![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > derangfmla | Structured version Visualization version GIF version |
Description: The derangements formula, which expresses the number of derangements of a finite nonempty set in terms of the factorial. The expression ⌊‘(𝑥 + 1 / 2) is a way of saying "rounded to the nearest integer". This is part of Metamath 100 proof #88. (Contributed by Mario Carneiro, 23-Jan-2015.) |
Ref | Expression |
---|---|
derangfmla.d | ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) |
Ref | Expression |
---|---|
derangfmla | ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (𝐷‘𝐴) = (⌊‘(((!‘(♯‘𝐴)) / e) + (1 / 2)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | derangfmla.d | . . . 4 ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) | |
2 | oveq2 7413 | . . . . . 6 ⊢ (𝑛 = 𝑚 → (1...𝑛) = (1...𝑚)) | |
3 | 2 | fveq2d 6892 | . . . . 5 ⊢ (𝑛 = 𝑚 → (𝐷‘(1...𝑛)) = (𝐷‘(1...𝑚))) |
4 | 3 | cbvmptv 5260 | . . . 4 ⊢ (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) = (𝑚 ∈ ℕ0 ↦ (𝐷‘(1...𝑚))) |
5 | 1, 4 | derangen2 34153 | . . 3 ⊢ (𝐴 ∈ Fin → (𝐷‘𝐴) = ((𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))‘(♯‘𝐴))) |
6 | 5 | adantr 481 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (𝐷‘𝐴) = ((𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))‘(♯‘𝐴))) |
7 | hashnncl 14322 | . . . 4 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅)) | |
8 | 7 | biimpar 478 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (♯‘𝐴) ∈ ℕ) |
9 | 1, 4 | subfacval3 34168 | . . 3 ⊢ ((♯‘𝐴) ∈ ℕ → ((𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))‘(♯‘𝐴)) = (⌊‘(((!‘(♯‘𝐴)) / e) + (1 / 2)))) |
10 | 8, 9 | syl 17 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ((𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))‘(♯‘𝐴)) = (⌊‘(((!‘(♯‘𝐴)) / e) + (1 / 2)))) |
11 | 6, 10 | eqtrd 2772 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (𝐷‘𝐴) = (⌊‘(((!‘(♯‘𝐴)) / e) + (1 / 2)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 {cab 2709 ≠ wne 2940 ∀wral 3061 ∅c0 4321 ↦ cmpt 5230 –1-1-onto→wf1o 6539 ‘cfv 6540 (class class class)co 7405 Fincfn 8935 1c1 11107 + caddc 11109 / cdiv 11867 ℕcn 12208 2c2 12263 ℕ0cn0 12468 ...cfz 13480 ⌊cfl 13751 !cfa 14229 ♯chash 14286 eceu 16002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-oadd 8466 df-er 8699 df-map 8818 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-oi 9501 df-dju 9892 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-n0 12469 df-xnn0 12541 df-z 12555 df-uz 12819 df-q 12929 df-rp 12971 df-ico 13326 df-fz 13481 df-fzo 13624 df-fl 13753 df-seq 13963 df-exp 14024 df-fac 14230 df-bc 14259 df-hash 14287 df-shft 15010 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-limsup 15411 df-clim 15428 df-rlim 15429 df-sum 15629 df-ef 16007 df-e 16008 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |