![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > erdszelem2 | Structured version Visualization version GIF version |
Description: Lemma for erdsze 34492. (Contributed by Mario Carneiro, 22-Jan-2015.) |
Ref | Expression |
---|---|
erdszelem1.1 | ā¢ š = {š¦ ā š« (1...š“) ā£ ((š¹ ā¾ š¦) Isom < , š (š¦, (š¹ ā š¦)) ā§ š“ ā š¦)} |
Ref | Expression |
---|---|
erdszelem2 | ā¢ ((āÆ ā š) ā Fin ā§ (āÆ ā š) ā ā) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzfi 13942 | . . . . 5 ā¢ (1...š“) ā Fin | |
2 | pwfi 9182 | . . . . 5 ā¢ ((1...š“) ā Fin ā š« (1...š“) ā Fin) | |
3 | 1, 2 | mpbi 229 | . . . 4 ā¢ š« (1...š“) ā Fin |
4 | erdszelem1.1 | . . . . 5 ā¢ š = {š¦ ā š« (1...š“) ā£ ((š¹ ā¾ š¦) Isom < , š (š¦, (š¹ ā š¦)) ā§ š“ ā š¦)} | |
5 | ssrab2 4077 | . . . . 5 ā¢ {š¦ ā š« (1...š“) ā£ ((š¹ ā¾ š¦) Isom < , š (š¦, (š¹ ā š¦)) ā§ š“ ā š¦)} ā š« (1...š“) | |
6 | 4, 5 | eqsstri 4016 | . . . 4 ā¢ š ā š« (1...š“) |
7 | ssfi 9177 | . . . 4 ā¢ ((š« (1...š“) ā Fin ā§ š ā š« (1...š“)) ā š ā Fin) | |
8 | 3, 6, 7 | mp2an 689 | . . 3 ā¢ š ā Fin |
9 | hashf 14303 | . . . . 5 ā¢ āÆ:Vā¶(ā0 āŖ {+ā}) | |
10 | ffun 6720 | . . . . 5 ā¢ (āÆ:Vā¶(ā0 āŖ {+ā}) ā Fun āÆ) | |
11 | 9, 10 | ax-mp 5 | . . . 4 ā¢ Fun āÆ |
12 | ssv 4006 | . . . . 5 ā¢ š ā V | |
13 | 9 | fdmi 6729 | . . . . 5 ā¢ dom āÆ = V |
14 | 12, 13 | sseqtrri 4019 | . . . 4 ā¢ š ā dom āÆ |
15 | fores 6815 | . . . 4 ā¢ ((Fun āÆ ā§ š ā dom āÆ) ā (āÆ ā¾ š):šāontoā(āÆ ā š)) | |
16 | 11, 14, 15 | mp2an 689 | . . 3 ā¢ (āÆ ā¾ š):šāontoā(āÆ ā š) |
17 | fofi 9342 | . . 3 ā¢ ((š ā Fin ā§ (āÆ ā¾ š):šāontoā(āÆ ā š)) ā (āÆ ā š) ā Fin) | |
18 | 8, 16, 17 | mp2an 689 | . 2 ā¢ (āÆ ā š) ā Fin |
19 | funimass4 6956 | . . . 4 ā¢ ((Fun āÆ ā§ š ā dom āÆ) ā ((āÆ ā š) ā ā ā āš„ ā š (āÆāš„) ā ā)) | |
20 | 11, 14, 19 | mp2an 689 | . . 3 ā¢ ((āÆ ā š) ā ā ā āš„ ā š (āÆāš„) ā ā) |
21 | 4 | erdszelem1 34481 | . . . 4 ā¢ (š„ ā š ā (š„ ā (1...š“) ā§ (š¹ ā¾ š„) Isom < , š (š„, (š¹ ā š„)) ā§ š“ ā š„)) |
22 | ne0i 4334 | . . . . . 6 ā¢ (š“ ā š„ ā š„ ā ā ) | |
23 | 22 | 3ad2ant3 1134 | . . . . 5 ā¢ ((š„ ā (1...š“) ā§ (š¹ ā¾ š„) Isom < , š (š„, (š¹ ā š„)) ā§ š“ ā š„) ā š„ ā ā ) |
24 | simp1 1135 | . . . . . . 7 ā¢ ((š„ ā (1...š“) ā§ (š¹ ā¾ š„) Isom < , š (š„, (š¹ ā š„)) ā§ š“ ā š„) ā š„ ā (1...š“)) | |
25 | ssfi 9177 | . . . . . . 7 ā¢ (((1...š“) ā Fin ā§ š„ ā (1...š“)) ā š„ ā Fin) | |
26 | 1, 24, 25 | sylancr 586 | . . . . . 6 ā¢ ((š„ ā (1...š“) ā§ (š¹ ā¾ š„) Isom < , š (š„, (š¹ ā š„)) ā§ š“ ā š„) ā š„ ā Fin) |
27 | hashnncl 14331 | . . . . . 6 ā¢ (š„ ā Fin ā ((āÆāš„) ā ā ā š„ ā ā )) | |
28 | 26, 27 | syl 17 | . . . . 5 ā¢ ((š„ ā (1...š“) ā§ (š¹ ā¾ š„) Isom < , š (š„, (š¹ ā š„)) ā§ š“ ā š„) ā ((āÆāš„) ā ā ā š„ ā ā )) |
29 | 23, 28 | mpbird 257 | . . . 4 ā¢ ((š„ ā (1...š“) ā§ (š¹ ā¾ š„) Isom < , š (š„, (š¹ ā š„)) ā§ š“ ā š„) ā (āÆāš„) ā ā) |
30 | 21, 29 | sylbi 216 | . . 3 ā¢ (š„ ā š ā (āÆāš„) ā ā) |
31 | 20, 30 | mprgbir 3067 | . 2 ā¢ (āÆ ā š) ā ā |
32 | 18, 31 | pm3.2i 470 | 1 ā¢ ((āÆ ā š) ā Fin ā§ (āÆ ā š) ā ā) |
Colors of variables: wff setvar class |
Syntax hints: ā wb 205 ā§ wa 395 ā§ w3a 1086 = wceq 1540 ā wcel 2105 ā wne 2939 āwral 3060 {crab 3431 Vcvv 3473 āŖ cun 3946 ā wss 3948 ā c0 4322 š« cpw 4602 {csn 4628 dom cdm 5676 ā¾ cres 5678 ā cima 5679 Fun wfun 6537 ā¶wf 6539 āontoāwfo 6541 ācfv 6543 Isom wiso 6544 (class class class)co 7412 Fincfn 8943 1c1 11115 +ācpnf 11250 < clt 11253 ācn 12217 ā0cn0 12477 ...cfz 13489 āÆchash 14295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-card 9938 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-n0 12478 df-xnn0 12550 df-z 12564 df-uz 12828 df-fz 13490 df-hash 14296 |
This theorem is referenced by: erdszelem5 34485 erdszelem6 34486 erdszelem7 34487 erdszelem8 34488 |
Copyright terms: Public domain | W3C validator |