Colors of
variables: wff
setvar class |
Syntax hints:
∈ wcel 2106 (class class class)co 7411
ℝcr 11111 1c1 11113
+ caddc 11115 3c3 12270
4c4 12271 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913
ax-6 1971 ax-7 2011 ax-8 2108
ax-9 2116 ax-ext 2703 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-i2m1 11180 ax-1ne0 11181 ax-rrecex 11184 ax-cnre 11185 |
This theorem depends on definitions:
df-bi 206 df-an 397
df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-ov 7414 df-2 12277 df-3 12278
df-4 12279 |
This theorem is referenced by: 5re
12301 4ne0
12322 5pos
12323 2lt4
12389 1lt4
12390 4lt5
12391 3lt5
12392 2lt5
12393 1lt5
12394 4lt6
12396 3lt6
12397 4lt7
12402 3lt7
12403 4lt8
12409 3lt8
12410 4lt9
12417 3lt9
12418 div4p1lem1div2
12469 4lt10
12815 3lt10
12816 eluz4eluz2
12871 fz0to4untppr
13606 fzo0to42pr
13721 fldiv4p1lem1div2
13802 fldiv4lem1div2uz2
13803 fldiv4lem1div2
13804 iexpcyc
14173 discr
14205 faclbnd2
14253 4bc2eq6
14291 sqrt2gt1lt2
15223 amgm2
15318 bpoly4
16005 ef01bndlem
16129 sin01bnd
16130 cos01bnd
16131 cos2bnd
16133 flodddiv4
16358 flodddiv4t2lthalf
16361 4sqlem12
16891 tsetndxnstarvndx
17306 slotsdifplendx
17322 slotsdifdsndx
17341 slotsdifunifndx
17348 cnfldfunALTOLD
20964 pcoass
24547 csbren
24923 minveclem2
24950 uniioombllem5
25111 dveflem
25503 pilem2
25971 pilem3
25972 sinhalfpilem
25980 sincosq1lem
26014 tangtx
26022 sincos4thpi
26030 log2cnv
26456 ppiublem1
26712 chtublem
26721 bposlem2
26795 bposlem6
26799 bposlem7
26800 bposlem8
26801 bposlem9
26802 gausslemma2dlem0d
26869 gausslemma2dlem3
26878 gausslemma2dlem4
26879 gausslemma2dlem5
26881 2lgslem1a2
26900 2lgslem1
26904 2lgslem2
26905 2sqlem11
26939 chebbnd1lem2
26980 chebbnd1lem3
26981 chebbnd1
26982 pntibndlem1
27099 pntlemb
27107 pntlemg
27108 pntlemr
27112 pntlemf
27115 usgrexmplef
28554 upgr4cycl4dv4e
29476 ex-id
29725 ex-1st
29735 ex-2nd
29736 dipcj
30005 minvecolem2
30166 minvecolem3
30167 normlem6
30406 lnophmlem2
31308 sqsscirc1
32957 hgt750lemd
33729 hgt750lem
33732 hgt750lem2
33733 hgt750leme
33739 problem2
34720 problem3
34721 iccioo01
36300 lcmineqlem21
41006 lcmineqlem23
41008 3lexlogpow2ineq2
41016 aks4d1p1p7
41031 aks4d1p1p5
41032 limclner
44452 stoweidlem13
44814 stoweidlem26
44827 stoweidlem34
44835 stoweid
44864 stirlinglem12
44886 stirlinglem13
44887 fmtno4prmfac
46325 lighneallem4a
46361 requad01
46374 requad1
46375 requad2
46376 341fppr2
46487 4fppr1
46488 9fppr8
46490 gbowgt5
46515 sbgoldbwt
46530 sbgoldbst
46531 sbgoldbaltlem1
46532 sbgoldbalt
46534 sgoldbeven3prm
46536 nnsum4primes4
46542 nnsum4primesprm
46544 nnsum4primesgbe
46546 nnsum3primesle9
46547 nnsum4primesle9
46548 nnsum4primeseven
46553 nnsum4primesevenALTV
46554 wtgoldbnnsum4prm
46555 bgoldbnnsum3prm
46557 bgoldbtbndlem2
46559 bgoldbtbndlem3
46560 bgoldbtbnd
46562 tgblthelfgott
46568 ackval42
47466 itsclc0yqsollem2
47533 itscnhlinecirc02plem1
47552 2p2ne5
47929 |