Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngopidOLD Structured version   Visualization version   GIF version

Theorem rngopidOLD 37847
Description: Obsolete version of mndpfo 18684 as of 23-Jan-2020. Range of an operation with a left and right identity element. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
rngopidOLD (𝐺 ∈ (Magma ∩ ExId ) → ran 𝐺 = dom dom 𝐺)

Proof of Theorem rngopidOLD
StepHypRef Expression
1 eqid 2729 . . 3 dom dom 𝐺 = dom dom 𝐺
21opidonOLD 37846 . 2 (𝐺 ∈ (Magma ∩ ExId ) → 𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺)
3 forn 6775 . 2 (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺 → ran 𝐺 = dom dom 𝐺)
42, 3syl 17 1 (𝐺 ∈ (Magma ∩ ExId ) → ran 𝐺 = dom dom 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cin 3913   × cxp 5636  dom cdm 5638  ran crn 5639  ontowfo 6509   ExId cexid 37838  Magmacmagm 37842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fo 6517  df-fv 6519  df-ov 7390  df-exid 37839  df-mgmOLD 37843
This theorem is referenced by:  isexid2  37849  ismndo2  37868  exidcl  37870  exidresid  37873
  Copyright terms: Public domain W3C validator