| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > erdszelem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for erdsze 35246. (Contributed by Mario Carneiro, 22-Jan-2015.) |
| Ref | Expression |
|---|---|
| erdszelem1.1 | ⊢ 𝑆 = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} |
| Ref | Expression |
|---|---|
| erdszelem2 | ⊢ ((♯ “ 𝑆) ∈ Fin ∧ (♯ “ 𝑆) ⊆ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzfi 13879 | . . . . 5 ⊢ (1...𝐴) ∈ Fin | |
| 2 | pwfi 9203 | . . . . 5 ⊢ ((1...𝐴) ∈ Fin ↔ 𝒫 (1...𝐴) ∈ Fin) | |
| 3 | 1, 2 | mpbi 230 | . . . 4 ⊢ 𝒫 (1...𝐴) ∈ Fin |
| 4 | erdszelem1.1 | . . . . 5 ⊢ 𝑆 = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} | |
| 5 | ssrab2 4027 | . . . . 5 ⊢ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} ⊆ 𝒫 (1...𝐴) | |
| 6 | 4, 5 | eqsstri 3976 | . . . 4 ⊢ 𝑆 ⊆ 𝒫 (1...𝐴) |
| 7 | ssfi 9082 | . . . 4 ⊢ ((𝒫 (1...𝐴) ∈ Fin ∧ 𝑆 ⊆ 𝒫 (1...𝐴)) → 𝑆 ∈ Fin) | |
| 8 | 3, 6, 7 | mp2an 692 | . . 3 ⊢ 𝑆 ∈ Fin |
| 9 | hashf 14245 | . . . . 5 ⊢ ♯:V⟶(ℕ0 ∪ {+∞}) | |
| 10 | ffun 6654 | . . . . 5 ⊢ (♯:V⟶(ℕ0 ∪ {+∞}) → Fun ♯) | |
| 11 | 9, 10 | ax-mp 5 | . . . 4 ⊢ Fun ♯ |
| 12 | ssv 3954 | . . . . 5 ⊢ 𝑆 ⊆ V | |
| 13 | 9 | fdmi 6662 | . . . . 5 ⊢ dom ♯ = V |
| 14 | 12, 13 | sseqtrri 3979 | . . . 4 ⊢ 𝑆 ⊆ dom ♯ |
| 15 | fores 6745 | . . . 4 ⊢ ((Fun ♯ ∧ 𝑆 ⊆ dom ♯) → (♯ ↾ 𝑆):𝑆–onto→(♯ “ 𝑆)) | |
| 16 | 11, 14, 15 | mp2an 692 | . . 3 ⊢ (♯ ↾ 𝑆):𝑆–onto→(♯ “ 𝑆) |
| 17 | fofi 9197 | . . 3 ⊢ ((𝑆 ∈ Fin ∧ (♯ ↾ 𝑆):𝑆–onto→(♯ “ 𝑆)) → (♯ “ 𝑆) ∈ Fin) | |
| 18 | 8, 16, 17 | mp2an 692 | . 2 ⊢ (♯ “ 𝑆) ∈ Fin |
| 19 | funimass4 6886 | . . . 4 ⊢ ((Fun ♯ ∧ 𝑆 ⊆ dom ♯) → ((♯ “ 𝑆) ⊆ ℕ ↔ ∀𝑥 ∈ 𝑆 (♯‘𝑥) ∈ ℕ)) | |
| 20 | 11, 14, 19 | mp2an 692 | . . 3 ⊢ ((♯ “ 𝑆) ⊆ ℕ ↔ ∀𝑥 ∈ 𝑆 (♯‘𝑥) ∈ ℕ) |
| 21 | 4 | erdszelem1 35235 | . . . 4 ⊢ (𝑥 ∈ 𝑆 ↔ (𝑥 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑥) Isom < , 𝑂 (𝑥, (𝐹 “ 𝑥)) ∧ 𝐴 ∈ 𝑥)) |
| 22 | ne0i 4288 | . . . . . 6 ⊢ (𝐴 ∈ 𝑥 → 𝑥 ≠ ∅) | |
| 23 | 22 | 3ad2ant3 1135 | . . . . 5 ⊢ ((𝑥 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑥) Isom < , 𝑂 (𝑥, (𝐹 “ 𝑥)) ∧ 𝐴 ∈ 𝑥) → 𝑥 ≠ ∅) |
| 24 | simp1 1136 | . . . . . . 7 ⊢ ((𝑥 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑥) Isom < , 𝑂 (𝑥, (𝐹 “ 𝑥)) ∧ 𝐴 ∈ 𝑥) → 𝑥 ⊆ (1...𝐴)) | |
| 25 | ssfi 9082 | . . . . . . 7 ⊢ (((1...𝐴) ∈ Fin ∧ 𝑥 ⊆ (1...𝐴)) → 𝑥 ∈ Fin) | |
| 26 | 1, 24, 25 | sylancr 587 | . . . . . 6 ⊢ ((𝑥 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑥) Isom < , 𝑂 (𝑥, (𝐹 “ 𝑥)) ∧ 𝐴 ∈ 𝑥) → 𝑥 ∈ Fin) |
| 27 | hashnncl 14273 | . . . . . 6 ⊢ (𝑥 ∈ Fin → ((♯‘𝑥) ∈ ℕ ↔ 𝑥 ≠ ∅)) | |
| 28 | 26, 27 | syl 17 | . . . . 5 ⊢ ((𝑥 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑥) Isom < , 𝑂 (𝑥, (𝐹 “ 𝑥)) ∧ 𝐴 ∈ 𝑥) → ((♯‘𝑥) ∈ ℕ ↔ 𝑥 ≠ ∅)) |
| 29 | 23, 28 | mpbird 257 | . . . 4 ⊢ ((𝑥 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑥) Isom < , 𝑂 (𝑥, (𝐹 “ 𝑥)) ∧ 𝐴 ∈ 𝑥) → (♯‘𝑥) ∈ ℕ) |
| 30 | 21, 29 | sylbi 217 | . . 3 ⊢ (𝑥 ∈ 𝑆 → (♯‘𝑥) ∈ ℕ) |
| 31 | 20, 30 | mprgbir 3054 | . 2 ⊢ (♯ “ 𝑆) ⊆ ℕ |
| 32 | 18, 31 | pm3.2i 470 | 1 ⊢ ((♯ “ 𝑆) ∈ Fin ∧ (♯ “ 𝑆) ⊆ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 {crab 3395 Vcvv 3436 ∪ cun 3895 ⊆ wss 3897 ∅c0 4280 𝒫 cpw 4547 {csn 4573 dom cdm 5614 ↾ cres 5616 “ cima 5617 Fun wfun 6475 ⟶wf 6477 –onto→wfo 6479 ‘cfv 6481 Isom wiso 6482 (class class class)co 7346 Fincfn 8869 1c1 11007 +∞cpnf 11143 < clt 11146 ℕcn 12125 ℕ0cn0 12381 ...cfz 13407 ♯chash 14237 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-xnn0 12455 df-z 12469 df-uz 12733 df-fz 13408 df-hash 14238 |
| This theorem is referenced by: erdszelem5 35239 erdszelem6 35240 erdszelem7 35241 erdszelem8 35242 |
| Copyright terms: Public domain | W3C validator |