| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iseupthf1o | Structured version Visualization version GIF version | ||
| Description: The property "〈𝐹, 𝑃〉 is an Eulerian path on the graph 𝐺". An Eulerian path is defined as bijection 𝐹 from the edges to a set 0...(𝑁 − 1) and a function 𝑃:(0...𝑁)⟶𝑉 into the vertices such that for each 0 ≤ 𝑘 < 𝑁, 𝐹(𝑘) is an edge from 𝑃(𝑘) to 𝑃(𝑘 + 1). (Since the edges are undirected and there are possibly many edges between any two given vertices, we need to list both the edges and the vertices of the path separately.) (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 18-Feb-2021.) (Revised by AV, 30-Oct-2021.) |
| Ref | Expression |
|---|---|
| eupths.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| iseupthf1o | ⊢ (𝐹(EulerPaths‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ 𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eupths.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 2 | 1 | iseupth 30103 | . 2 ⊢ (𝐹(EulerPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼)) |
| 3 | istrl 29598 | . . . 4 ⊢ (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝐹)) | |
| 4 | 3 | anbi1i 624 | . . 3 ⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼) ↔ ((𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝐹) ∧ 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼)) |
| 5 | anass 468 | . . 3 ⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝐹) ∧ 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼) ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (Fun ◡𝐹 ∧ 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼))) | |
| 6 | ancom 460 | . . . 4 ⊢ ((Fun ◡𝐹 ∧ 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼) ↔ (𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼 ∧ Fun ◡𝐹)) | |
| 7 | 6 | anbi2i 623 | . . 3 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (Fun ◡𝐹 ∧ 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼)) ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼 ∧ Fun ◡𝐹))) |
| 8 | 4, 5, 7 | 3bitri 297 | . 2 ⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼) ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼 ∧ Fun ◡𝐹))) |
| 9 | dff1o3 6788 | . . . 4 ⊢ (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼 ↔ (𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼 ∧ Fun ◡𝐹)) | |
| 10 | 9 | bicomi 224 | . . 3 ⊢ ((𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼 ∧ Fun ◡𝐹) ↔ 𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼) |
| 11 | 10 | anbi2i 623 | . 2 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼 ∧ Fun ◡𝐹)) ↔ (𝐹(Walks‘𝐺)𝑃 ∧ 𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼)) |
| 12 | 2, 8, 11 | 3bitri 297 | 1 ⊢ (𝐹(EulerPaths‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ 𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 class class class wbr 5102 ◡ccnv 5630 dom cdm 5631 Fun wfun 6493 –onto→wfo 6497 –1-1-onto→wf1o 6498 ‘cfv 6499 (class class class)co 7369 0cc0 11044 ..^cfzo 13591 ♯chash 14271 iEdgciedg 28900 Walkscwlks 29500 Trailsctrls 29592 EulerPathsceupth 30099 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-wlks 29503 df-trls 29594 df-eupth 30100 |
| This theorem is referenced by: eupthi 30105 upgriseupth 30109 eupth0 30116 eupthres 30117 eupthp1 30118 |
| Copyright terms: Public domain | W3C validator |