| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > quslmod | Structured version Visualization version GIF version | ||
| Description: If 𝐺 is a submodule in 𝑀, then 𝑁 = 𝑀 / 𝐺 is a left module, called the quotient module of 𝑀 by 𝐺. (Contributed by Thierry Arnoux, 18-May-2023.) |
| Ref | Expression |
|---|---|
| quslmod.n | ⊢ 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)) |
| quslmod.v | ⊢ 𝑉 = (Base‘𝑀) |
| quslmod.1 | ⊢ (𝜑 → 𝑀 ∈ LMod) |
| quslmod.2 | ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝑀)) |
| Ref | Expression |
|---|---|
| quslmod | ⊢ (𝜑 → 𝑁 ∈ LMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | quslmod.n | . . . 4 ⊢ 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺))) |
| 3 | quslmod.v | . . . 4 ⊢ 𝑉 = (Base‘𝑀) | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑉 = (Base‘𝑀)) |
| 5 | eqid 2730 | . . 3 ⊢ (𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺)) = (𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺)) | |
| 6 | ovexd 7425 | . . 3 ⊢ (𝜑 → (𝑀 ~QG 𝐺) ∈ V) | |
| 7 | quslmod.1 | . . 3 ⊢ (𝜑 → 𝑀 ∈ LMod) | |
| 8 | 2, 4, 5, 6, 7 | qusval 17512 | . 2 ⊢ (𝜑 → 𝑁 = ((𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺)) “s 𝑀)) |
| 9 | eqid 2730 | . 2 ⊢ (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀)) | |
| 10 | eqid 2730 | . 2 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 11 | eqid 2730 | . 2 ⊢ ( ·𝑠 ‘𝑀) = ( ·𝑠 ‘𝑀) | |
| 12 | eqid 2730 | . 2 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
| 13 | 2, 4, 5, 6, 7 | quslem 17513 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺)):𝑉–onto→(𝑉 / (𝑀 ~QG 𝐺))) |
| 14 | quslmod.2 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝑀)) | |
| 15 | eqid 2730 | . . . . . 6 ⊢ (LSubSp‘𝑀) = (LSubSp‘𝑀) | |
| 16 | 15 | lsssubg 20870 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝐺 ∈ (LSubSp‘𝑀)) → 𝐺 ∈ (SubGrp‘𝑀)) |
| 17 | 7, 14, 16 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (SubGrp‘𝑀)) |
| 18 | eqid 2730 | . . . . 5 ⊢ (𝑀 ~QG 𝐺) = (𝑀 ~QG 𝐺) | |
| 19 | 3, 18 | eqger 19117 | . . . 4 ⊢ (𝐺 ∈ (SubGrp‘𝑀) → (𝑀 ~QG 𝐺) Er 𝑉) |
| 20 | 17, 19 | syl 17 | . . 3 ⊢ (𝜑 → (𝑀 ~QG 𝐺) Er 𝑉) |
| 21 | 3 | fvexi 6875 | . . . 4 ⊢ 𝑉 ∈ V |
| 22 | 21 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑉 ∈ V) |
| 23 | lmodgrp 20780 | . . . . . 6 ⊢ (𝑀 ∈ LMod → 𝑀 ∈ Grp) | |
| 24 | 7, 23 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ Grp) |
| 25 | 24 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → 𝑀 ∈ Grp) |
| 26 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → 𝑝 ∈ 𝑉) | |
| 27 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → 𝑞 ∈ 𝑉) | |
| 28 | 3, 10 | grpcl 18880 | . . . 4 ⊢ ((𝑀 ∈ Grp ∧ 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉) → (𝑝(+g‘𝑀)𝑞) ∈ 𝑉) |
| 29 | 25, 26, 27, 28 | syl3anc 1373 | . . 3 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝(+g‘𝑀)𝑞) ∈ 𝑉) |
| 30 | lmodabl 20822 | . . . . . 6 ⊢ (𝑀 ∈ LMod → 𝑀 ∈ Abel) | |
| 31 | ablnsg 19784 | . . . . . 6 ⊢ (𝑀 ∈ Abel → (NrmSGrp‘𝑀) = (SubGrp‘𝑀)) | |
| 32 | 7, 30, 31 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (NrmSGrp‘𝑀) = (SubGrp‘𝑀)) |
| 33 | 17, 32 | eleqtrrd 2832 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (NrmSGrp‘𝑀)) |
| 34 | 3, 18, 10 | eqgcpbl 19121 | . . . 4 ⊢ (𝐺 ∈ (NrmSGrp‘𝑀) → ((𝑎(𝑀 ~QG 𝐺)𝑝 ∧ 𝑏(𝑀 ~QG 𝐺)𝑞) → (𝑎(+g‘𝑀)𝑏)(𝑀 ~QG 𝐺)(𝑝(+g‘𝑀)𝑞))) |
| 35 | 33, 34 | syl 17 | . . 3 ⊢ (𝜑 → ((𝑎(𝑀 ~QG 𝐺)𝑝 ∧ 𝑏(𝑀 ~QG 𝐺)𝑞) → (𝑎(+g‘𝑀)𝑏)(𝑀 ~QG 𝐺)(𝑝(+g‘𝑀)𝑞))) |
| 36 | 20, 22, 5, 29, 35 | ercpbl 17519 | . 2 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → ((((𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑎) = ((𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑝) ∧ ((𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑏) = ((𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑞)) → ((𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝑎(+g‘𝑀)𝑏)) = ((𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝑝(+g‘𝑀)𝑞)))) |
| 37 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑀 ∈ LMod) |
| 38 | 14 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝐺 ∈ (LSubSp‘𝑀)) |
| 39 | simpr1 1195 | . . 3 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑘 ∈ (Base‘(Scalar‘𝑀))) | |
| 40 | eqid 2730 | . . 3 ⊢ ( ·𝑠 ‘𝑁) = ( ·𝑠 ‘𝑁) | |
| 41 | simpr2 1196 | . . 3 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑎 ∈ 𝑉) | |
| 42 | simpr3 1197 | . . 3 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑏 ∈ 𝑉) | |
| 43 | 3, 18, 9, 11, 37, 38, 39, 1, 40, 5, 41, 42 | qusvscpbl 33329 | . 2 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (((𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑎) = ((𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑏) → ((𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝑘( ·𝑠 ‘𝑀)𝑎)) = ((𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝑘( ·𝑠 ‘𝑀)𝑏)))) |
| 44 | 8, 3, 9, 10, 11, 12, 13, 36, 43, 7 | imaslmod 33331 | 1 ⊢ (𝜑 → 𝑁 ∈ LMod) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3450 class class class wbr 5110 ↦ cmpt 5191 ‘cfv 6514 (class class class)co 7390 Er wer 8671 [cec 8672 / cqs 8673 Basecbs 17186 +gcplusg 17227 Scalarcsca 17230 ·𝑠 cvsca 17231 0gc0g 17409 /s cqus 17475 Grpcgrp 18872 SubGrpcsubg 19059 NrmSGrpcnsg 19060 ~QG cqg 19061 Abelcabl 19718 LModclmod 20773 LSubSpclss 20844 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-ec 8676 df-qs 8680 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-0g 17411 df-imas 17478 df-qus 17479 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-sbg 18877 df-subg 19062 df-nsg 19063 df-eqg 19064 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-lmod 20775 df-lss 20845 |
| This theorem is referenced by: quslmhm 33337 quslvec 33338 lmhmqusker 33395 |
| Copyright terms: Public domain | W3C validator |