![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iseupthf1o | Structured version Visualization version GIF version |
Description: The property "โจ๐น, ๐โฉ is an Eulerian path on the graph ๐บ". An Eulerian path is defined as bijection ๐น from the edges to a set 0...(๐ โ 1) and a function ๐:(0...๐)โถ๐ into the vertices such that for each 0 โค ๐ < ๐, ๐น(๐) is an edge from ๐(๐) to ๐(๐ + 1). (Since the edges are undirected and there are possibly many edges between any two given vertices, we need to list both the edges and the vertices of the path separately.) (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 18-Feb-2021.) (Revised by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
eupths.i | โข ๐ผ = (iEdgโ๐บ) |
Ref | Expression |
---|---|
iseupthf1o | โข (๐น(EulerPathsโ๐บ)๐ โ (๐น(Walksโ๐บ)๐ โง ๐น:(0..^(โฏโ๐น))โ1-1-ontoโdom ๐ผ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eupths.i | . . 3 โข ๐ผ = (iEdgโ๐บ) | |
2 | 1 | iseupth 29443 | . 2 โข (๐น(EulerPathsโ๐บ)๐ โ (๐น(Trailsโ๐บ)๐ โง ๐น:(0..^(โฏโ๐น))โontoโdom ๐ผ)) |
3 | istrl 28942 | . . . 4 โข (๐น(Trailsโ๐บ)๐ โ (๐น(Walksโ๐บ)๐ โง Fun โก๐น)) | |
4 | 3 | anbi1i 624 | . . 3 โข ((๐น(Trailsโ๐บ)๐ โง ๐น:(0..^(โฏโ๐น))โontoโdom ๐ผ) โ ((๐น(Walksโ๐บ)๐ โง Fun โก๐น) โง ๐น:(0..^(โฏโ๐น))โontoโdom ๐ผ)) |
5 | anass 469 | . . 3 โข (((๐น(Walksโ๐บ)๐ โง Fun โก๐น) โง ๐น:(0..^(โฏโ๐น))โontoโdom ๐ผ) โ (๐น(Walksโ๐บ)๐ โง (Fun โก๐น โง ๐น:(0..^(โฏโ๐น))โontoโdom ๐ผ))) | |
6 | ancom 461 | . . . 4 โข ((Fun โก๐น โง ๐น:(0..^(โฏโ๐น))โontoโdom ๐ผ) โ (๐น:(0..^(โฏโ๐น))โontoโdom ๐ผ โง Fun โก๐น)) | |
7 | 6 | anbi2i 623 | . . 3 โข ((๐น(Walksโ๐บ)๐ โง (Fun โก๐น โง ๐น:(0..^(โฏโ๐น))โontoโdom ๐ผ)) โ (๐น(Walksโ๐บ)๐ โง (๐น:(0..^(โฏโ๐น))โontoโdom ๐ผ โง Fun โก๐น))) |
8 | 4, 5, 7 | 3bitri 296 | . 2 โข ((๐น(Trailsโ๐บ)๐ โง ๐น:(0..^(โฏโ๐น))โontoโdom ๐ผ) โ (๐น(Walksโ๐บ)๐ โง (๐น:(0..^(โฏโ๐น))โontoโdom ๐ผ โง Fun โก๐น))) |
9 | dff1o3 6836 | . . . 4 โข (๐น:(0..^(โฏโ๐น))โ1-1-ontoโdom ๐ผ โ (๐น:(0..^(โฏโ๐น))โontoโdom ๐ผ โง Fun โก๐น)) | |
10 | 9 | bicomi 223 | . . 3 โข ((๐น:(0..^(โฏโ๐น))โontoโdom ๐ผ โง Fun โก๐น) โ ๐น:(0..^(โฏโ๐น))โ1-1-ontoโdom ๐ผ) |
11 | 10 | anbi2i 623 | . 2 โข ((๐น(Walksโ๐บ)๐ โง (๐น:(0..^(โฏโ๐น))โontoโdom ๐ผ โง Fun โก๐น)) โ (๐น(Walksโ๐บ)๐ โง ๐น:(0..^(โฏโ๐น))โ1-1-ontoโdom ๐ผ)) |
12 | 2, 8, 11 | 3bitri 296 | 1 โข (๐น(EulerPathsโ๐บ)๐ โ (๐น(Walksโ๐บ)๐ โง ๐น:(0..^(โฏโ๐น))โ1-1-ontoโdom ๐ผ)) |
Colors of variables: wff setvar class |
Syntax hints: โ wb 205 โง wa 396 = wceq 1541 class class class wbr 5147 โกccnv 5674 dom cdm 5675 Fun wfun 6534 โontoโwfo 6538 โ1-1-ontoโwf1o 6539 โcfv 6540 (class class class)co 7405 0cc0 11106 ..^cfzo 13623 โฏchash 14286 iEdgciedg 28246 Walkscwlks 28842 Trailsctrls 28936 EulerPathsceupth 29439 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-wlks 28845 df-trls 28938 df-eupth 29440 |
This theorem is referenced by: eupthi 29445 upgriseupth 29449 eupth0 29456 eupthres 29457 eupthp1 29458 |
Copyright terms: Public domain | W3C validator |