Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdszelem2 Structured version   Visualization version   GIF version

Theorem erdszelem2 35143
Description: Lemma for erdsze 35153. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypothesis
Ref Expression
erdszelem1.1 𝑆 = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}
Assertion
Ref Expression
erdszelem2 ((♯ “ 𝑆) ∈ Fin ∧ (♯ “ 𝑆) ⊆ ℕ)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹   𝑦,𝑂
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem erdszelem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fzfi 13980 . . . . 5 (1...𝐴) ∈ Fin
2 pwfi 9324 . . . . 5 ((1...𝐴) ∈ Fin ↔ 𝒫 (1...𝐴) ∈ Fin)
31, 2mpbi 230 . . . 4 𝒫 (1...𝐴) ∈ Fin
4 erdszelem1.1 . . . . 5 𝑆 = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}
5 ssrab2 4053 . . . . 5 {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)} ⊆ 𝒫 (1...𝐴)
64, 5eqsstri 4003 . . . 4 𝑆 ⊆ 𝒫 (1...𝐴)
7 ssfi 9182 . . . 4 ((𝒫 (1...𝐴) ∈ Fin ∧ 𝑆 ⊆ 𝒫 (1...𝐴)) → 𝑆 ∈ Fin)
83, 6, 7mp2an 692 . . 3 𝑆 ∈ Fin
9 hashf 14346 . . . . 5 ♯:V⟶(ℕ0 ∪ {+∞})
10 ffun 6706 . . . . 5 (♯:V⟶(ℕ0 ∪ {+∞}) → Fun ♯)
119, 10ax-mp 5 . . . 4 Fun ♯
12 ssv 3981 . . . . 5 𝑆 ⊆ V
139fdmi 6714 . . . . 5 dom ♯ = V
1412, 13sseqtrri 4006 . . . 4 𝑆 ⊆ dom ♯
15 fores 6797 . . . 4 ((Fun ♯ ∧ 𝑆 ⊆ dom ♯) → (♯ ↾ 𝑆):𝑆onto→(♯ “ 𝑆))
1611, 14, 15mp2an 692 . . 3 (♯ ↾ 𝑆):𝑆onto→(♯ “ 𝑆)
17 fofi 9318 . . 3 ((𝑆 ∈ Fin ∧ (♯ ↾ 𝑆):𝑆onto→(♯ “ 𝑆)) → (♯ “ 𝑆) ∈ Fin)
188, 16, 17mp2an 692 . 2 (♯ “ 𝑆) ∈ Fin
19 funimass4 6940 . . . 4 ((Fun ♯ ∧ 𝑆 ⊆ dom ♯) → ((♯ “ 𝑆) ⊆ ℕ ↔ ∀𝑥𝑆 (♯‘𝑥) ∈ ℕ))
2011, 14, 19mp2an 692 . . 3 ((♯ “ 𝑆) ⊆ ℕ ↔ ∀𝑥𝑆 (♯‘𝑥) ∈ ℕ)
214erdszelem1 35142 . . . 4 (𝑥𝑆 ↔ (𝑥 ⊆ (1...𝐴) ∧ (𝐹𝑥) Isom < , 𝑂 (𝑥, (𝐹𝑥)) ∧ 𝐴𝑥))
22 ne0i 4314 . . . . . 6 (𝐴𝑥𝑥 ≠ ∅)
23223ad2ant3 1135 . . . . 5 ((𝑥 ⊆ (1...𝐴) ∧ (𝐹𝑥) Isom < , 𝑂 (𝑥, (𝐹𝑥)) ∧ 𝐴𝑥) → 𝑥 ≠ ∅)
24 simp1 1136 . . . . . . 7 ((𝑥 ⊆ (1...𝐴) ∧ (𝐹𝑥) Isom < , 𝑂 (𝑥, (𝐹𝑥)) ∧ 𝐴𝑥) → 𝑥 ⊆ (1...𝐴))
25 ssfi 9182 . . . . . . 7 (((1...𝐴) ∈ Fin ∧ 𝑥 ⊆ (1...𝐴)) → 𝑥 ∈ Fin)
261, 24, 25sylancr 587 . . . . . 6 ((𝑥 ⊆ (1...𝐴) ∧ (𝐹𝑥) Isom < , 𝑂 (𝑥, (𝐹𝑥)) ∧ 𝐴𝑥) → 𝑥 ∈ Fin)
27 hashnncl 14374 . . . . . 6 (𝑥 ∈ Fin → ((♯‘𝑥) ∈ ℕ ↔ 𝑥 ≠ ∅))
2826, 27syl 17 . . . . 5 ((𝑥 ⊆ (1...𝐴) ∧ (𝐹𝑥) Isom < , 𝑂 (𝑥, (𝐹𝑥)) ∧ 𝐴𝑥) → ((♯‘𝑥) ∈ ℕ ↔ 𝑥 ≠ ∅))
2923, 28mpbird 257 . . . 4 ((𝑥 ⊆ (1...𝐴) ∧ (𝐹𝑥) Isom < , 𝑂 (𝑥, (𝐹𝑥)) ∧ 𝐴𝑥) → (♯‘𝑥) ∈ ℕ)
3021, 29sylbi 217 . . 3 (𝑥𝑆 → (♯‘𝑥) ∈ ℕ)
3120, 30mprgbir 3057 . 2 (♯ “ 𝑆) ⊆ ℕ
3218, 31pm3.2i 470 1 ((♯ “ 𝑆) ∈ Fin ∧ (♯ “ 𝑆) ⊆ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2931  wral 3050  {crab 3413  Vcvv 3457  cun 3922  wss 3924  c0 4306  𝒫 cpw 4573  {csn 4599  dom cdm 5652  cres 5654  cima 5655  Fun wfun 6522  wf 6524  ontowfo 6526  cfv 6528   Isom wiso 6529  (class class class)co 7400  Fincfn 8954  1c1 11123  +∞cpnf 11259   < clt 11262  cn 12233  0cn0 12494  ...cfz 13514  chash 14338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-cnex 11178  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-mulcom 11186  ax-addass 11187  ax-mulass 11188  ax-distr 11189  ax-i2m1 11190  ax-1ne0 11191  ax-1rid 11192  ax-rnegex 11193  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197  ax-pre-ltadd 11198  ax-pre-mulgt0 11199
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-int 4921  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-isom 6537  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-om 7857  df-1st 7983  df-2nd 7984  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-1o 8475  df-er 8714  df-en 8955  df-dom 8956  df-sdom 8957  df-fin 8958  df-card 9946  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-sub 11461  df-neg 11462  df-nn 12234  df-n0 12495  df-xnn0 12568  df-z 12582  df-uz 12846  df-fz 13515  df-hash 14339
This theorem is referenced by:  erdszelem5  35146  erdszelem6  35147  erdszelem7  35148  erdszelem8  35149
  Copyright terms: Public domain W3C validator