Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eulerpartlemgv | Structured version Visualization version GIF version |
Description: Lemma for eulerpart 32249: value of the function 𝐺. (Contributed by Thierry Arnoux, 13-Nov-2017.) |
Ref | Expression |
---|---|
eulerpart.p | ⊢ 𝑃 = {𝑓 ∈ (ℕ0 ↑m ℕ) ∣ ((◡𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘) = 𝑁)} |
eulerpart.o | ⊢ 𝑂 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ (◡𝑔 “ ℕ) ¬ 2 ∥ 𝑛} |
eulerpart.d | ⊢ 𝐷 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ≤ 1} |
eulerpart.j | ⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} |
eulerpart.f | ⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) |
eulerpart.h | ⊢ 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin} |
eulerpart.m | ⊢ 𝑀 = (𝑟 ∈ 𝐻 ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) |
eulerpart.r | ⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} |
eulerpart.t | ⊢ 𝑇 = {𝑓 ∈ (ℕ0 ↑m ℕ) ∣ (◡𝑓 “ ℕ) ⊆ 𝐽} |
eulerpart.g | ⊢ 𝐺 = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))) |
Ref | Expression |
---|---|
eulerpartlemgv | ⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (𝐺‘𝐴) = ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseq1 5874 | . . . . . 6 ⊢ (𝑜 = 𝐴 → (𝑜 ↾ 𝐽) = (𝐴 ↾ 𝐽)) | |
2 | 1 | coeq2d 5760 | . . . . 5 ⊢ (𝑜 = 𝐴 → (bits ∘ (𝑜 ↾ 𝐽)) = (bits ∘ (𝐴 ↾ 𝐽))) |
3 | 2 | fveq2d 6760 | . . . 4 ⊢ (𝑜 = 𝐴 → (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))) = (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))) |
4 | 3 | imaeq2d 5958 | . . 3 ⊢ (𝑜 = 𝐴 → (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))) = (𝐹 “ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽))))) |
5 | 4 | fveq2d 6760 | . 2 ⊢ (𝑜 = 𝐴 → ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))) = ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))))) |
6 | eulerpart.g | . 2 ⊢ 𝐺 = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))) | |
7 | fvex 6769 | . 2 ⊢ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽))))) ∈ V | |
8 | 5, 6, 7 | fvmpt 6857 | 1 ⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (𝐺‘𝐴) = ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {cab 2715 ∀wral 3063 {crab 3067 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 𝒫 cpw 4530 class class class wbr 5070 {copab 5132 ↦ cmpt 5153 ◡ccnv 5579 ↾ cres 5582 “ cima 5583 ∘ ccom 5584 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 supp csupp 7948 ↑m cmap 8573 Fincfn 8691 1c1 10803 · cmul 10807 ≤ cle 10941 ℕcn 11903 2c2 11958 ℕ0cn0 12163 ↑cexp 13710 Σcsu 15325 ∥ cdvds 15891 bitscbits 16054 𝟭cind 31878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fv 6426 |
This theorem is referenced by: eulerpartlemgvv 32243 eulerpartlemgf 32246 eulerpartlemn 32248 |
Copyright terms: Public domain | W3C validator |