Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdszelem2 Structured version   Visualization version   GIF version

Theorem erdszelem2 33054
Description: Lemma for erdsze 33064. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypothesis
Ref Expression
erdszelem1.1 𝑆 = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}
Assertion
Ref Expression
erdszelem2 ((♯ “ 𝑆) ∈ Fin ∧ (♯ “ 𝑆) ⊆ ℕ)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹   𝑦,𝑂
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem erdszelem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fzfi 13620 . . . . 5 (1...𝐴) ∈ Fin
2 pwfi 8923 . . . . 5 ((1...𝐴) ∈ Fin ↔ 𝒫 (1...𝐴) ∈ Fin)
31, 2mpbi 229 . . . 4 𝒫 (1...𝐴) ∈ Fin
4 erdszelem1.1 . . . . 5 𝑆 = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}
5 ssrab2 4009 . . . . 5 {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)} ⊆ 𝒫 (1...𝐴)
64, 5eqsstri 3951 . . . 4 𝑆 ⊆ 𝒫 (1...𝐴)
7 ssfi 8918 . . . 4 ((𝒫 (1...𝐴) ∈ Fin ∧ 𝑆 ⊆ 𝒫 (1...𝐴)) → 𝑆 ∈ Fin)
83, 6, 7mp2an 688 . . 3 𝑆 ∈ Fin
9 hashf 13980 . . . . 5 ♯:V⟶(ℕ0 ∪ {+∞})
10 ffun 6587 . . . . 5 (♯:V⟶(ℕ0 ∪ {+∞}) → Fun ♯)
119, 10ax-mp 5 . . . 4 Fun ♯
12 ssv 3941 . . . . 5 𝑆 ⊆ V
139fdmi 6596 . . . . 5 dom ♯ = V
1412, 13sseqtrri 3954 . . . 4 𝑆 ⊆ dom ♯
15 fores 6682 . . . 4 ((Fun ♯ ∧ 𝑆 ⊆ dom ♯) → (♯ ↾ 𝑆):𝑆onto→(♯ “ 𝑆))
1611, 14, 15mp2an 688 . . 3 (♯ ↾ 𝑆):𝑆onto→(♯ “ 𝑆)
17 fofi 9035 . . 3 ((𝑆 ∈ Fin ∧ (♯ ↾ 𝑆):𝑆onto→(♯ “ 𝑆)) → (♯ “ 𝑆) ∈ Fin)
188, 16, 17mp2an 688 . 2 (♯ “ 𝑆) ∈ Fin
19 funimass4 6816 . . . 4 ((Fun ♯ ∧ 𝑆 ⊆ dom ♯) → ((♯ “ 𝑆) ⊆ ℕ ↔ ∀𝑥𝑆 (♯‘𝑥) ∈ ℕ))
2011, 14, 19mp2an 688 . . 3 ((♯ “ 𝑆) ⊆ ℕ ↔ ∀𝑥𝑆 (♯‘𝑥) ∈ ℕ)
214erdszelem1 33053 . . . 4 (𝑥𝑆 ↔ (𝑥 ⊆ (1...𝐴) ∧ (𝐹𝑥) Isom < , 𝑂 (𝑥, (𝐹𝑥)) ∧ 𝐴𝑥))
22 ne0i 4265 . . . . . 6 (𝐴𝑥𝑥 ≠ ∅)
23223ad2ant3 1133 . . . . 5 ((𝑥 ⊆ (1...𝐴) ∧ (𝐹𝑥) Isom < , 𝑂 (𝑥, (𝐹𝑥)) ∧ 𝐴𝑥) → 𝑥 ≠ ∅)
24 simp1 1134 . . . . . . 7 ((𝑥 ⊆ (1...𝐴) ∧ (𝐹𝑥) Isom < , 𝑂 (𝑥, (𝐹𝑥)) ∧ 𝐴𝑥) → 𝑥 ⊆ (1...𝐴))
25 ssfi 8918 . . . . . . 7 (((1...𝐴) ∈ Fin ∧ 𝑥 ⊆ (1...𝐴)) → 𝑥 ∈ Fin)
261, 24, 25sylancr 586 . . . . . 6 ((𝑥 ⊆ (1...𝐴) ∧ (𝐹𝑥) Isom < , 𝑂 (𝑥, (𝐹𝑥)) ∧ 𝐴𝑥) → 𝑥 ∈ Fin)
27 hashnncl 14009 . . . . . 6 (𝑥 ∈ Fin → ((♯‘𝑥) ∈ ℕ ↔ 𝑥 ≠ ∅))
2826, 27syl 17 . . . . 5 ((𝑥 ⊆ (1...𝐴) ∧ (𝐹𝑥) Isom < , 𝑂 (𝑥, (𝐹𝑥)) ∧ 𝐴𝑥) → ((♯‘𝑥) ∈ ℕ ↔ 𝑥 ≠ ∅))
2923, 28mpbird 256 . . . 4 ((𝑥 ⊆ (1...𝐴) ∧ (𝐹𝑥) Isom < , 𝑂 (𝑥, (𝐹𝑥)) ∧ 𝐴𝑥) → (♯‘𝑥) ∈ ℕ)
3021, 29sylbi 216 . . 3 (𝑥𝑆 → (♯‘𝑥) ∈ ℕ)
3120, 30mprgbir 3078 . 2 (♯ “ 𝑆) ⊆ ℕ
3218, 31pm3.2i 470 1 ((♯ “ 𝑆) ∈ Fin ∧ (♯ “ 𝑆) ⊆ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  {crab 3067  Vcvv 3422  cun 3881  wss 3883  c0 4253  𝒫 cpw 4530  {csn 4558  dom cdm 5580  cres 5582  cima 5583  Fun wfun 6412  wf 6414  ontowfo 6416  cfv 6418   Isom wiso 6419  (class class class)co 7255  Fincfn 8691  1c1 10803  +∞cpnf 10937   < clt 10940  cn 11903  0cn0 12163  ...cfz 13168  chash 13972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-hash 13973
This theorem is referenced by:  erdszelem5  33057  erdszelem6  33058  erdszelem7  33059  erdszelem8  33060
  Copyright terms: Public domain W3C validator