| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iseupthf1o | Structured version Visualization version GIF version | ||
| Description: The property "〈𝐹, 𝑃〉 is an Eulerian path on the graph 𝐺". An Eulerian path is defined as bijection 𝐹 from the edges to a set 0...(𝑁 − 1) and a function 𝑃:(0...𝑁)⟶𝑉 into the vertices such that for each 0 ≤ 𝑘 < 𝑁, 𝐹(𝑘) is an edge from 𝑃(𝑘) to 𝑃(𝑘 + 1). (Since the edges are undirected and there are possibly many edges between any two given vertices, we need to list both the edges and the vertices of the path separately.) (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 18-Feb-2021.) (Revised by AV, 30-Oct-2021.) |
| Ref | Expression |
|---|---|
| eupths.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| iseupthf1o | ⊢ (𝐹(EulerPaths‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ 𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eupths.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 2 | 1 | iseupth 30137 | . 2 ⊢ (𝐹(EulerPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼)) |
| 3 | istrl 29631 | . . . 4 ⊢ (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝐹)) | |
| 4 | 3 | anbi1i 624 | . . 3 ⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼) ↔ ((𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝐹) ∧ 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼)) |
| 5 | anass 468 | . . 3 ⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝐹) ∧ 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼) ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (Fun ◡𝐹 ∧ 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼))) | |
| 6 | ancom 460 | . . . 4 ⊢ ((Fun ◡𝐹 ∧ 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼) ↔ (𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼 ∧ Fun ◡𝐹)) | |
| 7 | 6 | anbi2i 623 | . . 3 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (Fun ◡𝐹 ∧ 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼)) ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼 ∧ Fun ◡𝐹))) |
| 8 | 4, 5, 7 | 3bitri 297 | . 2 ⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼) ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼 ∧ Fun ◡𝐹))) |
| 9 | dff1o3 6809 | . . . 4 ⊢ (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼 ↔ (𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼 ∧ Fun ◡𝐹)) | |
| 10 | 9 | bicomi 224 | . . 3 ⊢ ((𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼 ∧ Fun ◡𝐹) ↔ 𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼) |
| 11 | 10 | anbi2i 623 | . 2 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼 ∧ Fun ◡𝐹)) ↔ (𝐹(Walks‘𝐺)𝑃 ∧ 𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼)) |
| 12 | 2, 8, 11 | 3bitri 297 | 1 ⊢ (𝐹(EulerPaths‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ 𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 class class class wbr 5110 ◡ccnv 5640 dom cdm 5641 Fun wfun 6508 –onto→wfo 6512 –1-1-onto→wf1o 6513 ‘cfv 6514 (class class class)co 7390 0cc0 11075 ..^cfzo 13622 ♯chash 14302 iEdgciedg 28931 Walkscwlks 29531 Trailsctrls 29625 EulerPathsceupth 30133 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-wlks 29534 df-trls 29627 df-eupth 30134 |
| This theorem is referenced by: eupthi 30139 upgriseupth 30143 eupth0 30150 eupthres 30151 eupthp1 30152 |
| Copyright terms: Public domain | W3C validator |