Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngopidOLD Structured version   Visualization version   GIF version

Theorem rngopidOLD 37854
Description: Obsolete version of mndpfo 18691 as of 23-Jan-2020. Range of an operation with a left and right identity element. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
rngopidOLD (𝐺 ∈ (Magma ∩ ExId ) → ran 𝐺 = dom dom 𝐺)

Proof of Theorem rngopidOLD
StepHypRef Expression
1 eqid 2730 . . 3 dom dom 𝐺 = dom dom 𝐺
21opidonOLD 37853 . 2 (𝐺 ∈ (Magma ∩ ExId ) → 𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺)
3 forn 6778 . 2 (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺 → ran 𝐺 = dom dom 𝐺)
42, 3syl 17 1 (𝐺 ∈ (Magma ∩ ExId ) → ran 𝐺 = dom dom 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cin 3916   × cxp 5639  dom cdm 5641  ran crn 5642  ontowfo 6512   ExId cexid 37845  Magmacmagm 37849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fo 6520  df-fv 6522  df-ov 7393  df-exid 37846  df-mgmOLD 37850
This theorem is referenced by:  isexid2  37856  ismndo2  37875  exidcl  37877  exidresid  37880
  Copyright terms: Public domain W3C validator