Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdszelem2 Structured version   Visualization version   GIF version

Theorem erdszelem2 35181
Description: Lemma for erdsze 35191. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypothesis
Ref Expression
erdszelem1.1 𝑆 = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}
Assertion
Ref Expression
erdszelem2 ((♯ “ 𝑆) ∈ Fin ∧ (♯ “ 𝑆) ⊆ ℕ)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹   𝑦,𝑂
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem erdszelem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fzfi 13947 . . . . 5 (1...𝐴) ∈ Fin
2 pwfi 9286 . . . . 5 ((1...𝐴) ∈ Fin ↔ 𝒫 (1...𝐴) ∈ Fin)
31, 2mpbi 230 . . . 4 𝒫 (1...𝐴) ∈ Fin
4 erdszelem1.1 . . . . 5 𝑆 = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}
5 ssrab2 4051 . . . . 5 {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)} ⊆ 𝒫 (1...𝐴)
64, 5eqsstri 4001 . . . 4 𝑆 ⊆ 𝒫 (1...𝐴)
7 ssfi 9150 . . . 4 ((𝒫 (1...𝐴) ∈ Fin ∧ 𝑆 ⊆ 𝒫 (1...𝐴)) → 𝑆 ∈ Fin)
83, 6, 7mp2an 692 . . 3 𝑆 ∈ Fin
9 hashf 14313 . . . . 5 ♯:V⟶(ℕ0 ∪ {+∞})
10 ffun 6698 . . . . 5 (♯:V⟶(ℕ0 ∪ {+∞}) → Fun ♯)
119, 10ax-mp 5 . . . 4 Fun ♯
12 ssv 3979 . . . . 5 𝑆 ⊆ V
139fdmi 6706 . . . . 5 dom ♯ = V
1412, 13sseqtrri 4004 . . . 4 𝑆 ⊆ dom ♯
15 fores 6789 . . . 4 ((Fun ♯ ∧ 𝑆 ⊆ dom ♯) → (♯ ↾ 𝑆):𝑆onto→(♯ “ 𝑆))
1611, 14, 15mp2an 692 . . 3 (♯ ↾ 𝑆):𝑆onto→(♯ “ 𝑆)
17 fofi 9280 . . 3 ((𝑆 ∈ Fin ∧ (♯ ↾ 𝑆):𝑆onto→(♯ “ 𝑆)) → (♯ “ 𝑆) ∈ Fin)
188, 16, 17mp2an 692 . 2 (♯ “ 𝑆) ∈ Fin
19 funimass4 6932 . . . 4 ((Fun ♯ ∧ 𝑆 ⊆ dom ♯) → ((♯ “ 𝑆) ⊆ ℕ ↔ ∀𝑥𝑆 (♯‘𝑥) ∈ ℕ))
2011, 14, 19mp2an 692 . . 3 ((♯ “ 𝑆) ⊆ ℕ ↔ ∀𝑥𝑆 (♯‘𝑥) ∈ ℕ)
214erdszelem1 35180 . . . 4 (𝑥𝑆 ↔ (𝑥 ⊆ (1...𝐴) ∧ (𝐹𝑥) Isom < , 𝑂 (𝑥, (𝐹𝑥)) ∧ 𝐴𝑥))
22 ne0i 4312 . . . . . 6 (𝐴𝑥𝑥 ≠ ∅)
23223ad2ant3 1135 . . . . 5 ((𝑥 ⊆ (1...𝐴) ∧ (𝐹𝑥) Isom < , 𝑂 (𝑥, (𝐹𝑥)) ∧ 𝐴𝑥) → 𝑥 ≠ ∅)
24 simp1 1136 . . . . . . 7 ((𝑥 ⊆ (1...𝐴) ∧ (𝐹𝑥) Isom < , 𝑂 (𝑥, (𝐹𝑥)) ∧ 𝐴𝑥) → 𝑥 ⊆ (1...𝐴))
25 ssfi 9150 . . . . . . 7 (((1...𝐴) ∈ Fin ∧ 𝑥 ⊆ (1...𝐴)) → 𝑥 ∈ Fin)
261, 24, 25sylancr 587 . . . . . 6 ((𝑥 ⊆ (1...𝐴) ∧ (𝐹𝑥) Isom < , 𝑂 (𝑥, (𝐹𝑥)) ∧ 𝐴𝑥) → 𝑥 ∈ Fin)
27 hashnncl 14341 . . . . . 6 (𝑥 ∈ Fin → ((♯‘𝑥) ∈ ℕ ↔ 𝑥 ≠ ∅))
2826, 27syl 17 . . . . 5 ((𝑥 ⊆ (1...𝐴) ∧ (𝐹𝑥) Isom < , 𝑂 (𝑥, (𝐹𝑥)) ∧ 𝐴𝑥) → ((♯‘𝑥) ∈ ℕ ↔ 𝑥 ≠ ∅))
2923, 28mpbird 257 . . . 4 ((𝑥 ⊆ (1...𝐴) ∧ (𝐹𝑥) Isom < , 𝑂 (𝑥, (𝐹𝑥)) ∧ 𝐴𝑥) → (♯‘𝑥) ∈ ℕ)
3021, 29sylbi 217 . . 3 (𝑥𝑆 → (♯‘𝑥) ∈ ℕ)
3120, 30mprgbir 3053 . 2 (♯ “ 𝑆) ⊆ ℕ
3218, 31pm3.2i 470 1 ((♯ “ 𝑆) ∈ Fin ∧ (♯ “ 𝑆) ⊆ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2927  wral 3046  {crab 3411  Vcvv 3455  cun 3920  wss 3922  c0 4304  𝒫 cpw 4571  {csn 4597  dom cdm 5646  cres 5648  cima 5649  Fun wfun 6513  wf 6515  ontowfo 6517  cfv 6519   Isom wiso 6520  (class class class)co 7394  Fincfn 8922  1c1 11087  +∞cpnf 11223   < clt 11226  cn 12197  0cn0 12458  ...cfz 13481  chash 14305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-cnex 11142  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-int 4919  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-isom 6528  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7851  df-1st 7977  df-2nd 7978  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-1o 8443  df-er 8682  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-card 9910  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426  df-nn 12198  df-n0 12459  df-xnn0 12532  df-z 12546  df-uz 12810  df-fz 13482  df-hash 14306
This theorem is referenced by:  erdszelem5  35184  erdszelem6  35185  erdszelem7  35186  erdszelem8  35187
  Copyright terms: Public domain W3C validator