![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1ocnvfv2 | Structured version Visualization version GIF version |
Description: The value of the converse value of a one-to-one onto function. (Contributed by NM, 20-May-2004.) |
Ref | Expression |
---|---|
f1ocnvfv2 | ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝐶)) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ococnv2 6860 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝐹 ∘ ◡𝐹) = ( I ↾ 𝐵)) | |
2 | 1 | fveq1d 6893 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ((𝐹 ∘ ◡𝐹)‘𝐶) = (( I ↾ 𝐵)‘𝐶)) |
3 | 2 | adantr 481 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ((𝐹 ∘ ◡𝐹)‘𝐶) = (( I ↾ 𝐵)‘𝐶)) |
4 | f1ocnv 6845 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) | |
5 | f1of 6833 | . . . 4 ⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐵⟶𝐴) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵⟶𝐴) |
7 | fvco3 6990 | . . 3 ⊢ ((◡𝐹:𝐵⟶𝐴 ∧ 𝐶 ∈ 𝐵) → ((𝐹 ∘ ◡𝐹)‘𝐶) = (𝐹‘(◡𝐹‘𝐶))) | |
8 | 6, 7 | sylan 580 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ((𝐹 ∘ ◡𝐹)‘𝐶) = (𝐹‘(◡𝐹‘𝐶))) |
9 | fvresi 7173 | . . 3 ⊢ (𝐶 ∈ 𝐵 → (( I ↾ 𝐵)‘𝐶) = 𝐶) | |
10 | 9 | adantl 482 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (( I ↾ 𝐵)‘𝐶) = 𝐶) |
11 | 3, 8, 10 | 3eqtr3d 2780 | 1 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝐶)) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 I cid 5573 ◡ccnv 5675 ↾ cres 5678 ∘ ccom 5680 ⟶wf 6539 –1-1-onto→wf1o 6542 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 |
This theorem is referenced by: f1ocnvfvb 7279 fveqf1o 7303 isocnv 7329 f1oiso2 7351 weniso 7353 dif1enlem 9158 dif1enlemOLD 9159 dif1en 9162 dif1enOLD 9164 ordiso2 9512 cantnfle 9668 cantnfp1lem3 9677 cantnflem1b 9683 cantnflem1d 9685 cantnflem1 9686 cnfcom2lem 9698 cnfcom2 9699 cnfcom3lem 9700 acndom2 10051 iunfictbso 10111 ttukeylem7 10512 fpwwe2lem5 10632 fpwwe2lem6 10633 uzrdglem 13924 uzrdgsuci 13927 fzennn 13935 axdc4uzlem 13950 seqf1olem1 14009 seqf1olem2 14010 hashfz1 14308 seqcoll 14427 seqcoll2 14428 summolem3 15662 summolem2a 15663 ackbijnn 15776 prodmolem3 15879 prodmolem2a 15880 sadcaddlem 16400 sadaddlem 16409 sadasslem 16413 sadeq 16415 phimullem 16714 eulerthlem2 16717 catcisolem 18062 mhmf1o 18684 ghmf1o 19124 f1omvdconj 19316 gsumval3eu 19774 gsumval3 19777 lmhmf1o 20662 fidomndrnglem 20931 basqtop 23222 tgqtop 23223 ordthmeolem 23312 symgtgp 23617 imasf1obl 24004 xrhmeo 24469 ovoliunlem2 25027 vitalilem2 25133 dvcnvlem 25500 dvcnv 25501 dvcnvre 25543 efif1olem4 26061 eff1olem 26064 eflog 26092 dvrelog 26152 dvlog 26166 asinrebnd 26413 sqff1o 26693 lgsqrlem4 26859 cnvmot 27830 f1otrg 28160 f1otrge 28161 axcontlem10 28269 usgrnbcnvfv 28660 wlkiswwlks2lem4 29164 clwlkclwwlklem2a4 29288 cnvunop 31209 unopadj 31210 bracnvbra 31404 abliso 32235 cycpmco2lem4 32329 cycpmco2lem5 32330 cycpmco2lem6 32331 cycpmco2lem7 32332 cycpmco2 32333 mndpluscn 32975 cvmfolem 34339 cvmliftlem6 34350 f1ocan1fv 36680 ismtycnv 36756 ismtyima 36757 ismtybndlem 36760 rngoisocnv 36935 lautcnvle 39046 lautcvr 39049 lautj 39050 lautm 39051 ltrncnvatb 39095 ltrncnvel 39099 ltrncnv 39103 ltrneq2 39105 cdlemg17h 39625 diainN 40014 diasslssN 40016 doca3N 40084 dihcnvid2 40230 dochocss 40323 mapdcnvid2 40614 sticksstones19 41067 rmxyval 41736 isomgrsym 46583 mgmhmf1o 46636 rngisom1 46797 |
Copyright terms: Public domain | W3C validator |