Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdszelem4 Structured version   Visualization version   GIF version

Theorem erdszelem4 35162
Description: Lemma for erdsze 35170. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze.n (𝜑𝑁 ∈ ℕ)
erdsze.f (𝜑𝐹:(1...𝑁)–1-1→ℝ)
erdszelem.k 𝐾 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
erdszelem.o 𝑂 Or ℝ
Assertion
Ref Expression
erdszelem4 ((𝜑𝐴 ∈ (1...𝑁)) → {𝐴} ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)})
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐴,𝑦   𝑥,𝑂,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐾(𝑥,𝑦)

Proof of Theorem erdszelem4
StepHypRef Expression
1 elfznn 13613 . . . . 5 (𝐴 ∈ (1...𝑁) → 𝐴 ∈ ℕ)
21adantl 481 . . . 4 ((𝜑𝐴 ∈ (1...𝑁)) → 𝐴 ∈ ℕ)
3 elfz1end 13614 . . . 4 (𝐴 ∈ ℕ ↔ 𝐴 ∈ (1...𝐴))
42, 3sylib 218 . . 3 ((𝜑𝐴 ∈ (1...𝑁)) → 𝐴 ∈ (1...𝐴))
54snssd 4834 . 2 ((𝜑𝐴 ∈ (1...𝑁)) → {𝐴} ⊆ (1...𝐴))
6 elsni 4665 . . . . . . 7 (𝑥 ∈ {𝐴} → 𝑥 = 𝐴)
7 elsni 4665 . . . . . . 7 (𝑦 ∈ {𝐴} → 𝑦 = 𝐴)
86, 7breqan12d 5182 . . . . . 6 ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → (𝑥 < 𝑦𝐴 < 𝐴))
98adantl 481 . . . . 5 (((𝜑𝐴 ∈ (1...𝑁)) ∧ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴})) → (𝑥 < 𝑦𝐴 < 𝐴))
10 fzssuz 13625 . . . . . . . . 9 (1...𝑁) ⊆ (ℤ‘1)
11 uzssz 12924 . . . . . . . . . 10 (ℤ‘1) ⊆ ℤ
12 zssre 12646 . . . . . . . . . 10 ℤ ⊆ ℝ
1311, 12sstri 4018 . . . . . . . . 9 (ℤ‘1) ⊆ ℝ
1410, 13sstri 4018 . . . . . . . 8 (1...𝑁) ⊆ ℝ
15 simpr 484 . . . . . . . . 9 ((𝜑𝐴 ∈ (1...𝑁)) → 𝐴 ∈ (1...𝑁))
1615adantr 480 . . . . . . . 8 (((𝜑𝐴 ∈ (1...𝑁)) ∧ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴})) → 𝐴 ∈ (1...𝑁))
1714, 16sselid 4006 . . . . . . 7 (((𝜑𝐴 ∈ (1...𝑁)) ∧ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴})) → 𝐴 ∈ ℝ)
1817ltnrd 11424 . . . . . 6 (((𝜑𝐴 ∈ (1...𝑁)) ∧ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴})) → ¬ 𝐴 < 𝐴)
1918pm2.21d 121 . . . . 5 (((𝜑𝐴 ∈ (1...𝑁)) ∧ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴})) → (𝐴 < 𝐴 → (𝐹𝑥)𝑂(𝐹𝑦)))
209, 19sylbid 240 . . . 4 (((𝜑𝐴 ∈ (1...𝑁)) ∧ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴})) → (𝑥 < 𝑦 → (𝐹𝑥)𝑂(𝐹𝑦)))
2120ralrimivva 3208 . . 3 ((𝜑𝐴 ∈ (1...𝑁)) → ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (𝑥 < 𝑦 → (𝐹𝑥)𝑂(𝐹𝑦)))
22 erdsze.f . . . . . 6 (𝜑𝐹:(1...𝑁)–1-1→ℝ)
23 f1f 6817 . . . . . 6 (𝐹:(1...𝑁)–1-1→ℝ → 𝐹:(1...𝑁)⟶ℝ)
2422, 23syl 17 . . . . 5 (𝜑𝐹:(1...𝑁)⟶ℝ)
2524adantr 480 . . . 4 ((𝜑𝐴 ∈ (1...𝑁)) → 𝐹:(1...𝑁)⟶ℝ)
2615snssd 4834 . . . 4 ((𝜑𝐴 ∈ (1...𝑁)) → {𝐴} ⊆ (1...𝑁))
27 ltso 11370 . . . . . 6 < Or ℝ
28 soss 5628 . . . . . 6 ((1...𝑁) ⊆ ℝ → ( < Or ℝ → < Or (1...𝑁)))
2914, 27, 28mp2 9 . . . . 5 < Or (1...𝑁)
30 erdszelem.o . . . . 5 𝑂 Or ℝ
31 soisores 7363 . . . . 5 ((( < Or (1...𝑁) ∧ 𝑂 Or ℝ) ∧ (𝐹:(1...𝑁)⟶ℝ ∧ {𝐴} ⊆ (1...𝑁))) → ((𝐹 ↾ {𝐴}) Isom < , 𝑂 ({𝐴}, (𝐹 “ {𝐴})) ↔ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (𝑥 < 𝑦 → (𝐹𝑥)𝑂(𝐹𝑦))))
3229, 30, 31mpanl12 701 . . . 4 ((𝐹:(1...𝑁)⟶ℝ ∧ {𝐴} ⊆ (1...𝑁)) → ((𝐹 ↾ {𝐴}) Isom < , 𝑂 ({𝐴}, (𝐹 “ {𝐴})) ↔ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (𝑥 < 𝑦 → (𝐹𝑥)𝑂(𝐹𝑦))))
3325, 26, 32syl2anc 583 . . 3 ((𝜑𝐴 ∈ (1...𝑁)) → ((𝐹 ↾ {𝐴}) Isom < , 𝑂 ({𝐴}, (𝐹 “ {𝐴})) ↔ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (𝑥 < 𝑦 → (𝐹𝑥)𝑂(𝐹𝑦))))
3421, 33mpbird 257 . 2 ((𝜑𝐴 ∈ (1...𝑁)) → (𝐹 ↾ {𝐴}) Isom < , 𝑂 ({𝐴}, (𝐹 “ {𝐴})))
35 snidg 4682 . . 3 (𝐴 ∈ (1...𝑁) → 𝐴 ∈ {𝐴})
3635adantl 481 . 2 ((𝜑𝐴 ∈ (1...𝑁)) → 𝐴 ∈ {𝐴})
37 eqid 2740 . . 3 {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)} = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}
3837erdszelem1 35159 . 2 ({𝐴} ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)} ↔ ({𝐴} ⊆ (1...𝐴) ∧ (𝐹 ↾ {𝐴}) Isom < , 𝑂 ({𝐴}, (𝐹 “ {𝐴})) ∧ 𝐴 ∈ {𝐴}))
395, 34, 36, 38syl3anbrc 1343 1 ((𝜑𝐴 ∈ (1...𝑁)) → {𝐴} ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  {crab 3443  wss 3976  𝒫 cpw 4622  {csn 4648   class class class wbr 5166  cmpt 5249   Or wor 5606  cres 5702  cima 5703  wf 6569  1-1wf1 6570  cfv 6573   Isom wiso 6574  (class class class)co 7448  supcsup 9509  cr 11183  1c1 11185   < clt 11324  cn 12293  cz 12639  cuz 12903  ...cfz 13567  chash 14379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-z 12640  df-uz 12904  df-fz 13568
This theorem is referenced by:  erdszelem5  35163
  Copyright terms: Public domain W3C validator