Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemgv Structured version   Visualization version   GIF version

Theorem eulerpartlemgv 34338
Description: Lemma for eulerpart 34347: value of the function 𝐺. (Contributed by Thierry Arnoux, 13-Nov-2017.)
Hypotheses
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
eulerpart.o 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
eulerpart.d 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
eulerpart.j 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
eulerpart.f 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
eulerpart.h 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
eulerpart.m 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
eulerpart.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpart.t 𝑇 = {𝑓 ∈ (ℕ0m ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
eulerpart.g 𝐺 = (𝑜 ∈ (𝑇𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))))
Assertion
Ref Expression
eulerpartlemgv (𝐴 ∈ (𝑇𝑅) → (𝐺𝐴) = ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽))))))
Distinct variable groups:   𝐴,𝑜   𝑜,𝐹   𝑜,𝐽   𝑜,𝑀   𝑅,𝑜   𝑇,𝑜
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐷(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝑅(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑇(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐺(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝐽(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑀(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑁(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝑂(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)

Proof of Theorem eulerpartlemgv
StepHypRef Expression
1 reseq1 6003 . . . . . 6 (𝑜 = 𝐴 → (𝑜𝐽) = (𝐴𝐽))
21coeq2d 5887 . . . . 5 (𝑜 = 𝐴 → (bits ∘ (𝑜𝐽)) = (bits ∘ (𝐴𝐽)))
32fveq2d 6924 . . . 4 (𝑜 = 𝐴 → (𝑀‘(bits ∘ (𝑜𝐽))) = (𝑀‘(bits ∘ (𝐴𝐽))))
43imaeq2d 6089 . . 3 (𝑜 = 𝐴 → (𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽)))) = (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽)))))
54fveq2d 6924 . 2 (𝑜 = 𝐴 → ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))) = ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽))))))
6 eulerpart.g . 2 𝐺 = (𝑜 ∈ (𝑇𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))))
7 fvex 6933 . 2 ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽))))) ∈ V
85, 6, 7fvmpt 7029 1 (𝐴 ∈ (𝑇𝑅) → (𝐺𝐴) = ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  {cab 2717  wral 3067  {crab 3443  cin 3975  wss 3976  c0 4352  𝒫 cpw 4622   class class class wbr 5166  {copab 5228  cmpt 5249  ccnv 5699  cres 5702  cima 5703  ccom 5704  cfv 6573  (class class class)co 7448  cmpo 7450   supp csupp 8201  m cmap 8884  Fincfn 9003  1c1 11185   · cmul 11189  cle 11325  cn 12293  2c2 12348  0cn0 12553  cexp 14112  Σcsu 15734  cdvds 16302  bitscbits 16465  𝟭cind 33974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581
This theorem is referenced by:  eulerpartlemgvv  34341  eulerpartlemgf  34344  eulerpartlemn  34346
  Copyright terms: Public domain W3C validator