| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eulerpartlemgv | Structured version Visualization version GIF version | ||
| Description: Lemma for eulerpart 34325: value of the function 𝐺. (Contributed by Thierry Arnoux, 13-Nov-2017.) |
| Ref | Expression |
|---|---|
| eulerpart.p | ⊢ 𝑃 = {𝑓 ∈ (ℕ0 ↑m ℕ) ∣ ((◡𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘) = 𝑁)} |
| eulerpart.o | ⊢ 𝑂 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ (◡𝑔 “ ℕ) ¬ 2 ∥ 𝑛} |
| eulerpart.d | ⊢ 𝐷 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ≤ 1} |
| eulerpart.j | ⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} |
| eulerpart.f | ⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) |
| eulerpart.h | ⊢ 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin} |
| eulerpart.m | ⊢ 𝑀 = (𝑟 ∈ 𝐻 ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) |
| eulerpart.r | ⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| eulerpart.t | ⊢ 𝑇 = {𝑓 ∈ (ℕ0 ↑m ℕ) ∣ (◡𝑓 “ ℕ) ⊆ 𝐽} |
| eulerpart.g | ⊢ 𝐺 = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))) |
| Ref | Expression |
|---|---|
| eulerpartlemgv | ⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (𝐺‘𝐴) = ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseq1 5973 | . . . . . 6 ⊢ (𝑜 = 𝐴 → (𝑜 ↾ 𝐽) = (𝐴 ↾ 𝐽)) | |
| 2 | 1 | coeq2d 5855 | . . . . 5 ⊢ (𝑜 = 𝐴 → (bits ∘ (𝑜 ↾ 𝐽)) = (bits ∘ (𝐴 ↾ 𝐽))) |
| 3 | 2 | fveq2d 6891 | . . . 4 ⊢ (𝑜 = 𝐴 → (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))) = (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))) |
| 4 | 3 | imaeq2d 6060 | . . 3 ⊢ (𝑜 = 𝐴 → (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))) = (𝐹 “ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽))))) |
| 5 | 4 | fveq2d 6891 | . 2 ⊢ (𝑜 = 𝐴 → ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))) = ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))))) |
| 6 | eulerpart.g | . 2 ⊢ 𝐺 = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))) | |
| 7 | fvex 6900 | . 2 ⊢ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽))))) ∈ V | |
| 8 | 5, 6, 7 | fvmpt 6997 | 1 ⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (𝐺‘𝐴) = ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {cab 2712 ∀wral 3050 {crab 3420 ∩ cin 3932 ⊆ wss 3933 ∅c0 4315 𝒫 cpw 4582 class class class wbr 5125 {copab 5187 ↦ cmpt 5207 ◡ccnv 5666 ↾ cres 5669 “ cima 5670 ∘ ccom 5671 ‘cfv 6542 (class class class)co 7414 ∈ cmpo 7416 supp csupp 8168 ↑m cmap 8849 Fincfn 8968 1c1 11139 · cmul 11143 ≤ cle 11279 ℕcn 12249 2c2 12304 ℕ0cn0 12510 ↑cexp 14085 Σcsu 15705 ∥ cdvds 16273 bitscbits 16439 𝟭cind 32782 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fv 6550 |
| This theorem is referenced by: eulerpartlemgvv 34319 eulerpartlemgf 34322 eulerpartlemn 34324 |
| Copyright terms: Public domain | W3C validator |