| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iseupthf1o | Structured version Visualization version GIF version | ||
| Description: The property "〈𝐹, 𝑃〉 is an Eulerian path on the graph 𝐺". An Eulerian path is defined as bijection 𝐹 from the edges to a set 0...(𝑁 − 1) and a function 𝑃:(0...𝑁)⟶𝑉 into the vertices such that for each 0 ≤ 𝑘 < 𝑁, 𝐹(𝑘) is an edge from 𝑃(𝑘) to 𝑃(𝑘 + 1). (Since the edges are undirected and there are possibly many edges between any two given vertices, we need to list both the edges and the vertices of the path separately.) (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 18-Feb-2021.) (Revised by AV, 30-Oct-2021.) |
| Ref | Expression |
|---|---|
| eupths.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| iseupthf1o | ⊢ (𝐹(EulerPaths‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ 𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eupths.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 2 | 1 | iseupth 30130 | . 2 ⊢ (𝐹(EulerPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼)) |
| 3 | istrl 29624 | . . . 4 ⊢ (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝐹)) | |
| 4 | 3 | anbi1i 624 | . . 3 ⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼) ↔ ((𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝐹) ∧ 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼)) |
| 5 | anass 468 | . . 3 ⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝐹) ∧ 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼) ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (Fun ◡𝐹 ∧ 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼))) | |
| 6 | ancom 460 | . . . 4 ⊢ ((Fun ◡𝐹 ∧ 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼) ↔ (𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼 ∧ Fun ◡𝐹)) | |
| 7 | 6 | anbi2i 623 | . . 3 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (Fun ◡𝐹 ∧ 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼)) ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼 ∧ Fun ◡𝐹))) |
| 8 | 4, 5, 7 | 3bitri 297 | . 2 ⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼) ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼 ∧ Fun ◡𝐹))) |
| 9 | dff1o3 6806 | . . . 4 ⊢ (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼 ↔ (𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼 ∧ Fun ◡𝐹)) | |
| 10 | 9 | bicomi 224 | . . 3 ⊢ ((𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼 ∧ Fun ◡𝐹) ↔ 𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼) |
| 11 | 10 | anbi2i 623 | . 2 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼 ∧ Fun ◡𝐹)) ↔ (𝐹(Walks‘𝐺)𝑃 ∧ 𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼)) |
| 12 | 2, 8, 11 | 3bitri 297 | 1 ⊢ (𝐹(EulerPaths‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ 𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 class class class wbr 5107 ◡ccnv 5637 dom cdm 5638 Fun wfun 6505 –onto→wfo 6509 –1-1-onto→wf1o 6510 ‘cfv 6511 (class class class)co 7387 0cc0 11068 ..^cfzo 13615 ♯chash 14295 iEdgciedg 28924 Walkscwlks 29524 Trailsctrls 29618 EulerPathsceupth 30126 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-wlks 29527 df-trls 29620 df-eupth 30127 |
| This theorem is referenced by: eupthi 30132 upgriseupth 30136 eupth0 30143 eupthres 30144 eupthp1 30145 |
| Copyright terms: Public domain | W3C validator |