Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  quslmod Structured version   Visualization version   GIF version

Theorem quslmod 33336
Description: If 𝐺 is a submodule in 𝑀, then 𝑁 = 𝑀 / 𝐺 is a left module, called the quotient module of 𝑀 by 𝐺. (Contributed by Thierry Arnoux, 18-May-2023.)
Hypotheses
Ref Expression
quslmod.n 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺))
quslmod.v 𝑉 = (Base‘𝑀)
quslmod.1 (𝜑𝑀 ∈ LMod)
quslmod.2 (𝜑𝐺 ∈ (LSubSp‘𝑀))
Assertion
Ref Expression
quslmod (𝜑𝑁 ∈ LMod)

Proof of Theorem quslmod
Dummy variables 𝑎 𝑏 𝑘 𝑝 𝑞 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 quslmod.n . . . 4 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺))
21a1i 11 . . 3 (𝜑𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)))
3 quslmod.v . . . 4 𝑉 = (Base‘𝑀)
43a1i 11 . . 3 (𝜑𝑉 = (Base‘𝑀))
5 eqid 2730 . . 3 (𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺)) = (𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))
6 ovexd 7425 . . 3 (𝜑 → (𝑀 ~QG 𝐺) ∈ V)
7 quslmod.1 . . 3 (𝜑𝑀 ∈ LMod)
82, 4, 5, 6, 7qusval 17512 . 2 (𝜑𝑁 = ((𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺)) “s 𝑀))
9 eqid 2730 . 2 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
10 eqid 2730 . 2 (+g𝑀) = (+g𝑀)
11 eqid 2730 . 2 ( ·𝑠𝑀) = ( ·𝑠𝑀)
12 eqid 2730 . 2 (0g𝑀) = (0g𝑀)
132, 4, 5, 6, 7quslem 17513 . 2 (𝜑 → (𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺)):𝑉onto→(𝑉 / (𝑀 ~QG 𝐺)))
14 quslmod.2 . . . . 5 (𝜑𝐺 ∈ (LSubSp‘𝑀))
15 eqid 2730 . . . . . 6 (LSubSp‘𝑀) = (LSubSp‘𝑀)
1615lsssubg 20870 . . . . 5 ((𝑀 ∈ LMod ∧ 𝐺 ∈ (LSubSp‘𝑀)) → 𝐺 ∈ (SubGrp‘𝑀))
177, 14, 16syl2anc 584 . . . 4 (𝜑𝐺 ∈ (SubGrp‘𝑀))
18 eqid 2730 . . . . 5 (𝑀 ~QG 𝐺) = (𝑀 ~QG 𝐺)
193, 18eqger 19117 . . . 4 (𝐺 ∈ (SubGrp‘𝑀) → (𝑀 ~QG 𝐺) Er 𝑉)
2017, 19syl 17 . . 3 (𝜑 → (𝑀 ~QG 𝐺) Er 𝑉)
213fvexi 6875 . . . 4 𝑉 ∈ V
2221a1i 11 . . 3 (𝜑𝑉 ∈ V)
23 lmodgrp 20780 . . . . . 6 (𝑀 ∈ LMod → 𝑀 ∈ Grp)
247, 23syl 17 . . . . 5 (𝜑𝑀 ∈ Grp)
2524adantr 480 . . . 4 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → 𝑀 ∈ Grp)
26 simprl 770 . . . 4 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → 𝑝𝑉)
27 simprr 772 . . . 4 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → 𝑞𝑉)
283, 10grpcl 18880 . . . 4 ((𝑀 ∈ Grp ∧ 𝑝𝑉𝑞𝑉) → (𝑝(+g𝑀)𝑞) ∈ 𝑉)
2925, 26, 27, 28syl3anc 1373 . . 3 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → (𝑝(+g𝑀)𝑞) ∈ 𝑉)
30 lmodabl 20822 . . . . . 6 (𝑀 ∈ LMod → 𝑀 ∈ Abel)
31 ablnsg 19784 . . . . . 6 (𝑀 ∈ Abel → (NrmSGrp‘𝑀) = (SubGrp‘𝑀))
327, 30, 313syl 18 . . . . 5 (𝜑 → (NrmSGrp‘𝑀) = (SubGrp‘𝑀))
3317, 32eleqtrrd 2832 . . . 4 (𝜑𝐺 ∈ (NrmSGrp‘𝑀))
343, 18, 10eqgcpbl 19121 . . . 4 (𝐺 ∈ (NrmSGrp‘𝑀) → ((𝑎(𝑀 ~QG 𝐺)𝑝𝑏(𝑀 ~QG 𝐺)𝑞) → (𝑎(+g𝑀)𝑏)(𝑀 ~QG 𝐺)(𝑝(+g𝑀)𝑞)))
3533, 34syl 17 . . 3 (𝜑 → ((𝑎(𝑀 ~QG 𝐺)𝑝𝑏(𝑀 ~QG 𝐺)𝑞) → (𝑎(+g𝑀)𝑏)(𝑀 ~QG 𝐺)(𝑝(+g𝑀)𝑞)))
3620, 22, 5, 29, 35ercpbl 17519 . 2 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → ((((𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑎) = ((𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑝) ∧ ((𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑏) = ((𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑞)) → ((𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝑎(+g𝑀)𝑏)) = ((𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝑝(+g𝑀)𝑞))))
377adantr 480 . . 3 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑎𝑉𝑏𝑉)) → 𝑀 ∈ LMod)
3814adantr 480 . . 3 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑎𝑉𝑏𝑉)) → 𝐺 ∈ (LSubSp‘𝑀))
39 simpr1 1195 . . 3 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑎𝑉𝑏𝑉)) → 𝑘 ∈ (Base‘(Scalar‘𝑀)))
40 eqid 2730 . . 3 ( ·𝑠𝑁) = ( ·𝑠𝑁)
41 simpr2 1196 . . 3 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑎𝑉𝑏𝑉)) → 𝑎𝑉)
42 simpr3 1197 . . 3 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑎𝑉𝑏𝑉)) → 𝑏𝑉)
433, 18, 9, 11, 37, 38, 39, 1, 40, 5, 41, 42qusvscpbl 33329 . 2 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑎𝑉𝑏𝑉)) → (((𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑎) = ((𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑏) → ((𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝑘( ·𝑠𝑀)𝑎)) = ((𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝑘( ·𝑠𝑀)𝑏))))
448, 3, 9, 10, 11, 12, 13, 36, 43, 7imaslmod 33331 1 (𝜑𝑁 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3450   class class class wbr 5110  cmpt 5191  cfv 6514  (class class class)co 7390   Er wer 8671  [cec 8672   / cqs 8673  Basecbs 17186  +gcplusg 17227  Scalarcsca 17230   ·𝑠 cvsca 17231  0gc0g 17409   /s cqus 17475  Grpcgrp 18872  SubGrpcsubg 19059  NrmSGrpcnsg 19060   ~QG cqg 19061  Abelcabl 19718  LModclmod 20773  LSubSpclss 20844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-ec 8676  df-qs 8680  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-0g 17411  df-imas 17478  df-qus 17479  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-nsg 19063  df-eqg 19064  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-lmod 20775  df-lss 20845
This theorem is referenced by:  quslmhm  33337  quslvec  33338  lmhmqusker  33395
  Copyright terms: Public domain W3C validator