| Step | Hyp | Ref
| Expression |
| 1 | | eufnfv.1 |
. . . . 5
⊢ 𝐴 ∈ V |
| 2 | 1 | mptex 7220 |
. . . 4
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V |
| 3 | | eqeq2 2748 |
. . . . . 6
⊢ (𝑧 = (𝑥 ∈ 𝐴 ↦ 𝐵) → (𝑓 = 𝑧 ↔ 𝑓 = (𝑥 ∈ 𝐴 ↦ 𝐵))) |
| 4 | 3 | bibi2d 342 |
. . . . 5
⊢ (𝑧 = (𝑥 ∈ 𝐴 ↦ 𝐵) → (((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 𝐵) ↔ 𝑓 = 𝑧) ↔ ((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 𝐵) ↔ 𝑓 = (𝑥 ∈ 𝐴 ↦ 𝐵)))) |
| 5 | 4 | albidv 1920 |
. . . 4
⊢ (𝑧 = (𝑥 ∈ 𝐴 ↦ 𝐵) → (∀𝑓((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 𝐵) ↔ 𝑓 = 𝑧) ↔ ∀𝑓((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 𝐵) ↔ 𝑓 = (𝑥 ∈ 𝐴 ↦ 𝐵)))) |
| 6 | 2, 5 | spcev 3590 |
. . 3
⊢
(∀𝑓((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 𝐵) ↔ 𝑓 = (𝑥 ∈ 𝐴 ↦ 𝐵)) → ∃𝑧∀𝑓((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 𝐵) ↔ 𝑓 = 𝑧)) |
| 7 | | eufnfv.2 |
. . . . . . 7
⊢ 𝐵 ∈ V |
| 8 | | eqid 2736 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| 9 | 7, 8 | fnmpti 6686 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴 |
| 10 | | fneq1 6634 |
. . . . . 6
⊢ (𝑓 = (𝑥 ∈ 𝐴 ↦ 𝐵) → (𝑓 Fn 𝐴 ↔ (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴)) |
| 11 | 9, 10 | mpbiri 258 |
. . . . 5
⊢ (𝑓 = (𝑥 ∈ 𝐴 ↦ 𝐵) → 𝑓 Fn 𝐴) |
| 12 | 11 | pm4.71ri 560 |
. . . 4
⊢ (𝑓 = (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ (𝑓 Fn 𝐴 ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ 𝐵))) |
| 13 | | dffn5 6942 |
. . . . . . 7
⊢ (𝑓 Fn 𝐴 ↔ 𝑓 = (𝑥 ∈ 𝐴 ↦ (𝑓‘𝑥))) |
| 14 | | eqeq1 2740 |
. . . . . . 7
⊢ (𝑓 = (𝑥 ∈ 𝐴 ↦ (𝑓‘𝑥)) → (𝑓 = (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ (𝑥 ∈ 𝐴 ↦ (𝑓‘𝑥)) = (𝑥 ∈ 𝐴 ↦ 𝐵))) |
| 15 | 13, 14 | sylbi 217 |
. . . . . 6
⊢ (𝑓 Fn 𝐴 → (𝑓 = (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ (𝑥 ∈ 𝐴 ↦ (𝑓‘𝑥)) = (𝑥 ∈ 𝐴 ↦ 𝐵))) |
| 16 | | fvex 6894 |
. . . . . . . 8
⊢ (𝑓‘𝑥) ∈ V |
| 17 | 16 | rgenw 3056 |
. . . . . . 7
⊢
∀𝑥 ∈
𝐴 (𝑓‘𝑥) ∈ V |
| 18 | | mpteqb 7010 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 (𝑓‘𝑥) ∈ V → ((𝑥 ∈ 𝐴 ↦ (𝑓‘𝑥)) = (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 𝐵)) |
| 19 | 17, 18 | ax-mp 5 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ↦ (𝑓‘𝑥)) = (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 𝐵) |
| 20 | 15, 19 | bitrdi 287 |
. . . . 5
⊢ (𝑓 Fn 𝐴 → (𝑓 = (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 𝐵)) |
| 21 | 20 | pm5.32i 574 |
. . . 4
⊢ ((𝑓 Fn 𝐴 ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ 𝐵)) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 𝐵)) |
| 22 | 12, 21 | bitr2i 276 |
. . 3
⊢ ((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 𝐵) ↔ 𝑓 = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 23 | 6, 22 | mpg 1797 |
. 2
⊢
∃𝑧∀𝑓((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 𝐵) ↔ 𝑓 = 𝑧) |
| 24 | | eu6 2574 |
. 2
⊢
(∃!𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 𝐵) ↔ ∃𝑧∀𝑓((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 𝐵) ↔ 𝑓 = 𝑧)) |
| 25 | 23, 24 | mpbir 231 |
1
⊢
∃!𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 𝐵) |