Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1ocnvfv2 | Structured version Visualization version GIF version |
Description: The value of the converse value of a one-to-one onto function. (Contributed by NM, 20-May-2004.) |
Ref | Expression |
---|---|
f1ocnvfv2 | ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝐶)) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ococnv2 6726 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝐹 ∘ ◡𝐹) = ( I ↾ 𝐵)) | |
2 | 1 | fveq1d 6758 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ((𝐹 ∘ ◡𝐹)‘𝐶) = (( I ↾ 𝐵)‘𝐶)) |
3 | 2 | adantr 480 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ((𝐹 ∘ ◡𝐹)‘𝐶) = (( I ↾ 𝐵)‘𝐶)) |
4 | f1ocnv 6712 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) | |
5 | f1of 6700 | . . . 4 ⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐵⟶𝐴) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵⟶𝐴) |
7 | fvco3 6849 | . . 3 ⊢ ((◡𝐹:𝐵⟶𝐴 ∧ 𝐶 ∈ 𝐵) → ((𝐹 ∘ ◡𝐹)‘𝐶) = (𝐹‘(◡𝐹‘𝐶))) | |
8 | 6, 7 | sylan 579 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ((𝐹 ∘ ◡𝐹)‘𝐶) = (𝐹‘(◡𝐹‘𝐶))) |
9 | fvresi 7027 | . . 3 ⊢ (𝐶 ∈ 𝐵 → (( I ↾ 𝐵)‘𝐶) = 𝐶) | |
10 | 9 | adantl 481 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (( I ↾ 𝐵)‘𝐶) = 𝐶) |
11 | 3, 8, 10 | 3eqtr3d 2786 | 1 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝐶)) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 I cid 5479 ◡ccnv 5579 ↾ cres 5582 ∘ ccom 5584 ⟶wf 6414 –1-1-onto→wf1o 6417 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 |
This theorem is referenced by: f1ocnvfvb 7132 fveqf1o 7155 isocnv 7181 f1oiso2 7203 weniso 7205 dif1enlem 8905 dif1en 8907 ordiso2 9204 cantnfle 9359 cantnfp1lem3 9368 cantnflem1b 9374 cantnflem1d 9376 cantnflem1 9377 cnfcom2lem 9389 cnfcom2 9390 cnfcom3lem 9391 acndom2 9741 iunfictbso 9801 ttukeylem7 10202 fpwwe2lem5 10322 fpwwe2lem6 10323 uzrdglem 13605 uzrdgsuci 13608 fzennn 13616 axdc4uzlem 13631 seqf1olem1 13690 seqf1olem2 13691 hashfz1 13988 seqcoll 14106 seqcoll2 14107 summolem3 15354 summolem2a 15355 ackbijnn 15468 prodmolem3 15571 prodmolem2a 15572 sadcaddlem 16092 sadaddlem 16101 sadasslem 16105 sadeq 16107 phimullem 16408 eulerthlem2 16411 catcisolem 17741 mhmf1o 18355 ghmf1o 18779 f1omvdconj 18969 gsumval3eu 19420 gsumval3 19423 lmhmf1o 20223 fidomndrnglem 20491 basqtop 22770 tgqtop 22771 ordthmeolem 22860 symgtgp 23165 imasf1obl 23550 xrhmeo 24015 ovoliunlem2 24572 vitalilem2 24678 dvcnvlem 25045 dvcnv 25046 dvcnvre 25088 efif1olem4 25606 eff1olem 25609 eflog 25637 dvrelog 25697 dvlog 25711 asinrebnd 25956 sqff1o 26236 lgsqrlem4 26402 cnvmot 26806 f1otrg 27136 f1otrge 27137 axcontlem10 27244 usgrnbcnvfv 27635 wlkiswwlks2lem4 28138 clwlkclwwlklem2a4 28262 cnvunop 30181 unopadj 30182 bracnvbra 30376 abliso 31207 cycpmco2lem4 31298 cycpmco2lem5 31299 cycpmco2lem6 31300 cycpmco2lem7 31301 cycpmco2 31302 mndpluscn 31778 cvmfolem 33141 cvmliftlem6 33152 f1ocan1fv 35811 ismtycnv 35887 ismtyima 35888 ismtybndlem 35891 rngoisocnv 36066 lautcnvle 38030 lautcvr 38033 lautj 38034 lautm 38035 ltrncnvatb 38079 ltrncnvel 38083 ltrncnv 38087 ltrneq2 38089 cdlemg17h 38609 diainN 38998 diasslssN 39000 doca3N 39068 dihcnvid2 39214 dochocss 39307 mapdcnvid2 39598 sticksstones19 40049 rmxyval 40653 isomgrsym 45176 mgmhmf1o 45229 |
Copyright terms: Public domain | W3C validator |