Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  quslmod Structured version   Visualization version   GIF version

Theorem quslmod 30927
Description: If 𝐺 is a submodule in 𝑀, then 𝑁 = 𝑀 / 𝐺 is a left module, called the quotient module of 𝑀 by 𝐺. (Contributed by Thierry Arnoux, 18-May-2023.)
Hypotheses
Ref Expression
quslmod.n 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺))
quslmod.v 𝑉 = (Base‘𝑀)
quslmod.1 (𝜑𝑀 ∈ LMod)
quslmod.2 (𝜑𝐺 ∈ (LSubSp‘𝑀))
Assertion
Ref Expression
quslmod (𝜑𝑁 ∈ LMod)

Proof of Theorem quslmod
Dummy variables 𝑎 𝑏 𝑘 𝑝 𝑞 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 quslmod.n . . . 4 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺))
21a1i 11 . . 3 (𝜑𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)))
3 quslmod.v . . . 4 𝑉 = (Base‘𝑀)
43a1i 11 . . 3 (𝜑𝑉 = (Base‘𝑀))
5 eqid 2824 . . 3 (𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺)) = (𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))
6 ovexd 7194 . . 3 (𝜑 → (𝑀 ~QG 𝐺) ∈ V)
7 quslmod.1 . . 3 (𝜑𝑀 ∈ LMod)
82, 4, 5, 6, 7qusval 16818 . 2 (𝜑𝑁 = ((𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺)) “s 𝑀))
9 eqid 2824 . 2 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
10 eqid 2824 . 2 (+g𝑀) = (+g𝑀)
11 eqid 2824 . 2 ( ·𝑠𝑀) = ( ·𝑠𝑀)
12 eqid 2824 . 2 (0g𝑀) = (0g𝑀)
132, 4, 5, 6, 7quslem 16819 . 2 (𝜑 → (𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺)):𝑉onto→(𝑉 / (𝑀 ~QG 𝐺)))
14 quslmod.2 . . . . 5 (𝜑𝐺 ∈ (LSubSp‘𝑀))
15 eqid 2824 . . . . . 6 (LSubSp‘𝑀) = (LSubSp‘𝑀)
1615lsssubg 19732 . . . . 5 ((𝑀 ∈ LMod ∧ 𝐺 ∈ (LSubSp‘𝑀)) → 𝐺 ∈ (SubGrp‘𝑀))
177, 14, 16syl2anc 586 . . . 4 (𝜑𝐺 ∈ (SubGrp‘𝑀))
18 eqid 2824 . . . . 5 (𝑀 ~QG 𝐺) = (𝑀 ~QG 𝐺)
193, 18eqger 18333 . . . 4 (𝐺 ∈ (SubGrp‘𝑀) → (𝑀 ~QG 𝐺) Er 𝑉)
2017, 19syl 17 . . 3 (𝜑 → (𝑀 ~QG 𝐺) Er 𝑉)
213fvexi 6687 . . . 4 𝑉 ∈ V
2221a1i 11 . . 3 (𝜑𝑉 ∈ V)
23 lmodgrp 19644 . . . . . 6 (𝑀 ∈ LMod → 𝑀 ∈ Grp)
247, 23syl 17 . . . . 5 (𝜑𝑀 ∈ Grp)
2524adantr 483 . . . 4 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → 𝑀 ∈ Grp)
26 simprl 769 . . . 4 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → 𝑝𝑉)
27 simprr 771 . . . 4 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → 𝑞𝑉)
283, 10grpcl 18114 . . . 4 ((𝑀 ∈ Grp ∧ 𝑝𝑉𝑞𝑉) → (𝑝(+g𝑀)𝑞) ∈ 𝑉)
2925, 26, 27, 28syl3anc 1367 . . 3 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → (𝑝(+g𝑀)𝑞) ∈ 𝑉)
30 lmodabl 19684 . . . . . 6 (𝑀 ∈ LMod → 𝑀 ∈ Abel)
31 ablnsg 18970 . . . . . 6 (𝑀 ∈ Abel → (NrmSGrp‘𝑀) = (SubGrp‘𝑀))
327, 30, 313syl 18 . . . . 5 (𝜑 → (NrmSGrp‘𝑀) = (SubGrp‘𝑀))
3317, 32eleqtrrd 2919 . . . 4 (𝜑𝐺 ∈ (NrmSGrp‘𝑀))
343, 18, 10eqgcpbl 18337 . . . 4 (𝐺 ∈ (NrmSGrp‘𝑀) → ((𝑎(𝑀 ~QG 𝐺)𝑝𝑏(𝑀 ~QG 𝐺)𝑞) → (𝑎(+g𝑀)𝑏)(𝑀 ~QG 𝐺)(𝑝(+g𝑀)𝑞)))
3533, 34syl 17 . . 3 (𝜑 → ((𝑎(𝑀 ~QG 𝐺)𝑝𝑏(𝑀 ~QG 𝐺)𝑞) → (𝑎(+g𝑀)𝑏)(𝑀 ~QG 𝐺)(𝑝(+g𝑀)𝑞)))
3620, 22, 5, 29, 35ercpbl 16825 . 2 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → ((((𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑎) = ((𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑝) ∧ ((𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑏) = ((𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑞)) → ((𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝑎(+g𝑀)𝑏)) = ((𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝑝(+g𝑀)𝑞))))
377adantr 483 . . 3 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑎𝑉𝑏𝑉)) → 𝑀 ∈ LMod)
3814adantr 483 . . 3 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑎𝑉𝑏𝑉)) → 𝐺 ∈ (LSubSp‘𝑀))
39 simpr1 1190 . . 3 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑎𝑉𝑏𝑉)) → 𝑘 ∈ (Base‘(Scalar‘𝑀)))
40 eqid 2824 . . 3 ( ·𝑠𝑁) = ( ·𝑠𝑁)
41 simpr2 1191 . . 3 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑎𝑉𝑏𝑉)) → 𝑎𝑉)
42 simpr3 1192 . . 3 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑎𝑉𝑏𝑉)) → 𝑏𝑉)
433, 18, 9, 11, 37, 38, 39, 1, 40, 5, 41, 42qusvscpbl 30924 . 2 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑎𝑉𝑏𝑉)) → (((𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑎) = ((𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑏) → ((𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝑘( ·𝑠𝑀)𝑎)) = ((𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝑘( ·𝑠𝑀)𝑏))))
448, 3, 9, 10, 11, 12, 13, 36, 43, 7imaslmod 30926 1 (𝜑𝑁 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1536  wcel 2113  Vcvv 3497   class class class wbr 5069  cmpt 5149  cfv 6358  (class class class)co 7159   Er wer 8289  [cec 8290   / cqs 8291  Basecbs 16486  +gcplusg 16568  Scalarcsca 16571   ·𝑠 cvsca 16572  0gc0g 16716   /s cqus 16781  Grpcgrp 18106  SubGrpcsubg 18276  NrmSGrpcnsg 18277   ~QG cqg 18278  Abelcabl 18910  LModclmod 19637  LSubSpclss 19706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-ec 8294  df-qs 8298  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-sup 8909  df-inf 8910  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-0g 16718  df-imas 16784  df-qus 16785  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-grp 18109  df-minusg 18110  df-sbg 18111  df-subg 18279  df-nsg 18280  df-eqg 18281  df-cmn 18911  df-abl 18912  df-mgp 19243  df-ur 19255  df-ring 19302  df-lmod 19639  df-lss 19707
This theorem is referenced by:  quslmhm  30928
  Copyright terms: Public domain W3C validator