![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > erdszelem2 | Structured version Visualization version GIF version |
Description: Lemma for erdsze 35172. (Contributed by Mario Carneiro, 22-Jan-2015.) |
Ref | Expression |
---|---|
erdszelem1.1 | ⊢ 𝑆 = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} |
Ref | Expression |
---|---|
erdszelem2 | ⊢ ((♯ “ 𝑆) ∈ Fin ∧ (♯ “ 𝑆) ⊆ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzfi 14025 | . . . . 5 ⊢ (1...𝐴) ∈ Fin | |
2 | pwfi 9387 | . . . . 5 ⊢ ((1...𝐴) ∈ Fin ↔ 𝒫 (1...𝐴) ∈ Fin) | |
3 | 1, 2 | mpbi 230 | . . . 4 ⊢ 𝒫 (1...𝐴) ∈ Fin |
4 | erdszelem1.1 | . . . . 5 ⊢ 𝑆 = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} | |
5 | ssrab2 4103 | . . . . 5 ⊢ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} ⊆ 𝒫 (1...𝐴) | |
6 | 4, 5 | eqsstri 4043 | . . . 4 ⊢ 𝑆 ⊆ 𝒫 (1...𝐴) |
7 | ssfi 9242 | . . . 4 ⊢ ((𝒫 (1...𝐴) ∈ Fin ∧ 𝑆 ⊆ 𝒫 (1...𝐴)) → 𝑆 ∈ Fin) | |
8 | 3, 6, 7 | mp2an 691 | . . 3 ⊢ 𝑆 ∈ Fin |
9 | hashf 14389 | . . . . 5 ⊢ ♯:V⟶(ℕ0 ∪ {+∞}) | |
10 | ffun 6752 | . . . . 5 ⊢ (♯:V⟶(ℕ0 ∪ {+∞}) → Fun ♯) | |
11 | 9, 10 | ax-mp 5 | . . . 4 ⊢ Fun ♯ |
12 | ssv 4033 | . . . . 5 ⊢ 𝑆 ⊆ V | |
13 | 9 | fdmi 6760 | . . . . 5 ⊢ dom ♯ = V |
14 | 12, 13 | sseqtrri 4046 | . . . 4 ⊢ 𝑆 ⊆ dom ♯ |
15 | fores 6846 | . . . 4 ⊢ ((Fun ♯ ∧ 𝑆 ⊆ dom ♯) → (♯ ↾ 𝑆):𝑆–onto→(♯ “ 𝑆)) | |
16 | 11, 14, 15 | mp2an 691 | . . 3 ⊢ (♯ ↾ 𝑆):𝑆–onto→(♯ “ 𝑆) |
17 | fofi 9381 | . . 3 ⊢ ((𝑆 ∈ Fin ∧ (♯ ↾ 𝑆):𝑆–onto→(♯ “ 𝑆)) → (♯ “ 𝑆) ∈ Fin) | |
18 | 8, 16, 17 | mp2an 691 | . 2 ⊢ (♯ “ 𝑆) ∈ Fin |
19 | funimass4 6988 | . . . 4 ⊢ ((Fun ♯ ∧ 𝑆 ⊆ dom ♯) → ((♯ “ 𝑆) ⊆ ℕ ↔ ∀𝑥 ∈ 𝑆 (♯‘𝑥) ∈ ℕ)) | |
20 | 11, 14, 19 | mp2an 691 | . . 3 ⊢ ((♯ “ 𝑆) ⊆ ℕ ↔ ∀𝑥 ∈ 𝑆 (♯‘𝑥) ∈ ℕ) |
21 | 4 | erdszelem1 35161 | . . . 4 ⊢ (𝑥 ∈ 𝑆 ↔ (𝑥 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑥) Isom < , 𝑂 (𝑥, (𝐹 “ 𝑥)) ∧ 𝐴 ∈ 𝑥)) |
22 | ne0i 4364 | . . . . . 6 ⊢ (𝐴 ∈ 𝑥 → 𝑥 ≠ ∅) | |
23 | 22 | 3ad2ant3 1135 | . . . . 5 ⊢ ((𝑥 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑥) Isom < , 𝑂 (𝑥, (𝐹 “ 𝑥)) ∧ 𝐴 ∈ 𝑥) → 𝑥 ≠ ∅) |
24 | simp1 1136 | . . . . . . 7 ⊢ ((𝑥 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑥) Isom < , 𝑂 (𝑥, (𝐹 “ 𝑥)) ∧ 𝐴 ∈ 𝑥) → 𝑥 ⊆ (1...𝐴)) | |
25 | ssfi 9242 | . . . . . . 7 ⊢ (((1...𝐴) ∈ Fin ∧ 𝑥 ⊆ (1...𝐴)) → 𝑥 ∈ Fin) | |
26 | 1, 24, 25 | sylancr 586 | . . . . . 6 ⊢ ((𝑥 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑥) Isom < , 𝑂 (𝑥, (𝐹 “ 𝑥)) ∧ 𝐴 ∈ 𝑥) → 𝑥 ∈ Fin) |
27 | hashnncl 14417 | . . . . . 6 ⊢ (𝑥 ∈ Fin → ((♯‘𝑥) ∈ ℕ ↔ 𝑥 ≠ ∅)) | |
28 | 26, 27 | syl 17 | . . . . 5 ⊢ ((𝑥 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑥) Isom < , 𝑂 (𝑥, (𝐹 “ 𝑥)) ∧ 𝐴 ∈ 𝑥) → ((♯‘𝑥) ∈ ℕ ↔ 𝑥 ≠ ∅)) |
29 | 23, 28 | mpbird 257 | . . . 4 ⊢ ((𝑥 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑥) Isom < , 𝑂 (𝑥, (𝐹 “ 𝑥)) ∧ 𝐴 ∈ 𝑥) → (♯‘𝑥) ∈ ℕ) |
30 | 21, 29 | sylbi 217 | . . 3 ⊢ (𝑥 ∈ 𝑆 → (♯‘𝑥) ∈ ℕ) |
31 | 20, 30 | mprgbir 3074 | . 2 ⊢ (♯ “ 𝑆) ⊆ ℕ |
32 | 18, 31 | pm3.2i 470 | 1 ⊢ ((♯ “ 𝑆) ∈ Fin ∧ (♯ “ 𝑆) ⊆ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 {crab 3443 Vcvv 3488 ∪ cun 3974 ⊆ wss 3976 ∅c0 4352 𝒫 cpw 4622 {csn 4648 dom cdm 5700 ↾ cres 5702 “ cima 5703 Fun wfun 6569 ⟶wf 6571 –onto→wfo 6573 ‘cfv 6575 Isom wiso 6576 (class class class)co 7450 Fincfn 9005 1c1 11187 +∞cpnf 11323 < clt 11326 ℕcn 12295 ℕ0cn0 12555 ...cfz 13569 ♯chash 14381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 ax-pre-mulgt0 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-isom 6584 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-om 7906 df-1st 8032 df-2nd 8033 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-1o 8524 df-er 8765 df-en 9006 df-dom 9007 df-sdom 9008 df-fin 9009 df-card 10010 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-sub 11524 df-neg 11525 df-nn 12296 df-n0 12556 df-xnn0 12628 df-z 12642 df-uz 12906 df-fz 13570 df-hash 14382 |
This theorem is referenced by: erdszelem5 35165 erdszelem6 35166 erdszelem7 35167 erdszelem8 35168 |
Copyright terms: Public domain | W3C validator |