| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > erdszelem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for erdsze 35191. (Contributed by Mario Carneiro, 22-Jan-2015.) |
| Ref | Expression |
|---|---|
| erdszelem1.1 | ⊢ 𝑆 = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} |
| Ref | Expression |
|---|---|
| erdszelem2 | ⊢ ((♯ “ 𝑆) ∈ Fin ∧ (♯ “ 𝑆) ⊆ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzfi 13947 | . . . . 5 ⊢ (1...𝐴) ∈ Fin | |
| 2 | pwfi 9286 | . . . . 5 ⊢ ((1...𝐴) ∈ Fin ↔ 𝒫 (1...𝐴) ∈ Fin) | |
| 3 | 1, 2 | mpbi 230 | . . . 4 ⊢ 𝒫 (1...𝐴) ∈ Fin |
| 4 | erdszelem1.1 | . . . . 5 ⊢ 𝑆 = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} | |
| 5 | ssrab2 4051 | . . . . 5 ⊢ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} ⊆ 𝒫 (1...𝐴) | |
| 6 | 4, 5 | eqsstri 4001 | . . . 4 ⊢ 𝑆 ⊆ 𝒫 (1...𝐴) |
| 7 | ssfi 9150 | . . . 4 ⊢ ((𝒫 (1...𝐴) ∈ Fin ∧ 𝑆 ⊆ 𝒫 (1...𝐴)) → 𝑆 ∈ Fin) | |
| 8 | 3, 6, 7 | mp2an 692 | . . 3 ⊢ 𝑆 ∈ Fin |
| 9 | hashf 14313 | . . . . 5 ⊢ ♯:V⟶(ℕ0 ∪ {+∞}) | |
| 10 | ffun 6698 | . . . . 5 ⊢ (♯:V⟶(ℕ0 ∪ {+∞}) → Fun ♯) | |
| 11 | 9, 10 | ax-mp 5 | . . . 4 ⊢ Fun ♯ |
| 12 | ssv 3979 | . . . . 5 ⊢ 𝑆 ⊆ V | |
| 13 | 9 | fdmi 6706 | . . . . 5 ⊢ dom ♯ = V |
| 14 | 12, 13 | sseqtrri 4004 | . . . 4 ⊢ 𝑆 ⊆ dom ♯ |
| 15 | fores 6789 | . . . 4 ⊢ ((Fun ♯ ∧ 𝑆 ⊆ dom ♯) → (♯ ↾ 𝑆):𝑆–onto→(♯ “ 𝑆)) | |
| 16 | 11, 14, 15 | mp2an 692 | . . 3 ⊢ (♯ ↾ 𝑆):𝑆–onto→(♯ “ 𝑆) |
| 17 | fofi 9280 | . . 3 ⊢ ((𝑆 ∈ Fin ∧ (♯ ↾ 𝑆):𝑆–onto→(♯ “ 𝑆)) → (♯ “ 𝑆) ∈ Fin) | |
| 18 | 8, 16, 17 | mp2an 692 | . 2 ⊢ (♯ “ 𝑆) ∈ Fin |
| 19 | funimass4 6932 | . . . 4 ⊢ ((Fun ♯ ∧ 𝑆 ⊆ dom ♯) → ((♯ “ 𝑆) ⊆ ℕ ↔ ∀𝑥 ∈ 𝑆 (♯‘𝑥) ∈ ℕ)) | |
| 20 | 11, 14, 19 | mp2an 692 | . . 3 ⊢ ((♯ “ 𝑆) ⊆ ℕ ↔ ∀𝑥 ∈ 𝑆 (♯‘𝑥) ∈ ℕ) |
| 21 | 4 | erdszelem1 35180 | . . . 4 ⊢ (𝑥 ∈ 𝑆 ↔ (𝑥 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑥) Isom < , 𝑂 (𝑥, (𝐹 “ 𝑥)) ∧ 𝐴 ∈ 𝑥)) |
| 22 | ne0i 4312 | . . . . . 6 ⊢ (𝐴 ∈ 𝑥 → 𝑥 ≠ ∅) | |
| 23 | 22 | 3ad2ant3 1135 | . . . . 5 ⊢ ((𝑥 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑥) Isom < , 𝑂 (𝑥, (𝐹 “ 𝑥)) ∧ 𝐴 ∈ 𝑥) → 𝑥 ≠ ∅) |
| 24 | simp1 1136 | . . . . . . 7 ⊢ ((𝑥 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑥) Isom < , 𝑂 (𝑥, (𝐹 “ 𝑥)) ∧ 𝐴 ∈ 𝑥) → 𝑥 ⊆ (1...𝐴)) | |
| 25 | ssfi 9150 | . . . . . . 7 ⊢ (((1...𝐴) ∈ Fin ∧ 𝑥 ⊆ (1...𝐴)) → 𝑥 ∈ Fin) | |
| 26 | 1, 24, 25 | sylancr 587 | . . . . . 6 ⊢ ((𝑥 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑥) Isom < , 𝑂 (𝑥, (𝐹 “ 𝑥)) ∧ 𝐴 ∈ 𝑥) → 𝑥 ∈ Fin) |
| 27 | hashnncl 14341 | . . . . . 6 ⊢ (𝑥 ∈ Fin → ((♯‘𝑥) ∈ ℕ ↔ 𝑥 ≠ ∅)) | |
| 28 | 26, 27 | syl 17 | . . . . 5 ⊢ ((𝑥 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑥) Isom < , 𝑂 (𝑥, (𝐹 “ 𝑥)) ∧ 𝐴 ∈ 𝑥) → ((♯‘𝑥) ∈ ℕ ↔ 𝑥 ≠ ∅)) |
| 29 | 23, 28 | mpbird 257 | . . . 4 ⊢ ((𝑥 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑥) Isom < , 𝑂 (𝑥, (𝐹 “ 𝑥)) ∧ 𝐴 ∈ 𝑥) → (♯‘𝑥) ∈ ℕ) |
| 30 | 21, 29 | sylbi 217 | . . 3 ⊢ (𝑥 ∈ 𝑆 → (♯‘𝑥) ∈ ℕ) |
| 31 | 20, 30 | mprgbir 3053 | . 2 ⊢ (♯ “ 𝑆) ⊆ ℕ |
| 32 | 18, 31 | pm3.2i 470 | 1 ⊢ ((♯ “ 𝑆) ∈ Fin ∧ (♯ “ 𝑆) ⊆ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2927 ∀wral 3046 {crab 3411 Vcvv 3455 ∪ cun 3920 ⊆ wss 3922 ∅c0 4304 𝒫 cpw 4571 {csn 4597 dom cdm 5646 ↾ cres 5648 “ cima 5649 Fun wfun 6513 ⟶wf 6515 –onto→wfo 6517 ‘cfv 6519 Isom wiso 6520 (class class class)co 7394 Fincfn 8922 1c1 11087 +∞cpnf 11223 < clt 11226 ℕcn 12197 ℕ0cn0 12458 ...cfz 13481 ♯chash 14305 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-isom 6528 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-card 9910 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-n0 12459 df-xnn0 12532 df-z 12546 df-uz 12810 df-fz 13482 df-hash 14306 |
| This theorem is referenced by: erdszelem5 35184 erdszelem6 35185 erdszelem7 35186 erdszelem8 35187 |
| Copyright terms: Public domain | W3C validator |