Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngopidOLD Structured version   Visualization version   GIF version

Theorem rngopidOLD 37024
Description: Obsolete version of mndpfo 18682 as of 23-Jan-2020. Range of an operation with a left and right identity element. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
rngopidOLD (𝐺 ∈ (Magma ∩ ExId ) → ran 𝐺 = dom dom 𝐺)

Proof of Theorem rngopidOLD
StepHypRef Expression
1 eqid 2730 . . 3 dom dom 𝐺 = dom dom 𝐺
21opidonOLD 37023 . 2 (𝐺 ∈ (Magma ∩ ExId ) → 𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺)
3 forn 6807 . 2 (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺 → ran 𝐺 = dom dom 𝐺)
42, 3syl 17 1 (𝐺 ∈ (Magma ∩ ExId ) → ran 𝐺 = dom dom 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2104  cin 3946   × cxp 5673  dom cdm 5675  ran crn 5676  ontowfo 6540   ExId cexid 37015  Magmacmagm 37019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fo 6548  df-fv 6550  df-ov 7414  df-exid 37016  df-mgmOLD 37020
This theorem is referenced by:  isexid2  37026  ismndo2  37045  exidcl  37047  exidresid  37050
  Copyright terms: Public domain W3C validator