𝑦) ∈ (Base‘𝑅)) | 
| 29 | 28, 17 | eleqtrrd 2844 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥 · 𝑦) ∈ 𝑉) | 
| 30 | qusring2.e2 | . . . 4 ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) | |
| 31 | 4, 6, 3, 29, 30 | ercpbl 17594 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → ((((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑎) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑝) ∧ ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑏) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑞)) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘(𝑎 · 𝑏)) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘(𝑝 · 𝑞)))) | 
| 32 | 10, 2, 11, 12, 13, 14, 26, 31, 9 | imasring 20327 | . 2 ⊢ (𝜑 → (𝑈 ∈ Ring ∧ ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘ 1 ) = (1r‘𝑈))) | 
| 33 | 4, 6, 3 | divsfval 17592 | . . . . 5 ⊢ (𝜑 → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘ 1 ) = [ 1 ] ∼ ) | 
| 34 | 33 | eqcomd 2743 | . . . 4 ⊢ (𝜑 → [ 1 ] ∼ = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘ 1 )) | 
| 35 | 34 | eqeq1d 2739 | . . 3 ⊢ (𝜑 → ([ 1 ] ∼ = (1r‘𝑈) ↔ ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘ 1 ) = (1r‘𝑈))) | 
| 36 | 35 | anbi2d 630 | . 2 ⊢ (𝜑 → ((𝑈 ∈ Ring ∧ [ 1 ] ∼ = (1r‘𝑈)) ↔ (𝑈 ∈ Ring ∧ ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘ 1 ) = (1r‘𝑈)))) | 
| 37 | 32, 36 | mpbird 257 | 1 ⊢ (𝜑 → (𝑈 ∈ Ring ∧ [ 1 ] ∼ = (1r‘𝑈))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3480 class class class wbr 5143 ↦ cmpt 5225 ‘cfv 6561 (class class class)co 7431 Er wer 8742 [cec 8743 / cqs 8744 Basecbs 17247 +gcplusg 17297 .rcmulr 17298 /s cqus 17550 1rcur 20178 Ringcrg 20230 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-ec 8747 df-qs 8751 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-fz 13548 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-0g 17486 df-imas 17553 df-qus 17554 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-grp 18954 df-minusg 18955 df-mgp 20138 df-ur 20179 df-ring 20232 | 
| This theorem is referenced by: qus1 21284 | 
| Copyright terms: Public domain | W3C validator |