| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eulerpartlemgv | Structured version Visualization version GIF version | ||
| Description: Lemma for eulerpart 34373: value of the function 𝐺. (Contributed by Thierry Arnoux, 13-Nov-2017.) |
| Ref | Expression |
|---|---|
| eulerpart.p | ⊢ 𝑃 = {𝑓 ∈ (ℕ0 ↑m ℕ) ∣ ((◡𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘) = 𝑁)} |
| eulerpart.o | ⊢ 𝑂 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ (◡𝑔 “ ℕ) ¬ 2 ∥ 𝑛} |
| eulerpart.d | ⊢ 𝐷 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ≤ 1} |
| eulerpart.j | ⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} |
| eulerpart.f | ⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) |
| eulerpart.h | ⊢ 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin} |
| eulerpart.m | ⊢ 𝑀 = (𝑟 ∈ 𝐻 ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) |
| eulerpart.r | ⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| eulerpart.t | ⊢ 𝑇 = {𝑓 ∈ (ℕ0 ↑m ℕ) ∣ (◡𝑓 “ ℕ) ⊆ 𝐽} |
| eulerpart.g | ⊢ 𝐺 = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))) |
| Ref | Expression |
|---|---|
| eulerpartlemgv | ⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (𝐺‘𝐴) = ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseq1 5944 | . . . . . 6 ⊢ (𝑜 = 𝐴 → (𝑜 ↾ 𝐽) = (𝐴 ↾ 𝐽)) | |
| 2 | 1 | coeq2d 5826 | . . . . 5 ⊢ (𝑜 = 𝐴 → (bits ∘ (𝑜 ↾ 𝐽)) = (bits ∘ (𝐴 ↾ 𝐽))) |
| 3 | 2 | fveq2d 6862 | . . . 4 ⊢ (𝑜 = 𝐴 → (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))) = (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))) |
| 4 | 3 | imaeq2d 6031 | . . 3 ⊢ (𝑜 = 𝐴 → (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))) = (𝐹 “ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽))))) |
| 5 | 4 | fveq2d 6862 | . 2 ⊢ (𝑜 = 𝐴 → ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))) = ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))))) |
| 6 | eulerpart.g | . 2 ⊢ 𝐺 = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))) | |
| 7 | fvex 6871 | . 2 ⊢ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽))))) ∈ V | |
| 8 | 5, 6, 7 | fvmpt 6968 | 1 ⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (𝐺‘𝐴) = ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 {crab 3405 ∩ cin 3913 ⊆ wss 3914 ∅c0 4296 𝒫 cpw 4563 class class class wbr 5107 {copab 5169 ↦ cmpt 5188 ◡ccnv 5637 ↾ cres 5640 “ cima 5641 ∘ ccom 5642 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 supp csupp 8139 ↑m cmap 8799 Fincfn 8918 1c1 11069 · cmul 11073 ≤ cle 11209 ℕcn 12186 2c2 12241 ℕ0cn0 12442 ↑cexp 14026 Σcsu 15652 ∥ cdvds 16222 bitscbits 16389 𝟭cind 32773 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fv 6519 |
| This theorem is referenced by: eulerpartlemgvv 34367 eulerpartlemgf 34370 eulerpartlemn 34372 |
| Copyright terms: Public domain | W3C validator |