MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iseupthf1o Structured version   Visualization version   GIF version

Theorem iseupthf1o 29444
Description: The property "โŸจ๐น, ๐‘ƒโŸฉ is an Eulerian path on the graph ๐บ". An Eulerian path is defined as bijection ๐น from the edges to a set 0...(๐‘ โˆ’ 1) and a function ๐‘ƒ:(0...๐‘)โŸถ๐‘‰ into the vertices such that for each 0 โ‰ค ๐‘˜ < ๐‘, ๐น(๐‘˜) is an edge from ๐‘ƒ(๐‘˜) to ๐‘ƒ(๐‘˜ + 1). (Since the edges are undirected and there are possibly many edges between any two given vertices, we need to list both the edges and the vertices of the path separately.) (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 18-Feb-2021.) (Revised by AV, 30-Oct-2021.)
Hypothesis
Ref Expression
eupths.i ๐ผ = (iEdgโ€˜๐บ)
Assertion
Ref Expression
iseupthf1o (๐น(EulerPathsโ€˜๐บ)๐‘ƒ โ†” (๐น(Walksโ€˜๐บ)๐‘ƒ โˆง ๐น:(0..^(โ™ฏโ€˜๐น))โ€“1-1-ontoโ†’dom ๐ผ))

Proof of Theorem iseupthf1o
StepHypRef Expression
1 eupths.i . . 3 ๐ผ = (iEdgโ€˜๐บ)
21iseupth 29443 . 2 (๐น(EulerPathsโ€˜๐บ)๐‘ƒ โ†” (๐น(Trailsโ€˜๐บ)๐‘ƒ โˆง ๐น:(0..^(โ™ฏโ€˜๐น))โ€“ontoโ†’dom ๐ผ))
3 istrl 28942 . . . 4 (๐น(Trailsโ€˜๐บ)๐‘ƒ โ†” (๐น(Walksโ€˜๐บ)๐‘ƒ โˆง Fun โ—ก๐น))
43anbi1i 624 . . 3 ((๐น(Trailsโ€˜๐บ)๐‘ƒ โˆง ๐น:(0..^(โ™ฏโ€˜๐น))โ€“ontoโ†’dom ๐ผ) โ†” ((๐น(Walksโ€˜๐บ)๐‘ƒ โˆง Fun โ—ก๐น) โˆง ๐น:(0..^(โ™ฏโ€˜๐น))โ€“ontoโ†’dom ๐ผ))
5 anass 469 . . 3 (((๐น(Walksโ€˜๐บ)๐‘ƒ โˆง Fun โ—ก๐น) โˆง ๐น:(0..^(โ™ฏโ€˜๐น))โ€“ontoโ†’dom ๐ผ) โ†” (๐น(Walksโ€˜๐บ)๐‘ƒ โˆง (Fun โ—ก๐น โˆง ๐น:(0..^(โ™ฏโ€˜๐น))โ€“ontoโ†’dom ๐ผ)))
6 ancom 461 . . . 4 ((Fun โ—ก๐น โˆง ๐น:(0..^(โ™ฏโ€˜๐น))โ€“ontoโ†’dom ๐ผ) โ†” (๐น:(0..^(โ™ฏโ€˜๐น))โ€“ontoโ†’dom ๐ผ โˆง Fun โ—ก๐น))
76anbi2i 623 . . 3 ((๐น(Walksโ€˜๐บ)๐‘ƒ โˆง (Fun โ—ก๐น โˆง ๐น:(0..^(โ™ฏโ€˜๐น))โ€“ontoโ†’dom ๐ผ)) โ†” (๐น(Walksโ€˜๐บ)๐‘ƒ โˆง (๐น:(0..^(โ™ฏโ€˜๐น))โ€“ontoโ†’dom ๐ผ โˆง Fun โ—ก๐น)))
84, 5, 73bitri 296 . 2 ((๐น(Trailsโ€˜๐บ)๐‘ƒ โˆง ๐น:(0..^(โ™ฏโ€˜๐น))โ€“ontoโ†’dom ๐ผ) โ†” (๐น(Walksโ€˜๐บ)๐‘ƒ โˆง (๐น:(0..^(โ™ฏโ€˜๐น))โ€“ontoโ†’dom ๐ผ โˆง Fun โ—ก๐น)))
9 dff1o3 6836 . . . 4 (๐น:(0..^(โ™ฏโ€˜๐น))โ€“1-1-ontoโ†’dom ๐ผ โ†” (๐น:(0..^(โ™ฏโ€˜๐น))โ€“ontoโ†’dom ๐ผ โˆง Fun โ—ก๐น))
109bicomi 223 . . 3 ((๐น:(0..^(โ™ฏโ€˜๐น))โ€“ontoโ†’dom ๐ผ โˆง Fun โ—ก๐น) โ†” ๐น:(0..^(โ™ฏโ€˜๐น))โ€“1-1-ontoโ†’dom ๐ผ)
1110anbi2i 623 . 2 ((๐น(Walksโ€˜๐บ)๐‘ƒ โˆง (๐น:(0..^(โ™ฏโ€˜๐น))โ€“ontoโ†’dom ๐ผ โˆง Fun โ—ก๐น)) โ†” (๐น(Walksโ€˜๐บ)๐‘ƒ โˆง ๐น:(0..^(โ™ฏโ€˜๐น))โ€“1-1-ontoโ†’dom ๐ผ))
122, 8, 113bitri 296 1 (๐น(EulerPathsโ€˜๐บ)๐‘ƒ โ†” (๐น(Walksโ€˜๐บ)๐‘ƒ โˆง ๐น:(0..^(โ™ฏโ€˜๐น))โ€“1-1-ontoโ†’dom ๐ผ))
Colors of variables: wff setvar class
Syntax hints:   โ†” wb 205   โˆง wa 396   = wceq 1541   class class class wbr 5147  โ—กccnv 5674  dom cdm 5675  Fun wfun 6534  โ€“ontoโ†’wfo 6538  โ€“1-1-ontoโ†’wf1o 6539  โ€˜cfv 6540  (class class class)co 7405  0cc0 11106  ..^cfzo 13623  โ™ฏchash 14286  iEdgciedg 28246  Walkscwlks 28842  Trailsctrls 28936  EulerPathsceupth 29439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-wlks 28845  df-trls 28938  df-eupth 29440
This theorem is referenced by:  eupthi  29445  upgriseupth  29449  eupth0  29456  eupthres  29457  eupthp1  29458
  Copyright terms: Public domain W3C validator