MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eufnfv Structured version   Visualization version   GIF version

Theorem eufnfv 7087
Description: A function is uniquely determined by its values. (Contributed by NM, 31-Aug-2011.)
Hypotheses
Ref Expression
eufnfv.1 𝐴 ∈ V
eufnfv.2 𝐵 ∈ V
Assertion
Ref Expression
eufnfv ∃!𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵)
Distinct variable groups:   𝑥,𝑓,𝐴   𝐵,𝑓
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem eufnfv
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eufnfv.1 . . . . 5 𝐴 ∈ V
21mptex 7081 . . . 4 (𝑥𝐴𝐵) ∈ V
3 eqeq2 2750 . . . . . 6 (𝑧 = (𝑥𝐴𝐵) → (𝑓 = 𝑧𝑓 = (𝑥𝐴𝐵)))
43bibi2d 342 . . . . 5 (𝑧 = (𝑥𝐴𝐵) → (((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ 𝑓 = 𝑧) ↔ ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ 𝑓 = (𝑥𝐴𝐵))))
54albidv 1924 . . . 4 (𝑧 = (𝑥𝐴𝐵) → (∀𝑓((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ 𝑓 = 𝑧) ↔ ∀𝑓((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ 𝑓 = (𝑥𝐴𝐵))))
62, 5spcev 3535 . . 3 (∀𝑓((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ 𝑓 = (𝑥𝐴𝐵)) → ∃𝑧𝑓((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ 𝑓 = 𝑧))
7 eufnfv.2 . . . . . . 7 𝐵 ∈ V
8 eqid 2738 . . . . . . 7 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
97, 8fnmpti 6560 . . . . . 6 (𝑥𝐴𝐵) Fn 𝐴
10 fneq1 6508 . . . . . 6 (𝑓 = (𝑥𝐴𝐵) → (𝑓 Fn 𝐴 ↔ (𝑥𝐴𝐵) Fn 𝐴))
119, 10mpbiri 257 . . . . 5 (𝑓 = (𝑥𝐴𝐵) → 𝑓 Fn 𝐴)
1211pm4.71ri 560 . . . 4 (𝑓 = (𝑥𝐴𝐵) ↔ (𝑓 Fn 𝐴𝑓 = (𝑥𝐴𝐵)))
13 dffn5 6810 . . . . . . 7 (𝑓 Fn 𝐴𝑓 = (𝑥𝐴 ↦ (𝑓𝑥)))
14 eqeq1 2742 . . . . . . 7 (𝑓 = (𝑥𝐴 ↦ (𝑓𝑥)) → (𝑓 = (𝑥𝐴𝐵) ↔ (𝑥𝐴 ↦ (𝑓𝑥)) = (𝑥𝐴𝐵)))
1513, 14sylbi 216 . . . . . 6 (𝑓 Fn 𝐴 → (𝑓 = (𝑥𝐴𝐵) ↔ (𝑥𝐴 ↦ (𝑓𝑥)) = (𝑥𝐴𝐵)))
16 fvex 6769 . . . . . . . 8 (𝑓𝑥) ∈ V
1716rgenw 3075 . . . . . . 7 𝑥𝐴 (𝑓𝑥) ∈ V
18 mpteqb 6876 . . . . . . 7 (∀𝑥𝐴 (𝑓𝑥) ∈ V → ((𝑥𝐴 ↦ (𝑓𝑥)) = (𝑥𝐴𝐵) ↔ ∀𝑥𝐴 (𝑓𝑥) = 𝐵))
1917, 18ax-mp 5 . . . . . 6 ((𝑥𝐴 ↦ (𝑓𝑥)) = (𝑥𝐴𝐵) ↔ ∀𝑥𝐴 (𝑓𝑥) = 𝐵)
2015, 19bitrdi 286 . . . . 5 (𝑓 Fn 𝐴 → (𝑓 = (𝑥𝐴𝐵) ↔ ∀𝑥𝐴 (𝑓𝑥) = 𝐵))
2120pm5.32i 574 . . . 4 ((𝑓 Fn 𝐴𝑓 = (𝑥𝐴𝐵)) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵))
2212, 21bitr2i 275 . . 3 ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ 𝑓 = (𝑥𝐴𝐵))
236, 22mpg 1801 . 2 𝑧𝑓((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ 𝑓 = 𝑧)
24 eu6 2574 . 2 (∃!𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ ∃𝑧𝑓((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ 𝑓 = 𝑧))
2523, 24mpbir 230 1 ∃!𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wal 1537   = wceq 1539  wex 1783  wcel 2108  ∃!weu 2568  wral 3063  Vcvv 3422  cmpt 5153   Fn wfn 6413  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator