Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eulerpartlemgv | Structured version Visualization version GIF version |
Description: Lemma for eulerpart 32349: value of the function 𝐺. (Contributed by Thierry Arnoux, 13-Nov-2017.) |
Ref | Expression |
---|---|
eulerpart.p | ⊢ 𝑃 = {𝑓 ∈ (ℕ0 ↑m ℕ) ∣ ((◡𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘) = 𝑁)} |
eulerpart.o | ⊢ 𝑂 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ (◡𝑔 “ ℕ) ¬ 2 ∥ 𝑛} |
eulerpart.d | ⊢ 𝐷 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ≤ 1} |
eulerpart.j | ⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} |
eulerpart.f | ⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) |
eulerpart.h | ⊢ 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin} |
eulerpart.m | ⊢ 𝑀 = (𝑟 ∈ 𝐻 ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) |
eulerpart.r | ⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} |
eulerpart.t | ⊢ 𝑇 = {𝑓 ∈ (ℕ0 ↑m ℕ) ∣ (◡𝑓 “ ℕ) ⊆ 𝐽} |
eulerpart.g | ⊢ 𝐺 = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))) |
Ref | Expression |
---|---|
eulerpartlemgv | ⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (𝐺‘𝐴) = ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseq1 5885 | . . . . . 6 ⊢ (𝑜 = 𝐴 → (𝑜 ↾ 𝐽) = (𝐴 ↾ 𝐽)) | |
2 | 1 | coeq2d 5771 | . . . . 5 ⊢ (𝑜 = 𝐴 → (bits ∘ (𝑜 ↾ 𝐽)) = (bits ∘ (𝐴 ↾ 𝐽))) |
3 | 2 | fveq2d 6778 | . . . 4 ⊢ (𝑜 = 𝐴 → (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))) = (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))) |
4 | 3 | imaeq2d 5969 | . . 3 ⊢ (𝑜 = 𝐴 → (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))) = (𝐹 “ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽))))) |
5 | 4 | fveq2d 6778 | . 2 ⊢ (𝑜 = 𝐴 → ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))) = ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))))) |
6 | eulerpart.g | . 2 ⊢ 𝐺 = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))) | |
7 | fvex 6787 | . 2 ⊢ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽))))) ∈ V | |
8 | 5, 6, 7 | fvmpt 6875 | 1 ⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (𝐺‘𝐴) = ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {cab 2715 ∀wral 3064 {crab 3068 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 𝒫 cpw 4533 class class class wbr 5074 {copab 5136 ↦ cmpt 5157 ◡ccnv 5588 ↾ cres 5591 “ cima 5592 ∘ ccom 5593 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 supp csupp 7977 ↑m cmap 8615 Fincfn 8733 1c1 10872 · cmul 10876 ≤ cle 11010 ℕcn 11973 2c2 12028 ℕ0cn0 12233 ↑cexp 13782 Σcsu 15397 ∥ cdvds 15963 bitscbits 16126 𝟭cind 31978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fv 6441 |
This theorem is referenced by: eulerpartlemgvv 32343 eulerpartlemgf 32346 eulerpartlemn 32348 |
Copyright terms: Public domain | W3C validator |