Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdszelem4 Structured version   Visualization version   GIF version

Theorem erdszelem4 33156
Description: Lemma for erdsze 33164. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze.n (𝜑𝑁 ∈ ℕ)
erdsze.f (𝜑𝐹:(1...𝑁)–1-1→ℝ)
erdszelem.k 𝐾 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
erdszelem.o 𝑂 Or ℝ
Assertion
Ref Expression
erdszelem4 ((𝜑𝐴 ∈ (1...𝑁)) → {𝐴} ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)})
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐴,𝑦   𝑥,𝑂,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐾(𝑥,𝑦)

Proof of Theorem erdszelem4
StepHypRef Expression
1 elfznn 13285 . . . . 5 (𝐴 ∈ (1...𝑁) → 𝐴 ∈ ℕ)
21adantl 482 . . . 4 ((𝜑𝐴 ∈ (1...𝑁)) → 𝐴 ∈ ℕ)
3 elfz1end 13286 . . . 4 (𝐴 ∈ ℕ ↔ 𝐴 ∈ (1...𝐴))
42, 3sylib 217 . . 3 ((𝜑𝐴 ∈ (1...𝑁)) → 𝐴 ∈ (1...𝐴))
54snssd 4742 . 2 ((𝜑𝐴 ∈ (1...𝑁)) → {𝐴} ⊆ (1...𝐴))
6 elsni 4578 . . . . . . 7 (𝑥 ∈ {𝐴} → 𝑥 = 𝐴)
7 elsni 4578 . . . . . . 7 (𝑦 ∈ {𝐴} → 𝑦 = 𝐴)
86, 7breqan12d 5090 . . . . . 6 ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → (𝑥 < 𝑦𝐴 < 𝐴))
98adantl 482 . . . . 5 (((𝜑𝐴 ∈ (1...𝑁)) ∧ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴})) → (𝑥 < 𝑦𝐴 < 𝐴))
10 fzssuz 13297 . . . . . . . . 9 (1...𝑁) ⊆ (ℤ‘1)
11 uzssz 12603 . . . . . . . . . 10 (ℤ‘1) ⊆ ℤ
12 zssre 12326 . . . . . . . . . 10 ℤ ⊆ ℝ
1311, 12sstri 3930 . . . . . . . . 9 (ℤ‘1) ⊆ ℝ
1410, 13sstri 3930 . . . . . . . 8 (1...𝑁) ⊆ ℝ
15 simpr 485 . . . . . . . . 9 ((𝜑𝐴 ∈ (1...𝑁)) → 𝐴 ∈ (1...𝑁))
1615adantr 481 . . . . . . . 8 (((𝜑𝐴 ∈ (1...𝑁)) ∧ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴})) → 𝐴 ∈ (1...𝑁))
1714, 16sselid 3919 . . . . . . 7 (((𝜑𝐴 ∈ (1...𝑁)) ∧ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴})) → 𝐴 ∈ ℝ)
1817ltnrd 11109 . . . . . 6 (((𝜑𝐴 ∈ (1...𝑁)) ∧ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴})) → ¬ 𝐴 < 𝐴)
1918pm2.21d 121 . . . . 5 (((𝜑𝐴 ∈ (1...𝑁)) ∧ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴})) → (𝐴 < 𝐴 → (𝐹𝑥)𝑂(𝐹𝑦)))
209, 19sylbid 239 . . . 4 (((𝜑𝐴 ∈ (1...𝑁)) ∧ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴})) → (𝑥 < 𝑦 → (𝐹𝑥)𝑂(𝐹𝑦)))
2120ralrimivva 3123 . . 3 ((𝜑𝐴 ∈ (1...𝑁)) → ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (𝑥 < 𝑦 → (𝐹𝑥)𝑂(𝐹𝑦)))
22 erdsze.f . . . . . 6 (𝜑𝐹:(1...𝑁)–1-1→ℝ)
23 f1f 6670 . . . . . 6 (𝐹:(1...𝑁)–1-1→ℝ → 𝐹:(1...𝑁)⟶ℝ)
2422, 23syl 17 . . . . 5 (𝜑𝐹:(1...𝑁)⟶ℝ)
2524adantr 481 . . . 4 ((𝜑𝐴 ∈ (1...𝑁)) → 𝐹:(1...𝑁)⟶ℝ)
2615snssd 4742 . . . 4 ((𝜑𝐴 ∈ (1...𝑁)) → {𝐴} ⊆ (1...𝑁))
27 ltso 11055 . . . . . 6 < Or ℝ
28 soss 5523 . . . . . 6 ((1...𝑁) ⊆ ℝ → ( < Or ℝ → < Or (1...𝑁)))
2914, 27, 28mp2 9 . . . . 5 < Or (1...𝑁)
30 erdszelem.o . . . . 5 𝑂 Or ℝ
31 soisores 7198 . . . . 5 ((( < Or (1...𝑁) ∧ 𝑂 Or ℝ) ∧ (𝐹:(1...𝑁)⟶ℝ ∧ {𝐴} ⊆ (1...𝑁))) → ((𝐹 ↾ {𝐴}) Isom < , 𝑂 ({𝐴}, (𝐹 “ {𝐴})) ↔ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (𝑥 < 𝑦 → (𝐹𝑥)𝑂(𝐹𝑦))))
3229, 30, 31mpanl12 699 . . . 4 ((𝐹:(1...𝑁)⟶ℝ ∧ {𝐴} ⊆ (1...𝑁)) → ((𝐹 ↾ {𝐴}) Isom < , 𝑂 ({𝐴}, (𝐹 “ {𝐴})) ↔ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (𝑥 < 𝑦 → (𝐹𝑥)𝑂(𝐹𝑦))))
3325, 26, 32syl2anc 584 . . 3 ((𝜑𝐴 ∈ (1...𝑁)) → ((𝐹 ↾ {𝐴}) Isom < , 𝑂 ({𝐴}, (𝐹 “ {𝐴})) ↔ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (𝑥 < 𝑦 → (𝐹𝑥)𝑂(𝐹𝑦))))
3421, 33mpbird 256 . 2 ((𝜑𝐴 ∈ (1...𝑁)) → (𝐹 ↾ {𝐴}) Isom < , 𝑂 ({𝐴}, (𝐹 “ {𝐴})))
35 snidg 4595 . . 3 (𝐴 ∈ (1...𝑁) → 𝐴 ∈ {𝐴})
3635adantl 482 . 2 ((𝜑𝐴 ∈ (1...𝑁)) → 𝐴 ∈ {𝐴})
37 eqid 2738 . . 3 {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)} = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}
3837erdszelem1 33153 . 2 ({𝐴} ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)} ↔ ({𝐴} ⊆ (1...𝐴) ∧ (𝐹 ↾ {𝐴}) Isom < , 𝑂 ({𝐴}, (𝐹 “ {𝐴})) ∧ 𝐴 ∈ {𝐴}))
395, 34, 36, 38syl3anbrc 1342 1 ((𝜑𝐴 ∈ (1...𝑁)) → {𝐴} ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  {crab 3068  wss 3887  𝒫 cpw 4533  {csn 4561   class class class wbr 5074  cmpt 5157   Or wor 5502  cres 5591  cima 5592  wf 6429  1-1wf1 6430  cfv 6433   Isom wiso 6434  (class class class)co 7275  supcsup 9199  cr 10870  1c1 10872   < clt 11009  cn 11973  cz 12319  cuz 12582  ...cfz 13239  chash 14044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-z 12320  df-uz 12583  df-fz 13240
This theorem is referenced by:  erdszelem5  33157
  Copyright terms: Public domain W3C validator