| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1kp2ke3k | Structured version Visualization version GIF version | ||
| Description: Example for df-dec 12626, 1000 + 2000 = 3000.
This proof disproves (by counterexample) the assertion of Hao Wang, who stated, "There is a theorem in the primitive notation of set theory that corresponds to the arithmetic theorem 1000 + 2000 = 3000. The formula would be forbiddingly long... even if (one) knows the definitions and is asked to simplify the long formula according to them, chances are he will make errors and arrive at some incorrect result." (Hao Wang, "Theory and practice in mathematics" , In Thomas Tymoczko, editor, New Directions in the Philosophy of Mathematics, pp 129-152, Birkauser Boston, Inc., Boston, 1986. (QA8.6.N48). The quote itself is on page 140.) This is noted in Metamath: A Computer Language for Pure Mathematics by Norman Megill (2007) section 1.1.3. Megill then states, "A number of writers have conveyed the impression that the kind of absolute rigor provided by Metamath is an impossible dream, suggesting that a complete, formal verification of a typical theorem would take millions of steps in untold volumes of books... These writers assume, however, that in order to achieve the kind of complete formal verification they desire one must break down a proof into individual primitive steps that make direct reference to the axioms. This is not necessary. There is no reason not to make use of previously proved theorems rather than proving them over and over... A hierarchy of theorems and definitions permits an exponential growth in the formula sizes and primitive proof steps to be described with only a linear growth in the number of symbols used. Of course, this is how ordinary informal mathematics is normally done anyway, but with Metamath it can be done with absolute rigor and precision." The proof here starts with (2 + 1) = 3, commutes it, and repeatedly multiplies both sides by ten. This is certainly longer than traditional mathematical proofs, e.g., there are a number of steps explicitly shown here to show that we're allowed to do operations such as multiplication. However, while longer, the proof is clearly a manageable size - even though every step is rigorously derived all the way back to the primitive notions of set theory and logic. And while there's a risk of making errors, the many independent verifiers make it much less likely that an incorrect result will be accepted. This proof heavily relies on the decimal constructor df-dec 12626 developed by Mario Carneiro in 2015. The underlying Metamath language has an intentionally very small set of primitives; it doesn't even have a built-in construct for numbers. Instead, the digits are defined using these primitives, and the decimal constructor is used to make it easy to express larger numbers as combinations of digits. (Contributed by David A. Wheeler, 29-Jun-2016.) (Shortened by Mario Carneiro using the arithmetic algorithm in mmj2, 30-Jun-2016.) |
| Ref | Expression |
|---|---|
| 1kp2ke3k | ⊢ (;;;1000 + ;;;2000) = ;;;3000 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn0 12434 | . . . 4 ⊢ 1 ∈ ℕ0 | |
| 2 | 0nn0 12433 | . . . 4 ⊢ 0 ∈ ℕ0 | |
| 3 | 1, 2 | deccl 12640 | . . 3 ⊢ ;10 ∈ ℕ0 |
| 4 | 3, 2 | deccl 12640 | . 2 ⊢ ;;100 ∈ ℕ0 |
| 5 | 2nn0 12435 | . . . 4 ⊢ 2 ∈ ℕ0 | |
| 6 | 5, 2 | deccl 12640 | . . 3 ⊢ ;20 ∈ ℕ0 |
| 7 | 6, 2 | deccl 12640 | . 2 ⊢ ;;200 ∈ ℕ0 |
| 8 | eqid 2729 | . 2 ⊢ ;;;1000 = ;;;1000 | |
| 9 | eqid 2729 | . 2 ⊢ ;;;2000 = ;;;2000 | |
| 10 | eqid 2729 | . . 3 ⊢ ;;100 = ;;100 | |
| 11 | eqid 2729 | . . 3 ⊢ ;;200 = ;;200 | |
| 12 | eqid 2729 | . . . 4 ⊢ ;10 = ;10 | |
| 13 | eqid 2729 | . . . 4 ⊢ ;20 = ;20 | |
| 14 | 1p2e3 12300 | . . . 4 ⊢ (1 + 2) = 3 | |
| 15 | 00id 11325 | . . . 4 ⊢ (0 + 0) = 0 | |
| 16 | 1, 2, 5, 2, 12, 13, 14, 15 | decadd 12679 | . . 3 ⊢ (;10 + ;20) = ;30 |
| 17 | 3, 2, 6, 2, 10, 11, 16, 15 | decadd 12679 | . 2 ⊢ (;;100 + ;;200) = ;;300 |
| 18 | 4, 2, 7, 2, 8, 9, 17, 15 | decadd 12679 | 1 ⊢ (;;;1000 + ;;;2000) = ;;;3000 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7369 0cc0 11044 1c1 11045 + caddc 11047 2c2 12217 3c3 12218 ;cdc 12625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-ltxr 11189 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-dec 12626 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |