MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1kp2ke3k Structured version   Visualization version   GIF version

Theorem 1kp2ke3k 30272
Description: Example for df-dec 12706, 1000 + 2000 = 3000.

This proof disproves (by counterexample) the assertion of Hao Wang, who stated, "There is a theorem in the primitive notation of set theory that corresponds to the arithmetic theorem 1000 + 2000 = 3000. The formula would be forbiddingly long... even if (one) knows the definitions and is asked to simplify the long formula according to them, chances are he will make errors and arrive at some incorrect result." (Hao Wang, "Theory and practice in mathematics" , In Thomas Tymoczko, editor, New Directions in the Philosophy of Mathematics, pp 129-152, Birkauser Boston, Inc., Boston, 1986. (QA8.6.N48). The quote itself is on page 140.)

This is noted in Metamath: A Computer Language for Pure Mathematics by Norman Megill (2007) section 1.1.3. Megill then states, "A number of writers have conveyed the impression that the kind of absolute rigor provided by Metamath is an impossible dream, suggesting that a complete, formal verification of a typical theorem would take millions of steps in untold volumes of books... These writers assume, however, that in order to achieve the kind of complete formal verification they desire one must break down a proof into individual primitive steps that make direct reference to the axioms. This is not necessary. There is no reason not to make use of previously proved theorems rather than proving them over and over... A hierarchy of theorems and definitions permits an exponential growth in the formula sizes and primitive proof steps to be described with only a linear growth in the number of symbols used. Of course, this is how ordinary informal mathematics is normally done anyway, but with Metamath it can be done with absolute rigor and precision."

The proof here starts with (2 + 1) = 3, commutes it, and repeatedly multiplies both sides by ten. This is certainly longer than traditional mathematical proofs, e.g., there are a number of steps explicitly shown here to show that we're allowed to do operations such as multiplication. However, while longer, the proof is clearly a manageable size - even though every step is rigorously derived all the way back to the primitive notions of set theory and logic. And while there's a risk of making errors, the many independent verifiers make it much less likely that an incorrect result will be accepted.

This proof heavily relies on the decimal constructor df-dec 12706 developed by Mario Carneiro in 2015. The underlying Metamath language has an intentionally very small set of primitives; it doesn't even have a built-in construct for numbers. Instead, the digits are defined using these primitives, and the decimal constructor is used to make it easy to express larger numbers as combinations of digits.

(Contributed by David A. Wheeler, 29-Jun-2016.) (Shortened by Mario Carneiro using the arithmetic algorithm in mmj2, 30-Jun-2016.)

Assertion
Ref Expression
1kp2ke3k (1000 + 2000) = 3000

Proof of Theorem 1kp2ke3k
StepHypRef Expression
1 1nn0 12516 . . . 4 1 ∈ ℕ0
2 0nn0 12515 . . . 4 0 ∈ ℕ0
31, 2deccl 12720 . . 3 10 ∈ ℕ0
43, 2deccl 12720 . 2 100 ∈ ℕ0
5 2nn0 12517 . . . 4 2 ∈ ℕ0
65, 2deccl 12720 . . 3 20 ∈ ℕ0
76, 2deccl 12720 . 2 200 ∈ ℕ0
8 eqid 2725 . 2 1000 = 1000
9 eqid 2725 . 2 2000 = 2000
10 eqid 2725 . . 3 100 = 100
11 eqid 2725 . . 3 200 = 200
12 eqid 2725 . . . 4 10 = 10
13 eqid 2725 . . . 4 20 = 20
14 1p2e3 12383 . . . 4 (1 + 2) = 3
15 00id 11417 . . . 4 (0 + 0) = 0
161, 2, 5, 2, 12, 13, 14, 15decadd 12759 . . 3 (10 + 20) = 30
173, 2, 6, 2, 10, 11, 16, 15decadd 12759 . 2 (100 + 200) = 300
184, 2, 7, 2, 8, 9, 17, 15decadd 12759 1 (1000 + 2000) = 3000
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  (class class class)co 7414  0cc0 11136  1c1 11137   + caddc 11139  2c2 12295  3c3 12296  cdc 12705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5292  ax-nul 5299  ax-pow 5357  ax-pr 5421  ax-un 7736  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3958  df-nul 4317  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7417  df-om 7867  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-er 8721  df-en 8961  df-dom 8962  df-sdom 8963  df-pnf 11278  df-mnf 11279  df-ltxr 11281  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12501  df-dec 12706
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator