|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > iseupthf1o | Structured version Visualization version GIF version | ||
| Description: The property "〈𝐹, 𝑃〉 is an Eulerian path on the graph 𝐺". An Eulerian path is defined as bijection 𝐹 from the edges to a set 0...(𝑁 − 1) and a function 𝑃:(0...𝑁)⟶𝑉 into the vertices such that for each 0 ≤ 𝑘 < 𝑁, 𝐹(𝑘) is an edge from 𝑃(𝑘) to 𝑃(𝑘 + 1). (Since the edges are undirected and there are possibly many edges between any two given vertices, we need to list both the edges and the vertices of the path separately.) (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 18-Feb-2021.) (Revised by AV, 30-Oct-2021.) | 
| Ref | Expression | 
|---|---|
| eupths.i | ⊢ 𝐼 = (iEdg‘𝐺) | 
| Ref | Expression | 
|---|---|
| iseupthf1o | ⊢ (𝐹(EulerPaths‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ 𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eupths.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 2 | 1 | iseupth 30220 | . 2 ⊢ (𝐹(EulerPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼)) | 
| 3 | istrl 29714 | . . . 4 ⊢ (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝐹)) | |
| 4 | 3 | anbi1i 624 | . . 3 ⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼) ↔ ((𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝐹) ∧ 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼)) | 
| 5 | anass 468 | . . 3 ⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝐹) ∧ 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼) ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (Fun ◡𝐹 ∧ 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼))) | |
| 6 | ancom 460 | . . . 4 ⊢ ((Fun ◡𝐹 ∧ 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼) ↔ (𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼 ∧ Fun ◡𝐹)) | |
| 7 | 6 | anbi2i 623 | . . 3 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (Fun ◡𝐹 ∧ 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼)) ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼 ∧ Fun ◡𝐹))) | 
| 8 | 4, 5, 7 | 3bitri 297 | . 2 ⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼) ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼 ∧ Fun ◡𝐹))) | 
| 9 | dff1o3 6854 | . . . 4 ⊢ (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼 ↔ (𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼 ∧ Fun ◡𝐹)) | |
| 10 | 9 | bicomi 224 | . . 3 ⊢ ((𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼 ∧ Fun ◡𝐹) ↔ 𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼) | 
| 11 | 10 | anbi2i 623 | . 2 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼 ∧ Fun ◡𝐹)) ↔ (𝐹(Walks‘𝐺)𝑃 ∧ 𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼)) | 
| 12 | 2, 8, 11 | 3bitri 297 | 1 ⊢ (𝐹(EulerPaths‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ 𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 class class class wbr 5143 ◡ccnv 5684 dom cdm 5685 Fun wfun 6555 –onto→wfo 6559 –1-1-onto→wf1o 6560 ‘cfv 6561 (class class class)co 7431 0cc0 11155 ..^cfzo 13694 ♯chash 14369 iEdgciedg 29014 Walkscwlks 29614 Trailsctrls 29708 EulerPathsceupth 30216 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-wlks 29617 df-trls 29710 df-eupth 30217 | 
| This theorem is referenced by: eupthi 30222 upgriseupth 30226 eupth0 30233 eupthres 30234 eupthp1 30235 | 
| Copyright terms: Public domain | W3C validator |