Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1kp2ke3k | Structured version Visualization version GIF version |
Description: Example for df-dec 12488, 1000 + 2000 = 3000.
This proof disproves (by counterexample) the assertion of Hao Wang, who stated, "There is a theorem in the primitive notation of set theory that corresponds to the arithmetic theorem 1000 + 2000 = 3000. The formula would be forbiddingly long... even if (one) knows the definitions and is asked to simplify the long formula according to them, chances are he will make errors and arrive at some incorrect result." (Hao Wang, "Theory and practice in mathematics" , In Thomas Tymoczko, editor, New Directions in the Philosophy of Mathematics, pp 129-152, Birkauser Boston, Inc., Boston, 1986. (QA8.6.N48). The quote itself is on page 140.) This is noted in Metamath: A Computer Language for Pure Mathematics by Norman Megill (2007) section 1.1.3. Megill then states, "A number of writers have conveyed the impression that the kind of absolute rigor provided by Metamath is an impossible dream, suggesting that a complete, formal verification of a typical theorem would take millions of steps in untold volumes of books... These writers assume, however, that in order to achieve the kind of complete formal verification they desire one must break down a proof into individual primitive steps that make direct reference to the axioms. This is not necessary. There is no reason not to make use of previously proved theorems rather than proving them over and over... A hierarchy of theorems and definitions permits an exponential growth in the formula sizes and primitive proof steps to be described with only a linear growth in the number of symbols used. Of course, this is how ordinary informal mathematics is normally done anyway, but with Metamath it can be done with absolute rigor and precision." The proof here starts with (2 + 1) = 3, commutes it, and repeatedly multiplies both sides by ten. This is certainly longer than traditional mathematical proofs, e.g., there are a number of steps explicitly shown here to show that we're allowed to do operations such as multiplication. However, while longer, the proof is clearly a manageable size - even though every step is rigorously derived all the way back to the primitive notions of set theory and logic. And while there's a risk of making errors, the many independent verifiers make it much less likely that an incorrect result will be accepted. This proof heavily relies on the decimal constructor df-dec 12488 developed by Mario Carneiro in 2015. The underlying Metamath language has an intentionally very small set of primitives; it doesn't even have a built-in construct for numbers. Instead, the digits are defined using these primitives, and the decimal constructor is used to make it easy to express larger numbers as combinations of digits. (Contributed by David A. Wheeler, 29-Jun-2016.) (Shortened by Mario Carneiro using the arithmetic algorithm in mmj2, 30-Jun-2016.) |
Ref | Expression |
---|---|
1kp2ke3k | ⊢ (;;;1000 + ;;;2000) = ;;;3000 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn0 12299 | . . . 4 ⊢ 1 ∈ ℕ0 | |
2 | 0nn0 12298 | . . . 4 ⊢ 0 ∈ ℕ0 | |
3 | 1, 2 | deccl 12502 | . . 3 ⊢ ;10 ∈ ℕ0 |
4 | 3, 2 | deccl 12502 | . 2 ⊢ ;;100 ∈ ℕ0 |
5 | 2nn0 12300 | . . . 4 ⊢ 2 ∈ ℕ0 | |
6 | 5, 2 | deccl 12502 | . . 3 ⊢ ;20 ∈ ℕ0 |
7 | 6, 2 | deccl 12502 | . 2 ⊢ ;;200 ∈ ℕ0 |
8 | eqid 2736 | . 2 ⊢ ;;;1000 = ;;;1000 | |
9 | eqid 2736 | . 2 ⊢ ;;;2000 = ;;;2000 | |
10 | eqid 2736 | . . 3 ⊢ ;;100 = ;;100 | |
11 | eqid 2736 | . . 3 ⊢ ;;200 = ;;200 | |
12 | eqid 2736 | . . . 4 ⊢ ;10 = ;10 | |
13 | eqid 2736 | . . . 4 ⊢ ;20 = ;20 | |
14 | 1p2e3 12166 | . . . 4 ⊢ (1 + 2) = 3 | |
15 | 00id 11200 | . . . 4 ⊢ (0 + 0) = 0 | |
16 | 1, 2, 5, 2, 12, 13, 14, 15 | decadd 12541 | . . 3 ⊢ (;10 + ;20) = ;30 |
17 | 3, 2, 6, 2, 10, 11, 16, 15 | decadd 12541 | . 2 ⊢ (;;100 + ;;200) = ;;300 |
18 | 4, 2, 7, 2, 8, 9, 17, 15 | decadd 12541 | 1 ⊢ (;;;1000 + ;;;2000) = ;;;3000 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7307 0cc0 10921 1c1 10922 + caddc 10924 2c2 12078 3c3 12079 ;cdc 12487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11061 df-mnf 11062 df-ltxr 11064 df-nn 12024 df-2 12086 df-3 12087 df-4 12088 df-5 12089 df-6 12090 df-7 12091 df-8 12092 df-9 12093 df-n0 12284 df-dec 12488 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |