MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupthseg Structured version   Visualization version   GIF version

Theorem eupthseg 30235
Description: The 𝑁-th edge in an eulerian path is the edge having 𝑃(𝑁) and 𝑃(𝑁 + 1) as endpoints . (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 18-Feb-2021.)
Hypothesis
Ref Expression
eupths.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
eupthseg ((𝐹(EulerPaths‘𝐺)𝑃𝑁 ∈ (0..^(♯‘𝐹))) → {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁)))

Proof of Theorem eupthseg
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eupths.i . . . . 5 𝐼 = (iEdg‘𝐺)
21eupthi 30232 . . . 4 (𝐹(EulerPaths‘𝐺)𝑃 → (𝐹(Walks‘𝐺)𝑃𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼))
32simpld 494 . . 3 (𝐹(EulerPaths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
41wlkvtxeledg 29657 . . 3 (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))
5 fveq2 6907 . . . . . 6 (𝑘 = 𝑁 → (𝑃𝑘) = (𝑃𝑁))
6 fvoveq1 7454 . . . . . 6 (𝑘 = 𝑁 → (𝑃‘(𝑘 + 1)) = (𝑃‘(𝑁 + 1)))
75, 6preq12d 4746 . . . . 5 (𝑘 = 𝑁 → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃𝑁), (𝑃‘(𝑁 + 1))})
8 2fveq3 6912 . . . . 5 (𝑘 = 𝑁 → (𝐼‘(𝐹𝑘)) = (𝐼‘(𝐹𝑁)))
97, 8sseq12d 4029 . . . 4 (𝑘 = 𝑁 → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) ↔ {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
109rspccv 3619 . . 3 (∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) → (𝑁 ∈ (0..^(♯‘𝐹)) → {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
113, 4, 103syl 18 . 2 (𝐹(EulerPaths‘𝐺)𝑃 → (𝑁 ∈ (0..^(♯‘𝐹)) → {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
1211imp 406 1 ((𝐹(EulerPaths‘𝐺)𝑃𝑁 ∈ (0..^(♯‘𝐹))) → {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wral 3059  wss 3963  {cpr 4633   class class class wbr 5148  dom cdm 5689  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  0cc0 11153  1c1 11154   + caddc 11156  ..^cfzo 13691  chash 14366  iEdgciedg 29029  Walkscwlks 29629  EulerPathsceupth 30226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-wlks 29632  df-trls 29725  df-eupth 30227
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator