MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iseupthf1o Structured version   Visualization version   GIF version

Theorem iseupthf1o 30131
Description: The property "𝐹, 𝑃 is an Eulerian path on the graph 𝐺". An Eulerian path is defined as bijection 𝐹 from the edges to a set 0...(𝑁 − 1) and a function 𝑃:(0...𝑁)⟶𝑉 into the vertices such that for each 0 ≤ 𝑘 < 𝑁, 𝐹(𝑘) is an edge from 𝑃(𝑘) to 𝑃(𝑘 + 1). (Since the edges are undirected and there are possibly many edges between any two given vertices, we need to list both the edges and the vertices of the path separately.) (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 18-Feb-2021.) (Revised by AV, 30-Oct-2021.)
Hypothesis
Ref Expression
eupths.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
iseupthf1o (𝐹(EulerPaths‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼))

Proof of Theorem iseupthf1o
StepHypRef Expression
1 eupths.i . . 3 𝐼 = (iEdg‘𝐺)
21iseupth 30130 . 2 (𝐹(EulerPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼))
3 istrl 29624 . . . 4 (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝐹))
43anbi1i 624 . . 3 ((𝐹(Trails‘𝐺)𝑃𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼) ↔ ((𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝐹) ∧ 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼))
5 anass 468 . . 3 (((𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝐹) ∧ 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼) ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (Fun 𝐹𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼)))
6 ancom 460 . . . 4 ((Fun 𝐹𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼) ↔ (𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼 ∧ Fun 𝐹))
76anbi2i 623 . . 3 ((𝐹(Walks‘𝐺)𝑃 ∧ (Fun 𝐹𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼)) ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼 ∧ Fun 𝐹)))
84, 5, 73bitri 297 . 2 ((𝐹(Trails‘𝐺)𝑃𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼) ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼 ∧ Fun 𝐹)))
9 dff1o3 6806 . . . 4 (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼 ↔ (𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼 ∧ Fun 𝐹))
109bicomi 224 . . 3 ((𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼 ∧ Fun 𝐹) ↔ 𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼)
1110anbi2i 623 . 2 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼 ∧ Fun 𝐹)) ↔ (𝐹(Walks‘𝐺)𝑃𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼))
122, 8, 113bitri 297 1 (𝐹(EulerPaths‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540   class class class wbr 5107  ccnv 5637  dom cdm 5638  Fun wfun 6505  ontowfo 6509  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  0cc0 11068  ..^cfzo 13615  chash 14295  iEdgciedg 28924  Walkscwlks 29524  Trailsctrls 29618  EulerPathsceupth 30126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-wlks 29527  df-trls 29620  df-eupth 30127
This theorem is referenced by:  eupthi  30132  upgriseupth  30136  eupth0  30143  eupthres  30144  eupthp1  30145
  Copyright terms: Public domain W3C validator