Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdszelem2 Structured version   Visualization version   GIF version

Theorem erdszelem2 35131
Description: Lemma for erdsze 35141. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypothesis
Ref Expression
erdszelem1.1 𝑆 = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}
Assertion
Ref Expression
erdszelem2 ((♯ “ 𝑆) ∈ Fin ∧ (♯ “ 𝑆) ⊆ ℕ)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹   𝑦,𝑂
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem erdszelem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fzfi 13994 . . . . 5 (1...𝐴) ∈ Fin
2 pwfi 9338 . . . . 5 ((1...𝐴) ∈ Fin ↔ 𝒫 (1...𝐴) ∈ Fin)
31, 2mpbi 230 . . . 4 𝒫 (1...𝐴) ∈ Fin
4 erdszelem1.1 . . . . 5 𝑆 = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}
5 ssrab2 4060 . . . . 5 {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)} ⊆ 𝒫 (1...𝐴)
64, 5eqsstri 4010 . . . 4 𝑆 ⊆ 𝒫 (1...𝐴)
7 ssfi 9194 . . . 4 ((𝒫 (1...𝐴) ∈ Fin ∧ 𝑆 ⊆ 𝒫 (1...𝐴)) → 𝑆 ∈ Fin)
83, 6, 7mp2an 692 . . 3 𝑆 ∈ Fin
9 hashf 14358 . . . . 5 ♯:V⟶(ℕ0 ∪ {+∞})
10 ffun 6718 . . . . 5 (♯:V⟶(ℕ0 ∪ {+∞}) → Fun ♯)
119, 10ax-mp 5 . . . 4 Fun ♯
12 ssv 3988 . . . . 5 𝑆 ⊆ V
139fdmi 6726 . . . . 5 dom ♯ = V
1412, 13sseqtrri 4013 . . . 4 𝑆 ⊆ dom ♯
15 fores 6809 . . . 4 ((Fun ♯ ∧ 𝑆 ⊆ dom ♯) → (♯ ↾ 𝑆):𝑆onto→(♯ “ 𝑆))
1611, 14, 15mp2an 692 . . 3 (♯ ↾ 𝑆):𝑆onto→(♯ “ 𝑆)
17 fofi 9332 . . 3 ((𝑆 ∈ Fin ∧ (♯ ↾ 𝑆):𝑆onto→(♯ “ 𝑆)) → (♯ “ 𝑆) ∈ Fin)
188, 16, 17mp2an 692 . 2 (♯ “ 𝑆) ∈ Fin
19 funimass4 6952 . . . 4 ((Fun ♯ ∧ 𝑆 ⊆ dom ♯) → ((♯ “ 𝑆) ⊆ ℕ ↔ ∀𝑥𝑆 (♯‘𝑥) ∈ ℕ))
2011, 14, 19mp2an 692 . . 3 ((♯ “ 𝑆) ⊆ ℕ ↔ ∀𝑥𝑆 (♯‘𝑥) ∈ ℕ)
214erdszelem1 35130 . . . 4 (𝑥𝑆 ↔ (𝑥 ⊆ (1...𝐴) ∧ (𝐹𝑥) Isom < , 𝑂 (𝑥, (𝐹𝑥)) ∧ 𝐴𝑥))
22 ne0i 4321 . . . . . 6 (𝐴𝑥𝑥 ≠ ∅)
23223ad2ant3 1135 . . . . 5 ((𝑥 ⊆ (1...𝐴) ∧ (𝐹𝑥) Isom < , 𝑂 (𝑥, (𝐹𝑥)) ∧ 𝐴𝑥) → 𝑥 ≠ ∅)
24 simp1 1136 . . . . . . 7 ((𝑥 ⊆ (1...𝐴) ∧ (𝐹𝑥) Isom < , 𝑂 (𝑥, (𝐹𝑥)) ∧ 𝐴𝑥) → 𝑥 ⊆ (1...𝐴))
25 ssfi 9194 . . . . . . 7 (((1...𝐴) ∈ Fin ∧ 𝑥 ⊆ (1...𝐴)) → 𝑥 ∈ Fin)
261, 24, 25sylancr 587 . . . . . 6 ((𝑥 ⊆ (1...𝐴) ∧ (𝐹𝑥) Isom < , 𝑂 (𝑥, (𝐹𝑥)) ∧ 𝐴𝑥) → 𝑥 ∈ Fin)
27 hashnncl 14386 . . . . . 6 (𝑥 ∈ Fin → ((♯‘𝑥) ∈ ℕ ↔ 𝑥 ≠ ∅))
2826, 27syl 17 . . . . 5 ((𝑥 ⊆ (1...𝐴) ∧ (𝐹𝑥) Isom < , 𝑂 (𝑥, (𝐹𝑥)) ∧ 𝐴𝑥) → ((♯‘𝑥) ∈ ℕ ↔ 𝑥 ≠ ∅))
2923, 28mpbird 257 . . . 4 ((𝑥 ⊆ (1...𝐴) ∧ (𝐹𝑥) Isom < , 𝑂 (𝑥, (𝐹𝑥)) ∧ 𝐴𝑥) → (♯‘𝑥) ∈ ℕ)
3021, 29sylbi 217 . . 3 (𝑥𝑆 → (♯‘𝑥) ∈ ℕ)
3120, 30mprgbir 3057 . 2 (♯ “ 𝑆) ⊆ ℕ
3218, 31pm3.2i 470 1 ((♯ “ 𝑆) ∈ Fin ∧ (♯ “ 𝑆) ⊆ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2931  wral 3050  {crab 3419  Vcvv 3463  cun 3929  wss 3931  c0 4313  𝒫 cpw 4580  {csn 4606  dom cdm 5665  cres 5667  cima 5668  Fun wfun 6534  wf 6536  ontowfo 6538  cfv 6540   Isom wiso 6541  (class class class)co 7412  Fincfn 8966  1c1 11137  +∞cpnf 11273   < clt 11276  cn 12247  0cn0 12508  ...cfz 13528  chash 14350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7369  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-card 9960  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11475  df-neg 11476  df-nn 12248  df-n0 12509  df-xnn0 12582  df-z 12596  df-uz 12860  df-fz 13529  df-hash 14351
This theorem is referenced by:  erdszelem5  35134  erdszelem6  35135  erdszelem7  35136  erdszelem8  35137
  Copyright terms: Public domain W3C validator