| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > quslmod | Structured version Visualization version GIF version | ||
| Description: If 𝐺 is a submodule in 𝑀, then 𝑁 = 𝑀 / 𝐺 is a left module, called the quotient module of 𝑀 by 𝐺. (Contributed by Thierry Arnoux, 18-May-2023.) |
| Ref | Expression |
|---|---|
| quslmod.n | ⊢ 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)) |
| quslmod.v | ⊢ 𝑉 = (Base‘𝑀) |
| quslmod.1 | ⊢ (𝜑 → 𝑀 ∈ LMod) |
| quslmod.2 | ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝑀)) |
| Ref | Expression |
|---|---|
| quslmod | ⊢ (𝜑 → 𝑁 ∈ LMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | quslmod.n | . . . 4 ⊢ 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺))) |
| 3 | quslmod.v | . . . 4 ⊢ 𝑉 = (Base‘𝑀) | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑉 = (Base‘𝑀)) |
| 5 | eqid 2731 | . . 3 ⊢ (𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺)) = (𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺)) | |
| 6 | ovexd 7381 | . . 3 ⊢ (𝜑 → (𝑀 ~QG 𝐺) ∈ V) | |
| 7 | quslmod.1 | . . 3 ⊢ (𝜑 → 𝑀 ∈ LMod) | |
| 8 | 2, 4, 5, 6, 7 | qusval 17443 | . 2 ⊢ (𝜑 → 𝑁 = ((𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺)) “s 𝑀)) |
| 9 | eqid 2731 | . 2 ⊢ (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀)) | |
| 10 | eqid 2731 | . 2 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 11 | eqid 2731 | . 2 ⊢ ( ·𝑠 ‘𝑀) = ( ·𝑠 ‘𝑀) | |
| 12 | eqid 2731 | . 2 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
| 13 | 2, 4, 5, 6, 7 | quslem 17444 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺)):𝑉–onto→(𝑉 / (𝑀 ~QG 𝐺))) |
| 14 | quslmod.2 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝑀)) | |
| 15 | eqid 2731 | . . . . . 6 ⊢ (LSubSp‘𝑀) = (LSubSp‘𝑀) | |
| 16 | 15 | lsssubg 20888 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝐺 ∈ (LSubSp‘𝑀)) → 𝐺 ∈ (SubGrp‘𝑀)) |
| 17 | 7, 14, 16 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (SubGrp‘𝑀)) |
| 18 | eqid 2731 | . . . . 5 ⊢ (𝑀 ~QG 𝐺) = (𝑀 ~QG 𝐺) | |
| 19 | 3, 18 | eqger 19088 | . . . 4 ⊢ (𝐺 ∈ (SubGrp‘𝑀) → (𝑀 ~QG 𝐺) Er 𝑉) |
| 20 | 17, 19 | syl 17 | . . 3 ⊢ (𝜑 → (𝑀 ~QG 𝐺) Er 𝑉) |
| 21 | 3 | fvexi 6836 | . . . 4 ⊢ 𝑉 ∈ V |
| 22 | 21 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑉 ∈ V) |
| 23 | lmodgrp 20798 | . . . . . 6 ⊢ (𝑀 ∈ LMod → 𝑀 ∈ Grp) | |
| 24 | 7, 23 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ Grp) |
| 25 | 24 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → 𝑀 ∈ Grp) |
| 26 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → 𝑝 ∈ 𝑉) | |
| 27 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → 𝑞 ∈ 𝑉) | |
| 28 | 3, 10 | grpcl 18851 | . . . 4 ⊢ ((𝑀 ∈ Grp ∧ 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉) → (𝑝(+g‘𝑀)𝑞) ∈ 𝑉) |
| 29 | 25, 26, 27, 28 | syl3anc 1373 | . . 3 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝(+g‘𝑀)𝑞) ∈ 𝑉) |
| 30 | lmodabl 20840 | . . . . . 6 ⊢ (𝑀 ∈ LMod → 𝑀 ∈ Abel) | |
| 31 | ablnsg 19757 | . . . . . 6 ⊢ (𝑀 ∈ Abel → (NrmSGrp‘𝑀) = (SubGrp‘𝑀)) | |
| 32 | 7, 30, 31 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (NrmSGrp‘𝑀) = (SubGrp‘𝑀)) |
| 33 | 17, 32 | eleqtrrd 2834 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (NrmSGrp‘𝑀)) |
| 34 | 3, 18, 10 | eqgcpbl 19092 | . . . 4 ⊢ (𝐺 ∈ (NrmSGrp‘𝑀) → ((𝑎(𝑀 ~QG 𝐺)𝑝 ∧ 𝑏(𝑀 ~QG 𝐺)𝑞) → (𝑎(+g‘𝑀)𝑏)(𝑀 ~QG 𝐺)(𝑝(+g‘𝑀)𝑞))) |
| 35 | 33, 34 | syl 17 | . . 3 ⊢ (𝜑 → ((𝑎(𝑀 ~QG 𝐺)𝑝 ∧ 𝑏(𝑀 ~QG 𝐺)𝑞) → (𝑎(+g‘𝑀)𝑏)(𝑀 ~QG 𝐺)(𝑝(+g‘𝑀)𝑞))) |
| 36 | 20, 22, 5, 29, 35 | ercpbl 17450 | . 2 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → ((((𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑎) = ((𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑝) ∧ ((𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑏) = ((𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑞)) → ((𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝑎(+g‘𝑀)𝑏)) = ((𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝑝(+g‘𝑀)𝑞)))) |
| 37 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑀 ∈ LMod) |
| 38 | 14 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝐺 ∈ (LSubSp‘𝑀)) |
| 39 | simpr1 1195 | . . 3 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑘 ∈ (Base‘(Scalar‘𝑀))) | |
| 40 | eqid 2731 | . . 3 ⊢ ( ·𝑠 ‘𝑁) = ( ·𝑠 ‘𝑁) | |
| 41 | simpr2 1196 | . . 3 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑎 ∈ 𝑉) | |
| 42 | simpr3 1197 | . . 3 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑏 ∈ 𝑉) | |
| 43 | 3, 18, 9, 11, 37, 38, 39, 1, 40, 5, 41, 42 | qusvscpbl 33311 | . 2 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (((𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑎) = ((𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑏) → ((𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝑘( ·𝑠 ‘𝑀)𝑎)) = ((𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝑘( ·𝑠 ‘𝑀)𝑏)))) |
| 44 | 8, 3, 9, 10, 11, 12, 13, 36, 43, 7 | imaslmod 33313 | 1 ⊢ (𝜑 → 𝑁 ∈ LMod) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 Vcvv 3436 class class class wbr 5091 ↦ cmpt 5172 ‘cfv 6481 (class class class)co 7346 Er wer 8619 [cec 8620 / cqs 8621 Basecbs 17117 +gcplusg 17158 Scalarcsca 17161 ·𝑠 cvsca 17162 0gc0g 17340 /s cqus 17406 Grpcgrp 18843 SubGrpcsubg 19030 NrmSGrpcnsg 19031 ~QG cqg 19032 Abelcabl 19691 LModclmod 20791 LSubSpclss 20862 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-ec 8624 df-qs 8628 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-fz 13405 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-sca 17174 df-vsca 17175 df-ip 17176 df-tset 17177 df-ple 17178 df-ds 17180 df-0g 17342 df-imas 17409 df-qus 17410 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-grp 18846 df-minusg 18847 df-sbg 18848 df-subg 19033 df-nsg 19034 df-eqg 19035 df-cmn 19692 df-abl 19693 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-lmod 20793 df-lss 20863 |
| This theorem is referenced by: quslmhm 33319 quslvec 33320 lmhmqusker 33377 |
| Copyright terms: Public domain | W3C validator |