Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  quslmod Structured version   Visualization version   GIF version

Theorem quslmod 32458
Description: If 𝐺 is a submodule in 𝑀, then 𝑁 = 𝑀 / 𝐺 is a left module, called the quotient module of 𝑀 by 𝐺. (Contributed by Thierry Arnoux, 18-May-2023.)
Hypotheses
Ref Expression
quslmod.n 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺))
quslmod.v 𝑉 = (Base‘𝑀)
quslmod.1 (𝜑𝑀 ∈ LMod)
quslmod.2 (𝜑𝐺 ∈ (LSubSp‘𝑀))
Assertion
Ref Expression
quslmod (𝜑𝑁 ∈ LMod)

Proof of Theorem quslmod
Dummy variables 𝑎 𝑏 𝑘 𝑝 𝑞 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 quslmod.n . . . 4 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺))
21a1i 11 . . 3 (𝜑𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)))
3 quslmod.v . . . 4 𝑉 = (Base‘𝑀)
43a1i 11 . . 3 (𝜑𝑉 = (Base‘𝑀))
5 eqid 2733 . . 3 (𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺)) = (𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))
6 ovexd 7441 . . 3 (𝜑 → (𝑀 ~QG 𝐺) ∈ V)
7 quslmod.1 . . 3 (𝜑𝑀 ∈ LMod)
82, 4, 5, 6, 7qusval 17485 . 2 (𝜑𝑁 = ((𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺)) “s 𝑀))
9 eqid 2733 . 2 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
10 eqid 2733 . 2 (+g𝑀) = (+g𝑀)
11 eqid 2733 . 2 ( ·𝑠𝑀) = ( ·𝑠𝑀)
12 eqid 2733 . 2 (0g𝑀) = (0g𝑀)
132, 4, 5, 6, 7quslem 17486 . 2 (𝜑 → (𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺)):𝑉onto→(𝑉 / (𝑀 ~QG 𝐺)))
14 quslmod.2 . . . . 5 (𝜑𝐺 ∈ (LSubSp‘𝑀))
15 eqid 2733 . . . . . 6 (LSubSp‘𝑀) = (LSubSp‘𝑀)
1615lsssubg 20561 . . . . 5 ((𝑀 ∈ LMod ∧ 𝐺 ∈ (LSubSp‘𝑀)) → 𝐺 ∈ (SubGrp‘𝑀))
177, 14, 16syl2anc 585 . . . 4 (𝜑𝐺 ∈ (SubGrp‘𝑀))
18 eqid 2733 . . . . 5 (𝑀 ~QG 𝐺) = (𝑀 ~QG 𝐺)
193, 18eqger 19053 . . . 4 (𝐺 ∈ (SubGrp‘𝑀) → (𝑀 ~QG 𝐺) Er 𝑉)
2017, 19syl 17 . . 3 (𝜑 → (𝑀 ~QG 𝐺) Er 𝑉)
213fvexi 6903 . . . 4 𝑉 ∈ V
2221a1i 11 . . 3 (𝜑𝑉 ∈ V)
23 lmodgrp 20471 . . . . . 6 (𝑀 ∈ LMod → 𝑀 ∈ Grp)
247, 23syl 17 . . . . 5 (𝜑𝑀 ∈ Grp)
2524adantr 482 . . . 4 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → 𝑀 ∈ Grp)
26 simprl 770 . . . 4 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → 𝑝𝑉)
27 simprr 772 . . . 4 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → 𝑞𝑉)
283, 10grpcl 18824 . . . 4 ((𝑀 ∈ Grp ∧ 𝑝𝑉𝑞𝑉) → (𝑝(+g𝑀)𝑞) ∈ 𝑉)
2925, 26, 27, 28syl3anc 1372 . . 3 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → (𝑝(+g𝑀)𝑞) ∈ 𝑉)
30 lmodabl 20512 . . . . . 6 (𝑀 ∈ LMod → 𝑀 ∈ Abel)
31 ablnsg 19710 . . . . . 6 (𝑀 ∈ Abel → (NrmSGrp‘𝑀) = (SubGrp‘𝑀))
327, 30, 313syl 18 . . . . 5 (𝜑 → (NrmSGrp‘𝑀) = (SubGrp‘𝑀))
3317, 32eleqtrrd 2837 . . . 4 (𝜑𝐺 ∈ (NrmSGrp‘𝑀))
343, 18, 10eqgcpbl 19057 . . . 4 (𝐺 ∈ (NrmSGrp‘𝑀) → ((𝑎(𝑀 ~QG 𝐺)𝑝𝑏(𝑀 ~QG 𝐺)𝑞) → (𝑎(+g𝑀)𝑏)(𝑀 ~QG 𝐺)(𝑝(+g𝑀)𝑞)))
3533, 34syl 17 . . 3 (𝜑 → ((𝑎(𝑀 ~QG 𝐺)𝑝𝑏(𝑀 ~QG 𝐺)𝑞) → (𝑎(+g𝑀)𝑏)(𝑀 ~QG 𝐺)(𝑝(+g𝑀)𝑞)))
3620, 22, 5, 29, 35ercpbl 17492 . 2 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → ((((𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑎) = ((𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑝) ∧ ((𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑏) = ((𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑞)) → ((𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝑎(+g𝑀)𝑏)) = ((𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝑝(+g𝑀)𝑞))))
377adantr 482 . . 3 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑎𝑉𝑏𝑉)) → 𝑀 ∈ LMod)
3814adantr 482 . . 3 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑎𝑉𝑏𝑉)) → 𝐺 ∈ (LSubSp‘𝑀))
39 simpr1 1195 . . 3 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑎𝑉𝑏𝑉)) → 𝑘 ∈ (Base‘(Scalar‘𝑀)))
40 eqid 2733 . . 3 ( ·𝑠𝑁) = ( ·𝑠𝑁)
41 simpr2 1196 . . 3 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑎𝑉𝑏𝑉)) → 𝑎𝑉)
42 simpr3 1197 . . 3 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑎𝑉𝑏𝑉)) → 𝑏𝑉)
433, 18, 9, 11, 37, 38, 39, 1, 40, 5, 41, 42qusvscpbl 32455 . 2 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑎𝑉𝑏𝑉)) → (((𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑎) = ((𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑏) → ((𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝑘( ·𝑠𝑀)𝑎)) = ((𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝑘( ·𝑠𝑀)𝑏))))
448, 3, 9, 10, 11, 12, 13, 36, 43, 7imaslmod 32457 1 (𝜑𝑁 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  Vcvv 3475   class class class wbr 5148  cmpt 5231  cfv 6541  (class class class)co 7406   Er wer 8697  [cec 8698   / cqs 8699  Basecbs 17141  +gcplusg 17194  Scalarcsca 17197   ·𝑠 cvsca 17198  0gc0g 17382   /s cqus 17448  Grpcgrp 18816  SubGrpcsubg 18995  NrmSGrpcnsg 18996   ~QG cqg 18997  Abelcabl 19644  LModclmod 20464  LSubSpclss 20535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-om 7853  df-1st 7972  df-2nd 7973  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-1o 8463  df-er 8700  df-ec 8702  df-qs 8706  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-sup 9434  df-inf 9435  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-5 12275  df-6 12276  df-7 12277  df-8 12278  df-9 12279  df-n0 12470  df-z 12556  df-dec 12675  df-uz 12820  df-fz 13482  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17142  df-ress 17171  df-plusg 17207  df-mulr 17208  df-sca 17210  df-vsca 17211  df-ip 17212  df-tset 17213  df-ple 17214  df-ds 17216  df-0g 17384  df-imas 17451  df-qus 17452  df-mgm 18558  df-sgrp 18607  df-mnd 18623  df-grp 18819  df-minusg 18820  df-sbg 18821  df-subg 18998  df-nsg 18999  df-eqg 19000  df-cmn 19645  df-abl 19646  df-mgp 19983  df-ur 20000  df-ring 20052  df-lmod 20466  df-lss 20536
This theorem is referenced by:  quslmhm  32459  quslvec  32460  lmhmqusker  32523
  Copyright terms: Public domain W3C validator