Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > quslmod | Structured version Visualization version GIF version |
Description: If 𝐺 is a submodule in 𝑀, then 𝑁 = 𝑀 / 𝐺 is a left module, called the quotient module of 𝑀 by 𝐺. (Contributed by Thierry Arnoux, 18-May-2023.) |
Ref | Expression |
---|---|
quslmod.n | ⊢ 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)) |
quslmod.v | ⊢ 𝑉 = (Base‘𝑀) |
quslmod.1 | ⊢ (𝜑 → 𝑀 ∈ LMod) |
quslmod.2 | ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝑀)) |
Ref | Expression |
---|---|
quslmod | ⊢ (𝜑 → 𝑁 ∈ LMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | quslmod.n | . . . 4 ⊢ 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)) | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺))) |
3 | quslmod.v | . . . 4 ⊢ 𝑉 = (Base‘𝑀) | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑉 = (Base‘𝑀)) |
5 | eqid 2738 | . . 3 ⊢ (𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺)) = (𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺)) | |
6 | ovexd 7290 | . . 3 ⊢ (𝜑 → (𝑀 ~QG 𝐺) ∈ V) | |
7 | quslmod.1 | . . 3 ⊢ (𝜑 → 𝑀 ∈ LMod) | |
8 | 2, 4, 5, 6, 7 | qusval 17170 | . 2 ⊢ (𝜑 → 𝑁 = ((𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺)) “s 𝑀)) |
9 | eqid 2738 | . 2 ⊢ (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀)) | |
10 | eqid 2738 | . 2 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
11 | eqid 2738 | . 2 ⊢ ( ·𝑠 ‘𝑀) = ( ·𝑠 ‘𝑀) | |
12 | eqid 2738 | . 2 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
13 | 2, 4, 5, 6, 7 | quslem 17171 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺)):𝑉–onto→(𝑉 / (𝑀 ~QG 𝐺))) |
14 | quslmod.2 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝑀)) | |
15 | eqid 2738 | . . . . . 6 ⊢ (LSubSp‘𝑀) = (LSubSp‘𝑀) | |
16 | 15 | lsssubg 20134 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝐺 ∈ (LSubSp‘𝑀)) → 𝐺 ∈ (SubGrp‘𝑀)) |
17 | 7, 14, 16 | syl2anc 583 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (SubGrp‘𝑀)) |
18 | eqid 2738 | . . . . 5 ⊢ (𝑀 ~QG 𝐺) = (𝑀 ~QG 𝐺) | |
19 | 3, 18 | eqger 18721 | . . . 4 ⊢ (𝐺 ∈ (SubGrp‘𝑀) → (𝑀 ~QG 𝐺) Er 𝑉) |
20 | 17, 19 | syl 17 | . . 3 ⊢ (𝜑 → (𝑀 ~QG 𝐺) Er 𝑉) |
21 | 3 | fvexi 6770 | . . . 4 ⊢ 𝑉 ∈ V |
22 | 21 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑉 ∈ V) |
23 | lmodgrp 20045 | . . . . . 6 ⊢ (𝑀 ∈ LMod → 𝑀 ∈ Grp) | |
24 | 7, 23 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ Grp) |
25 | 24 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → 𝑀 ∈ Grp) |
26 | simprl 767 | . . . 4 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → 𝑝 ∈ 𝑉) | |
27 | simprr 769 | . . . 4 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → 𝑞 ∈ 𝑉) | |
28 | 3, 10 | grpcl 18500 | . . . 4 ⊢ ((𝑀 ∈ Grp ∧ 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉) → (𝑝(+g‘𝑀)𝑞) ∈ 𝑉) |
29 | 25, 26, 27, 28 | syl3anc 1369 | . . 3 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝(+g‘𝑀)𝑞) ∈ 𝑉) |
30 | lmodabl 20085 | . . . . . 6 ⊢ (𝑀 ∈ LMod → 𝑀 ∈ Abel) | |
31 | ablnsg 19363 | . . . . . 6 ⊢ (𝑀 ∈ Abel → (NrmSGrp‘𝑀) = (SubGrp‘𝑀)) | |
32 | 7, 30, 31 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (NrmSGrp‘𝑀) = (SubGrp‘𝑀)) |
33 | 17, 32 | eleqtrrd 2842 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (NrmSGrp‘𝑀)) |
34 | 3, 18, 10 | eqgcpbl 18725 | . . . 4 ⊢ (𝐺 ∈ (NrmSGrp‘𝑀) → ((𝑎(𝑀 ~QG 𝐺)𝑝 ∧ 𝑏(𝑀 ~QG 𝐺)𝑞) → (𝑎(+g‘𝑀)𝑏)(𝑀 ~QG 𝐺)(𝑝(+g‘𝑀)𝑞))) |
35 | 33, 34 | syl 17 | . . 3 ⊢ (𝜑 → ((𝑎(𝑀 ~QG 𝐺)𝑝 ∧ 𝑏(𝑀 ~QG 𝐺)𝑞) → (𝑎(+g‘𝑀)𝑏)(𝑀 ~QG 𝐺)(𝑝(+g‘𝑀)𝑞))) |
36 | 20, 22, 5, 29, 35 | ercpbl 17177 | . 2 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → ((((𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑎) = ((𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑝) ∧ ((𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑏) = ((𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑞)) → ((𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝑎(+g‘𝑀)𝑏)) = ((𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝑝(+g‘𝑀)𝑞)))) |
37 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑀 ∈ LMod) |
38 | 14 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝐺 ∈ (LSubSp‘𝑀)) |
39 | simpr1 1192 | . . 3 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑘 ∈ (Base‘(Scalar‘𝑀))) | |
40 | eqid 2738 | . . 3 ⊢ ( ·𝑠 ‘𝑁) = ( ·𝑠 ‘𝑁) | |
41 | simpr2 1193 | . . 3 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑎 ∈ 𝑉) | |
42 | simpr3 1194 | . . 3 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑏 ∈ 𝑉) | |
43 | 3, 18, 9, 11, 37, 38, 39, 1, 40, 5, 41, 42 | qusvscpbl 31453 | . 2 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (((𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑎) = ((𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑏) → ((𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝑘( ·𝑠 ‘𝑀)𝑎)) = ((𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝑘( ·𝑠 ‘𝑀)𝑏)))) |
44 | 8, 3, 9, 10, 11, 12, 13, 36, 43, 7 | imaslmod 31455 | 1 ⊢ (𝜑 → 𝑁 ∈ LMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 Vcvv 3422 class class class wbr 5070 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 Er wer 8453 [cec 8454 / cqs 8455 Basecbs 16840 +gcplusg 16888 Scalarcsca 16891 ·𝑠 cvsca 16892 0gc0g 17067 /s cqus 17133 Grpcgrp 18492 SubGrpcsubg 18664 NrmSGrpcnsg 18665 ~QG cqg 18666 Abelcabl 19302 LModclmod 20038 LSubSpclss 20108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-ec 8458 df-qs 8462 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-0g 17069 df-imas 17136 df-qus 17137 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-nsg 18668 df-eqg 18669 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-lmod 20040 df-lss 20109 |
This theorem is referenced by: quslmhm 31457 |
Copyright terms: Public domain | W3C validator |