 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  1kp2ke3k Structured version   Visualization version   GIF version

Theorem 1kp2ke3k 27646
 Description: Example for df-dec 11697, 1000 + 2000 = 3000. This proof disproves (by counterexample) the assertion of Hao Wang, who stated, "There is a theorem in the primitive notation of set theory that corresponds to the arithmetic theorem 1000 + 2000 = 3000. The formula would be forbiddingly long... even if (one) knows the definitions and is asked to simplify the long formula according to them, chances are he will make errors and arrive at some incorrect result." (Hao Wang, "Theory and practice in mathematics" , In Thomas Tymoczko, editor, New Directions in the Philosophy of Mathematics, pp 129-152, Birkauser Boston, Inc., Boston, 1986. (QA8.6.N48). The quote itself is on page 140.) This is noted in Metamath: A Computer Language for Pure Mathematics by Norman Megill (2007) section 1.1.3. Megill then states, "A number of writers have conveyed the impression that the kind of absolute rigor provided by Metamath is an impossible dream, suggesting that a complete, formal verification of a typical theorem would take millions of steps in untold volumes of books... These writers assume, however, that in order to achieve the kind of complete formal verification they desire one must break down a proof into individual primitive steps that make direct reference to the axioms. This is not necessary. There is no reason not to make use of previously proved theorems rather than proving them over and over... A hierarchy of theorems and definitions permits an exponential growth in the formula sizes and primitive proof steps to be described with only a linear growth in the number of symbols used. Of course, this is how ordinary informal mathematics is normally done anyway, but with Metamath it can be done with absolute rigor and precision." The proof here starts with (2 + 1) = 3, commutes it, and repeatedly multiplies both sides by ten. This is certainly longer than traditional mathematical proofs, e.g., there are a number of steps explicitly shown here to show that we're allowed to do operations such as multiplication. However, while longer, the proof is clearly a manageable size - even though every step is rigorously derived all the way back to the primitive notions of set theory and logic. And while there's a risk of making errors, the many independent verifiers make it much less likely that an incorrect result will be accepted. This proof heavily relies on the decimal constructor df-dec 11697 developed by Mario Carneiro in 2015. The underlying Metamath language has an intentionally very small set of primitives; it doesn't even have a built-in construct for numbers. Instead, the digits are defined using these primitives, and the decimal constructor is used to make it easy to express larger numbers as combinations of digits. (Contributed by David A. Wheeler, 29-Jun-2016.) (Shortened by Mario Carneiro using the arithmetic algorithm in mmj2, 30-Jun-2016.)
Assertion
Ref Expression
1kp2ke3k (1000 + 2000) = 3000

Proof of Theorem 1kp2ke3k
StepHypRef Expression
1 1nn0 11511 . . . 4 1 ∈ ℕ0
2 0nn0 11510 . . . 4 0 ∈ ℕ0
31, 2deccl 11715 . . 3 10 ∈ ℕ0
43, 2deccl 11715 . 2 100 ∈ ℕ0
5 2nn0 11512 . . . 4 2 ∈ ℕ0
65, 2deccl 11715 . . 3 20 ∈ ℕ0
76, 2deccl 11715 . 2 200 ∈ ℕ0
8 eqid 2771 . 2 1000 = 1000
9 eqid 2771 . 2 2000 = 2000
10 eqid 2771 . . 3 100 = 100
11 eqid 2771 . . 3 200 = 200
12 eqid 2771 . . . 4 10 = 10
13 eqid 2771 . . . 4 20 = 20
14 1p2e3 11355 . . . 4 (1 + 2) = 3
15 00id 10414 . . . 4 (0 + 0) = 0
161, 2, 5, 2, 12, 13, 14, 15decadd 11772 . . 3 (10 + 20) = 30
173, 2, 6, 2, 10, 11, 16, 15decadd 11772 . 2 (100 + 200) = 300
184, 2, 7, 2, 8, 9, 17, 15decadd 11772 1 (1000 + 2000) = 3000
 Colors of variables: wff setvar class Syntax hints:   = wceq 1631  (class class class)co 6794  0cc0 10139  1c1 10140   + caddc 10142  2c2 11273  3c3 11274  ;cdc 11696 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7097  ax-resscn 10196  ax-1cn 10197  ax-icn 10198  ax-addcl 10199  ax-addrcl 10200  ax-mulcl 10201  ax-mulrcl 10202  ax-mulcom 10203  ax-addass 10204  ax-mulass 10205  ax-distr 10206  ax-i2m1 10207  ax-1ne0 10208  ax-1rid 10209  ax-rnegex 10210  ax-rrecex 10211  ax-cnre 10212  ax-pre-lttri 10213  ax-pre-lttrn 10214  ax-pre-ltadd 10215 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 829  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3589  df-csb 3684  df-dif 3727  df-un 3729  df-in 3731  df-ss 3738  df-pss 3740  df-nul 4065  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5824  df-ord 5870  df-on 5871  df-lim 5872  df-suc 5873  df-iota 5995  df-fun 6034  df-fn 6035  df-f 6036  df-f1 6037  df-fo 6038  df-f1o 6039  df-fv 6040  df-ov 6797  df-om 7214  df-wrecs 7560  df-recs 7622  df-rdg 7660  df-er 7897  df-en 8111  df-dom 8112  df-sdom 8113  df-pnf 10279  df-mnf 10280  df-ltxr 10282  df-nn 11224  df-2 11282  df-3 11283  df-4 11284  df-5 11285  df-6 11286  df-7 11287  df-8 11288  df-9 11289  df-n0 11496  df-dec 11697 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator