Colors of
variables: wff
setvar class |
Syntax hints:
∈ wcel 2104 (class class class)co 7413
ℝcr 11113 1c1 11115
+ caddc 11117 3c3 12274
4c4 12275 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911
ax-6 1969 ax-7 2009 ax-8 2106
ax-9 2114 ax-ext 2701 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-i2m1 11182 ax-1ne0 11183 ax-rrecex 11186 ax-cnre 11187 |
This theorem depends on definitions:
df-bi 206 df-an 395
df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-iota 6496 df-fv 6552 df-ov 7416 df-2 12281 df-3 12282
df-4 12283 |
This theorem is referenced by: 5re
12305 4ne0
12326 5pos
12327 2lt4
12393 1lt4
12394 4lt5
12395 3lt5
12396 2lt5
12397 1lt5
12398 4lt6
12400 3lt6
12401 4lt7
12406 3lt7
12407 4lt8
12413 3lt8
12414 4lt9
12421 3lt9
12422 div4p1lem1div2
12473 4lt10
12819 3lt10
12820 eluz4eluz2
12875 fz0to4untppr
13610 fzo0to42pr
13725 fldiv4p1lem1div2
13806 fldiv4lem1div2uz2
13807 fldiv4lem1div2
13808 iexpcyc
14177 discr
14209 faclbnd2
14257 4bc2eq6
14295 sqrt2gt1lt2
15227 amgm2
15322 bpoly4
16009 ef01bndlem
16133 sin01bnd
16134 cos01bnd
16135 cos2bnd
16137 flodddiv4
16362 flodddiv4t2lthalf
16365 4sqlem12
16895 tsetndxnstarvndx
17310 slotsdifplendx
17326 slotsdifdsndx
17345 slotsdifunifndx
17352 cnfldfunALTOLD
21160 pcoass
24773 csbren
25149 minveclem2
25176 uniioombllem5
25338 dveflem
25730 pilem2
26198 pilem3
26199 sinhalfpilem
26207 sincosq1lem
26241 tangtx
26249 sincos4thpi
26257 log2cnv
26683 ppiublem1
26939 chtublem
26948 bposlem2
27022 bposlem6
27026 bposlem7
27027 bposlem8
27028 bposlem9
27029 gausslemma2dlem0d
27096 gausslemma2dlem3
27105 gausslemma2dlem4
27106 gausslemma2dlem5
27108 2lgslem1a2
27127 2lgslem1
27131 2lgslem2
27132 2sqlem11
27166 chebbnd1lem2
27207 chebbnd1lem3
27208 chebbnd1
27209 pntibndlem1
27326 pntlemb
27334 pntlemg
27335 pntlemr
27339 pntlemf
27342 usgrexmplef
28781 upgr4cycl4dv4e
29703 ex-id
29952 ex-1st
29962 ex-2nd
29963 dipcj
30232 minvecolem2
30393 minvecolem3
30394 normlem6
30633 lnophmlem2
31535 sqsscirc1
33184 hgt750lemd
33956 hgt750lem
33959 hgt750lem2
33960 hgt750leme
33966 problem2
34947 problem3
34948 iccioo01
36513 lcmineqlem21
41222 lcmineqlem23
41224 3lexlogpow2ineq2
41232 aks4d1p1p7
41247 aks4d1p1p5
41248 limclner
44667 stoweidlem13
45029 stoweidlem26
45042 stoweidlem34
45050 stoweid
45079 stirlinglem12
45101 stirlinglem13
45102 fmtno4prmfac
46540 lighneallem4a
46576 requad01
46589 requad1
46590 requad2
46591 341fppr2
46702 4fppr1
46703 9fppr8
46705 gbowgt5
46730 sbgoldbwt
46745 sbgoldbst
46746 sbgoldbaltlem1
46747 sbgoldbalt
46749 sgoldbeven3prm
46751 nnsum4primes4
46757 nnsum4primesprm
46759 nnsum4primesgbe
46761 nnsum3primesle9
46762 nnsum4primesle9
46763 nnsum4primeseven
46768 nnsum4primesevenALTV
46769 wtgoldbnnsum4prm
46770 bgoldbnnsum3prm
46772 bgoldbtbndlem2
46774 bgoldbtbndlem3
46775 bgoldbtbnd
46777 tgblthelfgott
46783 ackval42
47471 itsclc0yqsollem2
47538 itscnhlinecirc02plem1
47557 2p2ne5
47934 |