| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > erdszelem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for erdsze 35189. (Contributed by Mario Carneiro, 22-Jan-2015.) |
| Ref | Expression |
|---|---|
| erdszelem1.1 | ⊢ 𝑆 = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} |
| Ref | Expression |
|---|---|
| erdszelem2 | ⊢ ((♯ “ 𝑆) ∈ Fin ∧ (♯ “ 𝑆) ⊆ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzfi 13937 | . . . . 5 ⊢ (1...𝐴) ∈ Fin | |
| 2 | pwfi 9268 | . . . . 5 ⊢ ((1...𝐴) ∈ Fin ↔ 𝒫 (1...𝐴) ∈ Fin) | |
| 3 | 1, 2 | mpbi 230 | . . . 4 ⊢ 𝒫 (1...𝐴) ∈ Fin |
| 4 | erdszelem1.1 | . . . . 5 ⊢ 𝑆 = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} | |
| 5 | ssrab2 4043 | . . . . 5 ⊢ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} ⊆ 𝒫 (1...𝐴) | |
| 6 | 4, 5 | eqsstri 3993 | . . . 4 ⊢ 𝑆 ⊆ 𝒫 (1...𝐴) |
| 7 | ssfi 9137 | . . . 4 ⊢ ((𝒫 (1...𝐴) ∈ Fin ∧ 𝑆 ⊆ 𝒫 (1...𝐴)) → 𝑆 ∈ Fin) | |
| 8 | 3, 6, 7 | mp2an 692 | . . 3 ⊢ 𝑆 ∈ Fin |
| 9 | hashf 14303 | . . . . 5 ⊢ ♯:V⟶(ℕ0 ∪ {+∞}) | |
| 10 | ffun 6691 | . . . . 5 ⊢ (♯:V⟶(ℕ0 ∪ {+∞}) → Fun ♯) | |
| 11 | 9, 10 | ax-mp 5 | . . . 4 ⊢ Fun ♯ |
| 12 | ssv 3971 | . . . . 5 ⊢ 𝑆 ⊆ V | |
| 13 | 9 | fdmi 6699 | . . . . 5 ⊢ dom ♯ = V |
| 14 | 12, 13 | sseqtrri 3996 | . . . 4 ⊢ 𝑆 ⊆ dom ♯ |
| 15 | fores 6782 | . . . 4 ⊢ ((Fun ♯ ∧ 𝑆 ⊆ dom ♯) → (♯ ↾ 𝑆):𝑆–onto→(♯ “ 𝑆)) | |
| 16 | 11, 14, 15 | mp2an 692 | . . 3 ⊢ (♯ ↾ 𝑆):𝑆–onto→(♯ “ 𝑆) |
| 17 | fofi 9262 | . . 3 ⊢ ((𝑆 ∈ Fin ∧ (♯ ↾ 𝑆):𝑆–onto→(♯ “ 𝑆)) → (♯ “ 𝑆) ∈ Fin) | |
| 18 | 8, 16, 17 | mp2an 692 | . 2 ⊢ (♯ “ 𝑆) ∈ Fin |
| 19 | funimass4 6925 | . . . 4 ⊢ ((Fun ♯ ∧ 𝑆 ⊆ dom ♯) → ((♯ “ 𝑆) ⊆ ℕ ↔ ∀𝑥 ∈ 𝑆 (♯‘𝑥) ∈ ℕ)) | |
| 20 | 11, 14, 19 | mp2an 692 | . . 3 ⊢ ((♯ “ 𝑆) ⊆ ℕ ↔ ∀𝑥 ∈ 𝑆 (♯‘𝑥) ∈ ℕ) |
| 21 | 4 | erdszelem1 35178 | . . . 4 ⊢ (𝑥 ∈ 𝑆 ↔ (𝑥 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑥) Isom < , 𝑂 (𝑥, (𝐹 “ 𝑥)) ∧ 𝐴 ∈ 𝑥)) |
| 22 | ne0i 4304 | . . . . . 6 ⊢ (𝐴 ∈ 𝑥 → 𝑥 ≠ ∅) | |
| 23 | 22 | 3ad2ant3 1135 | . . . . 5 ⊢ ((𝑥 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑥) Isom < , 𝑂 (𝑥, (𝐹 “ 𝑥)) ∧ 𝐴 ∈ 𝑥) → 𝑥 ≠ ∅) |
| 24 | simp1 1136 | . . . . . . 7 ⊢ ((𝑥 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑥) Isom < , 𝑂 (𝑥, (𝐹 “ 𝑥)) ∧ 𝐴 ∈ 𝑥) → 𝑥 ⊆ (1...𝐴)) | |
| 25 | ssfi 9137 | . . . . . . 7 ⊢ (((1...𝐴) ∈ Fin ∧ 𝑥 ⊆ (1...𝐴)) → 𝑥 ∈ Fin) | |
| 26 | 1, 24, 25 | sylancr 587 | . . . . . 6 ⊢ ((𝑥 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑥) Isom < , 𝑂 (𝑥, (𝐹 “ 𝑥)) ∧ 𝐴 ∈ 𝑥) → 𝑥 ∈ Fin) |
| 27 | hashnncl 14331 | . . . . . 6 ⊢ (𝑥 ∈ Fin → ((♯‘𝑥) ∈ ℕ ↔ 𝑥 ≠ ∅)) | |
| 28 | 26, 27 | syl 17 | . . . . 5 ⊢ ((𝑥 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑥) Isom < , 𝑂 (𝑥, (𝐹 “ 𝑥)) ∧ 𝐴 ∈ 𝑥) → ((♯‘𝑥) ∈ ℕ ↔ 𝑥 ≠ ∅)) |
| 29 | 23, 28 | mpbird 257 | . . . 4 ⊢ ((𝑥 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑥) Isom < , 𝑂 (𝑥, (𝐹 “ 𝑥)) ∧ 𝐴 ∈ 𝑥) → (♯‘𝑥) ∈ ℕ) |
| 30 | 21, 29 | sylbi 217 | . . 3 ⊢ (𝑥 ∈ 𝑆 → (♯‘𝑥) ∈ ℕ) |
| 31 | 20, 30 | mprgbir 3051 | . 2 ⊢ (♯ “ 𝑆) ⊆ ℕ |
| 32 | 18, 31 | pm3.2i 470 | 1 ⊢ ((♯ “ 𝑆) ∈ Fin ∧ (♯ “ 𝑆) ⊆ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 {crab 3405 Vcvv 3447 ∪ cun 3912 ⊆ wss 3914 ∅c0 4296 𝒫 cpw 4563 {csn 4589 dom cdm 5638 ↾ cres 5640 “ cima 5641 Fun wfun 6505 ⟶wf 6507 –onto→wfo 6509 ‘cfv 6511 Isom wiso 6512 (class class class)co 7387 Fincfn 8918 1c1 11069 +∞cpnf 11205 < clt 11208 ℕcn 12186 ℕ0cn0 12442 ...cfz 13468 ♯chash 14295 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-xnn0 12516 df-z 12530 df-uz 12794 df-fz 13469 df-hash 14296 |
| This theorem is referenced by: erdszelem5 35182 erdszelem6 35183 erdszelem7 35184 erdszelem8 35185 |
| Copyright terms: Public domain | W3C validator |