Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > erdszelem2 | Structured version Visualization version GIF version |
Description: Lemma for erdsze 33064. (Contributed by Mario Carneiro, 22-Jan-2015.) |
Ref | Expression |
---|---|
erdszelem1.1 | ⊢ 𝑆 = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} |
Ref | Expression |
---|---|
erdszelem2 | ⊢ ((♯ “ 𝑆) ∈ Fin ∧ (♯ “ 𝑆) ⊆ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzfi 13620 | . . . . 5 ⊢ (1...𝐴) ∈ Fin | |
2 | pwfi 8923 | . . . . 5 ⊢ ((1...𝐴) ∈ Fin ↔ 𝒫 (1...𝐴) ∈ Fin) | |
3 | 1, 2 | mpbi 229 | . . . 4 ⊢ 𝒫 (1...𝐴) ∈ Fin |
4 | erdszelem1.1 | . . . . 5 ⊢ 𝑆 = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} | |
5 | ssrab2 4009 | . . . . 5 ⊢ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} ⊆ 𝒫 (1...𝐴) | |
6 | 4, 5 | eqsstri 3951 | . . . 4 ⊢ 𝑆 ⊆ 𝒫 (1...𝐴) |
7 | ssfi 8918 | . . . 4 ⊢ ((𝒫 (1...𝐴) ∈ Fin ∧ 𝑆 ⊆ 𝒫 (1...𝐴)) → 𝑆 ∈ Fin) | |
8 | 3, 6, 7 | mp2an 688 | . . 3 ⊢ 𝑆 ∈ Fin |
9 | hashf 13980 | . . . . 5 ⊢ ♯:V⟶(ℕ0 ∪ {+∞}) | |
10 | ffun 6587 | . . . . 5 ⊢ (♯:V⟶(ℕ0 ∪ {+∞}) → Fun ♯) | |
11 | 9, 10 | ax-mp 5 | . . . 4 ⊢ Fun ♯ |
12 | ssv 3941 | . . . . 5 ⊢ 𝑆 ⊆ V | |
13 | 9 | fdmi 6596 | . . . . 5 ⊢ dom ♯ = V |
14 | 12, 13 | sseqtrri 3954 | . . . 4 ⊢ 𝑆 ⊆ dom ♯ |
15 | fores 6682 | . . . 4 ⊢ ((Fun ♯ ∧ 𝑆 ⊆ dom ♯) → (♯ ↾ 𝑆):𝑆–onto→(♯ “ 𝑆)) | |
16 | 11, 14, 15 | mp2an 688 | . . 3 ⊢ (♯ ↾ 𝑆):𝑆–onto→(♯ “ 𝑆) |
17 | fofi 9035 | . . 3 ⊢ ((𝑆 ∈ Fin ∧ (♯ ↾ 𝑆):𝑆–onto→(♯ “ 𝑆)) → (♯ “ 𝑆) ∈ Fin) | |
18 | 8, 16, 17 | mp2an 688 | . 2 ⊢ (♯ “ 𝑆) ∈ Fin |
19 | funimass4 6816 | . . . 4 ⊢ ((Fun ♯ ∧ 𝑆 ⊆ dom ♯) → ((♯ “ 𝑆) ⊆ ℕ ↔ ∀𝑥 ∈ 𝑆 (♯‘𝑥) ∈ ℕ)) | |
20 | 11, 14, 19 | mp2an 688 | . . 3 ⊢ ((♯ “ 𝑆) ⊆ ℕ ↔ ∀𝑥 ∈ 𝑆 (♯‘𝑥) ∈ ℕ) |
21 | 4 | erdszelem1 33053 | . . . 4 ⊢ (𝑥 ∈ 𝑆 ↔ (𝑥 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑥) Isom < , 𝑂 (𝑥, (𝐹 “ 𝑥)) ∧ 𝐴 ∈ 𝑥)) |
22 | ne0i 4265 | . . . . . 6 ⊢ (𝐴 ∈ 𝑥 → 𝑥 ≠ ∅) | |
23 | 22 | 3ad2ant3 1133 | . . . . 5 ⊢ ((𝑥 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑥) Isom < , 𝑂 (𝑥, (𝐹 “ 𝑥)) ∧ 𝐴 ∈ 𝑥) → 𝑥 ≠ ∅) |
24 | simp1 1134 | . . . . . . 7 ⊢ ((𝑥 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑥) Isom < , 𝑂 (𝑥, (𝐹 “ 𝑥)) ∧ 𝐴 ∈ 𝑥) → 𝑥 ⊆ (1...𝐴)) | |
25 | ssfi 8918 | . . . . . . 7 ⊢ (((1...𝐴) ∈ Fin ∧ 𝑥 ⊆ (1...𝐴)) → 𝑥 ∈ Fin) | |
26 | 1, 24, 25 | sylancr 586 | . . . . . 6 ⊢ ((𝑥 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑥) Isom < , 𝑂 (𝑥, (𝐹 “ 𝑥)) ∧ 𝐴 ∈ 𝑥) → 𝑥 ∈ Fin) |
27 | hashnncl 14009 | . . . . . 6 ⊢ (𝑥 ∈ Fin → ((♯‘𝑥) ∈ ℕ ↔ 𝑥 ≠ ∅)) | |
28 | 26, 27 | syl 17 | . . . . 5 ⊢ ((𝑥 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑥) Isom < , 𝑂 (𝑥, (𝐹 “ 𝑥)) ∧ 𝐴 ∈ 𝑥) → ((♯‘𝑥) ∈ ℕ ↔ 𝑥 ≠ ∅)) |
29 | 23, 28 | mpbird 256 | . . . 4 ⊢ ((𝑥 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑥) Isom < , 𝑂 (𝑥, (𝐹 “ 𝑥)) ∧ 𝐴 ∈ 𝑥) → (♯‘𝑥) ∈ ℕ) |
30 | 21, 29 | sylbi 216 | . . 3 ⊢ (𝑥 ∈ 𝑆 → (♯‘𝑥) ∈ ℕ) |
31 | 20, 30 | mprgbir 3078 | . 2 ⊢ (♯ “ 𝑆) ⊆ ℕ |
32 | 18, 31 | pm3.2i 470 | 1 ⊢ ((♯ “ 𝑆) ∈ Fin ∧ (♯ “ 𝑆) ⊆ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 {crab 3067 Vcvv 3422 ∪ cun 3881 ⊆ wss 3883 ∅c0 4253 𝒫 cpw 4530 {csn 4558 dom cdm 5580 ↾ cres 5582 “ cima 5583 Fun wfun 6412 ⟶wf 6414 –onto→wfo 6416 ‘cfv 6418 Isom wiso 6419 (class class class)co 7255 Fincfn 8691 1c1 10803 +∞cpnf 10937 < clt 10940 ℕcn 11903 ℕ0cn0 12163 ...cfz 13168 ♯chash 13972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-fz 13169 df-hash 13973 |
This theorem is referenced by: erdszelem5 33057 erdszelem6 33058 erdszelem7 33059 erdszelem8 33060 |
Copyright terms: Public domain | W3C validator |