![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > quslmod | Structured version Visualization version GIF version |
Description: If 𝐺 is a submodule in 𝑀, then 𝑁 = 𝑀 / 𝐺 is a left module, called the quotient module of 𝑀 by 𝐺. (Contributed by Thierry Arnoux, 18-May-2023.) |
Ref | Expression |
---|---|
quslmod.n | ⊢ 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)) |
quslmod.v | ⊢ 𝑉 = (Base‘𝑀) |
quslmod.1 | ⊢ (𝜑 → 𝑀 ∈ LMod) |
quslmod.2 | ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝑀)) |
Ref | Expression |
---|---|
quslmod | ⊢ (𝜑 → 𝑁 ∈ LMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | quslmod.n | . . . 4 ⊢ 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)) | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺))) |
3 | quslmod.v | . . . 4 ⊢ 𝑉 = (Base‘𝑀) | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑉 = (Base‘𝑀)) |
5 | eqid 2733 | . . 3 ⊢ (𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺)) = (𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺)) | |
6 | ovexd 7441 | . . 3 ⊢ (𝜑 → (𝑀 ~QG 𝐺) ∈ V) | |
7 | quslmod.1 | . . 3 ⊢ (𝜑 → 𝑀 ∈ LMod) | |
8 | 2, 4, 5, 6, 7 | qusval 17485 | . 2 ⊢ (𝜑 → 𝑁 = ((𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺)) “s 𝑀)) |
9 | eqid 2733 | . 2 ⊢ (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀)) | |
10 | eqid 2733 | . 2 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
11 | eqid 2733 | . 2 ⊢ ( ·𝑠 ‘𝑀) = ( ·𝑠 ‘𝑀) | |
12 | eqid 2733 | . 2 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
13 | 2, 4, 5, 6, 7 | quslem 17486 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺)):𝑉–onto→(𝑉 / (𝑀 ~QG 𝐺))) |
14 | quslmod.2 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝑀)) | |
15 | eqid 2733 | . . . . . 6 ⊢ (LSubSp‘𝑀) = (LSubSp‘𝑀) | |
16 | 15 | lsssubg 20561 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝐺 ∈ (LSubSp‘𝑀)) → 𝐺 ∈ (SubGrp‘𝑀)) |
17 | 7, 14, 16 | syl2anc 585 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (SubGrp‘𝑀)) |
18 | eqid 2733 | . . . . 5 ⊢ (𝑀 ~QG 𝐺) = (𝑀 ~QG 𝐺) | |
19 | 3, 18 | eqger 19053 | . . . 4 ⊢ (𝐺 ∈ (SubGrp‘𝑀) → (𝑀 ~QG 𝐺) Er 𝑉) |
20 | 17, 19 | syl 17 | . . 3 ⊢ (𝜑 → (𝑀 ~QG 𝐺) Er 𝑉) |
21 | 3 | fvexi 6903 | . . . 4 ⊢ 𝑉 ∈ V |
22 | 21 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑉 ∈ V) |
23 | lmodgrp 20471 | . . . . . 6 ⊢ (𝑀 ∈ LMod → 𝑀 ∈ Grp) | |
24 | 7, 23 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ Grp) |
25 | 24 | adantr 482 | . . . 4 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → 𝑀 ∈ Grp) |
26 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → 𝑝 ∈ 𝑉) | |
27 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → 𝑞 ∈ 𝑉) | |
28 | 3, 10 | grpcl 18824 | . . . 4 ⊢ ((𝑀 ∈ Grp ∧ 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉) → (𝑝(+g‘𝑀)𝑞) ∈ 𝑉) |
29 | 25, 26, 27, 28 | syl3anc 1372 | . . 3 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝(+g‘𝑀)𝑞) ∈ 𝑉) |
30 | lmodabl 20512 | . . . . . 6 ⊢ (𝑀 ∈ LMod → 𝑀 ∈ Abel) | |
31 | ablnsg 19710 | . . . . . 6 ⊢ (𝑀 ∈ Abel → (NrmSGrp‘𝑀) = (SubGrp‘𝑀)) | |
32 | 7, 30, 31 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (NrmSGrp‘𝑀) = (SubGrp‘𝑀)) |
33 | 17, 32 | eleqtrrd 2837 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (NrmSGrp‘𝑀)) |
34 | 3, 18, 10 | eqgcpbl 19057 | . . . 4 ⊢ (𝐺 ∈ (NrmSGrp‘𝑀) → ((𝑎(𝑀 ~QG 𝐺)𝑝 ∧ 𝑏(𝑀 ~QG 𝐺)𝑞) → (𝑎(+g‘𝑀)𝑏)(𝑀 ~QG 𝐺)(𝑝(+g‘𝑀)𝑞))) |
35 | 33, 34 | syl 17 | . . 3 ⊢ (𝜑 → ((𝑎(𝑀 ~QG 𝐺)𝑝 ∧ 𝑏(𝑀 ~QG 𝐺)𝑞) → (𝑎(+g‘𝑀)𝑏)(𝑀 ~QG 𝐺)(𝑝(+g‘𝑀)𝑞))) |
36 | 20, 22, 5, 29, 35 | ercpbl 17492 | . 2 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → ((((𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑎) = ((𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑝) ∧ ((𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑏) = ((𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑞)) → ((𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝑎(+g‘𝑀)𝑏)) = ((𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝑝(+g‘𝑀)𝑞)))) |
37 | 7 | adantr 482 | . . 3 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑀 ∈ LMod) |
38 | 14 | adantr 482 | . . 3 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝐺 ∈ (LSubSp‘𝑀)) |
39 | simpr1 1195 | . . 3 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑘 ∈ (Base‘(Scalar‘𝑀))) | |
40 | eqid 2733 | . . 3 ⊢ ( ·𝑠 ‘𝑁) = ( ·𝑠 ‘𝑁) | |
41 | simpr2 1196 | . . 3 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑎 ∈ 𝑉) | |
42 | simpr3 1197 | . . 3 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑏 ∈ 𝑉) | |
43 | 3, 18, 9, 11, 37, 38, 39, 1, 40, 5, 41, 42 | qusvscpbl 32455 | . 2 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (((𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑎) = ((𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑏) → ((𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝑘( ·𝑠 ‘𝑀)𝑎)) = ((𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝑘( ·𝑠 ‘𝑀)𝑏)))) |
44 | 8, 3, 9, 10, 11, 12, 13, 36, 43, 7 | imaslmod 32457 | 1 ⊢ (𝜑 → 𝑁 ∈ LMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 Vcvv 3475 class class class wbr 5148 ↦ cmpt 5231 ‘cfv 6541 (class class class)co 7406 Er wer 8697 [cec 8698 / cqs 8699 Basecbs 17141 +gcplusg 17194 Scalarcsca 17197 ·𝑠 cvsca 17198 0gc0g 17382 /s cqus 17448 Grpcgrp 18816 SubGrpcsubg 18995 NrmSGrpcnsg 18996 ~QG cqg 18997 Abelcabl 19644 LModclmod 20464 LSubSpclss 20535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7362 df-ov 7409 df-oprab 7410 df-mpo 7411 df-om 7853 df-1st 7972 df-2nd 7973 df-frecs 8263 df-wrecs 8294 df-recs 8368 df-rdg 8407 df-1o 8463 df-er 8700 df-ec 8702 df-qs 8706 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-sup 9434 df-inf 9435 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-2 12272 df-3 12273 df-4 12274 df-5 12275 df-6 12276 df-7 12277 df-8 12278 df-9 12279 df-n0 12470 df-z 12556 df-dec 12675 df-uz 12820 df-fz 13482 df-struct 17077 df-sets 17094 df-slot 17112 df-ndx 17124 df-base 17142 df-ress 17171 df-plusg 17207 df-mulr 17208 df-sca 17210 df-vsca 17211 df-ip 17212 df-tset 17213 df-ple 17214 df-ds 17216 df-0g 17384 df-imas 17451 df-qus 17452 df-mgm 18558 df-sgrp 18607 df-mnd 18623 df-grp 18819 df-minusg 18820 df-sbg 18821 df-subg 18998 df-nsg 18999 df-eqg 19000 df-cmn 19645 df-abl 19646 df-mgp 19983 df-ur 20000 df-ring 20052 df-lmod 20466 df-lss 20536 |
This theorem is referenced by: quslmhm 32459 quslvec 32460 lmhmqusker 32523 |
Copyright terms: Public domain | W3C validator |