Proof of Theorem erdszelem4
Step | Hyp | Ref
| Expression |
1 | | elfznn 13214 |
. . . . 5
⊢ (𝐴 ∈ (1...𝑁) → 𝐴 ∈ ℕ) |
2 | 1 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ∈ (1...𝑁)) → 𝐴 ∈ ℕ) |
3 | | elfz1end 13215 |
. . . 4
⊢ (𝐴 ∈ ℕ ↔ 𝐴 ∈ (1...𝐴)) |
4 | 2, 3 | sylib 217 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ∈ (1...𝑁)) → 𝐴 ∈ (1...𝐴)) |
5 | 4 | snssd 4739 |
. 2
⊢ ((𝜑 ∧ 𝐴 ∈ (1...𝑁)) → {𝐴} ⊆ (1...𝐴)) |
6 | | elsni 4575 |
. . . . . . 7
⊢ (𝑥 ∈ {𝐴} → 𝑥 = 𝐴) |
7 | | elsni 4575 |
. . . . . . 7
⊢ (𝑦 ∈ {𝐴} → 𝑦 = 𝐴) |
8 | 6, 7 | breqan12d 5086 |
. . . . . 6
⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → (𝑥 < 𝑦 ↔ 𝐴 < 𝐴)) |
9 | 8 | adantl 481 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ∈ (1...𝑁)) ∧ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴})) → (𝑥 < 𝑦 ↔ 𝐴 < 𝐴)) |
10 | | fzssuz 13226 |
. . . . . . . . 9
⊢
(1...𝑁) ⊆
(ℤ≥‘1) |
11 | | uzssz 12532 |
. . . . . . . . . 10
⊢
(ℤ≥‘1) ⊆ ℤ |
12 | | zssre 12256 |
. . . . . . . . . 10
⊢ ℤ
⊆ ℝ |
13 | 11, 12 | sstri 3926 |
. . . . . . . . 9
⊢
(ℤ≥‘1) ⊆ ℝ |
14 | 10, 13 | sstri 3926 |
. . . . . . . 8
⊢
(1...𝑁) ⊆
ℝ |
15 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ∈ (1...𝑁)) → 𝐴 ∈ (1...𝑁)) |
16 | 15 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ∈ (1...𝑁)) ∧ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴})) → 𝐴 ∈ (1...𝑁)) |
17 | 14, 16 | sselid 3915 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ (1...𝑁)) ∧ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴})) → 𝐴 ∈ ℝ) |
18 | 17 | ltnrd 11039 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ∈ (1...𝑁)) ∧ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴})) → ¬ 𝐴 < 𝐴) |
19 | 18 | pm2.21d 121 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ∈ (1...𝑁)) ∧ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴})) → (𝐴 < 𝐴 → (𝐹‘𝑥)𝑂(𝐹‘𝑦))) |
20 | 9, 19 | sylbid 239 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ (1...𝑁)) ∧ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴})) → (𝑥 < 𝑦 → (𝐹‘𝑥)𝑂(𝐹‘𝑦))) |
21 | 20 | ralrimivva 3114 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ∈ (1...𝑁)) → ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (𝑥 < 𝑦 → (𝐹‘𝑥)𝑂(𝐹‘𝑦))) |
22 | | erdsze.f |
. . . . . 6
⊢ (𝜑 → 𝐹:(1...𝑁)–1-1→ℝ) |
23 | | f1f 6654 |
. . . . . 6
⊢ (𝐹:(1...𝑁)–1-1→ℝ → 𝐹:(1...𝑁)⟶ℝ) |
24 | 22, 23 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐹:(1...𝑁)⟶ℝ) |
25 | 24 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ∈ (1...𝑁)) → 𝐹:(1...𝑁)⟶ℝ) |
26 | 15 | snssd 4739 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ∈ (1...𝑁)) → {𝐴} ⊆ (1...𝑁)) |
27 | | ltso 10986 |
. . . . . 6
⊢ < Or
ℝ |
28 | | soss 5514 |
. . . . . 6
⊢
((1...𝑁) ⊆
ℝ → ( < Or ℝ → < Or (1...𝑁))) |
29 | 14, 27, 28 | mp2 9 |
. . . . 5
⊢ < Or
(1...𝑁) |
30 | | erdszelem.o |
. . . . 5
⊢ 𝑂 Or ℝ |
31 | | soisores 7178 |
. . . . 5
⊢ ((( <
Or (1...𝑁) ∧ 𝑂 Or ℝ) ∧ (𝐹:(1...𝑁)⟶ℝ ∧ {𝐴} ⊆ (1...𝑁))) → ((𝐹 ↾ {𝐴}) Isom < , 𝑂 ({𝐴}, (𝐹 “ {𝐴})) ↔ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (𝑥 < 𝑦 → (𝐹‘𝑥)𝑂(𝐹‘𝑦)))) |
32 | 29, 30, 31 | mpanl12 698 |
. . . 4
⊢ ((𝐹:(1...𝑁)⟶ℝ ∧ {𝐴} ⊆ (1...𝑁)) → ((𝐹 ↾ {𝐴}) Isom < , 𝑂 ({𝐴}, (𝐹 “ {𝐴})) ↔ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (𝑥 < 𝑦 → (𝐹‘𝑥)𝑂(𝐹‘𝑦)))) |
33 | 25, 26, 32 | syl2anc 583 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ∈ (1...𝑁)) → ((𝐹 ↾ {𝐴}) Isom < , 𝑂 ({𝐴}, (𝐹 “ {𝐴})) ↔ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (𝑥 < 𝑦 → (𝐹‘𝑥)𝑂(𝐹‘𝑦)))) |
34 | 21, 33 | mpbird 256 |
. 2
⊢ ((𝜑 ∧ 𝐴 ∈ (1...𝑁)) → (𝐹 ↾ {𝐴}) Isom < , 𝑂 ({𝐴}, (𝐹 “ {𝐴}))) |
35 | | snidg 4592 |
. . 3
⊢ (𝐴 ∈ (1...𝑁) → 𝐴 ∈ {𝐴}) |
36 | 35 | adantl 481 |
. 2
⊢ ((𝜑 ∧ 𝐴 ∈ (1...𝑁)) → 𝐴 ∈ {𝐴}) |
37 | | eqid 2738 |
. . 3
⊢ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} |
38 | 37 | erdszelem1 33053 |
. 2
⊢ ({𝐴} ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} ↔ ({𝐴} ⊆ (1...𝐴) ∧ (𝐹 ↾ {𝐴}) Isom < , 𝑂 ({𝐴}, (𝐹 “ {𝐴})) ∧ 𝐴 ∈ {𝐴})) |
39 | 5, 34, 36, 38 | syl3anbrc 1341 |
1
⊢ ((𝜑 ∧ 𝐴 ∈ (1...𝑁)) → {𝐴} ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) |