Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1ocnvfv2 | Structured version Visualization version GIF version |
Description: The value of the converse value of a one-to-one onto function. (Contributed by NM, 20-May-2004.) |
Ref | Expression |
---|---|
f1ocnvfv2 | ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝐶)) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ococnv2 6752 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝐹 ∘ ◡𝐹) = ( I ↾ 𝐵)) | |
2 | 1 | fveq1d 6785 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ((𝐹 ∘ ◡𝐹)‘𝐶) = (( I ↾ 𝐵)‘𝐶)) |
3 | 2 | adantr 481 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ((𝐹 ∘ ◡𝐹)‘𝐶) = (( I ↾ 𝐵)‘𝐶)) |
4 | f1ocnv 6737 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) | |
5 | f1of 6725 | . . . 4 ⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐵⟶𝐴) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵⟶𝐴) |
7 | fvco3 6876 | . . 3 ⊢ ((◡𝐹:𝐵⟶𝐴 ∧ 𝐶 ∈ 𝐵) → ((𝐹 ∘ ◡𝐹)‘𝐶) = (𝐹‘(◡𝐹‘𝐶))) | |
8 | 6, 7 | sylan 580 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ((𝐹 ∘ ◡𝐹)‘𝐶) = (𝐹‘(◡𝐹‘𝐶))) |
9 | fvresi 7054 | . . 3 ⊢ (𝐶 ∈ 𝐵 → (( I ↾ 𝐵)‘𝐶) = 𝐶) | |
10 | 9 | adantl 482 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (( I ↾ 𝐵)‘𝐶) = 𝐶) |
11 | 3, 8, 10 | 3eqtr3d 2787 | 1 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝐶)) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2107 I cid 5489 ◡ccnv 5589 ↾ cres 5592 ∘ ccom 5594 ⟶wf 6433 –1-1-onto→wf1o 6436 ‘cfv 6437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pr 5353 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 |
This theorem is referenced by: f1ocnvfvb 7160 fveqf1o 7184 isocnv 7210 f1oiso2 7232 weniso 7234 dif1enlem 8952 dif1en 8954 ordiso2 9283 cantnfle 9438 cantnfp1lem3 9447 cantnflem1b 9453 cantnflem1d 9455 cantnflem1 9456 cnfcom2lem 9468 cnfcom2 9469 cnfcom3lem 9470 acndom2 9819 iunfictbso 9879 ttukeylem7 10280 fpwwe2lem5 10400 fpwwe2lem6 10401 uzrdglem 13686 uzrdgsuci 13689 fzennn 13697 axdc4uzlem 13712 seqf1olem1 13771 seqf1olem2 13772 hashfz1 14069 seqcoll 14187 seqcoll2 14188 summolem3 15435 summolem2a 15436 ackbijnn 15549 prodmolem3 15652 prodmolem2a 15653 sadcaddlem 16173 sadaddlem 16182 sadasslem 16186 sadeq 16188 phimullem 16489 eulerthlem2 16492 catcisolem 17834 mhmf1o 18449 ghmf1o 18873 f1omvdconj 19063 gsumval3eu 19514 gsumval3 19517 lmhmf1o 20317 fidomndrnglem 20587 basqtop 22871 tgqtop 22872 ordthmeolem 22961 symgtgp 23266 imasf1obl 23653 xrhmeo 24118 ovoliunlem2 24676 vitalilem2 24782 dvcnvlem 25149 dvcnv 25150 dvcnvre 25192 efif1olem4 25710 eff1olem 25713 eflog 25741 dvrelog 25801 dvlog 25815 asinrebnd 26060 sqff1o 26340 lgsqrlem4 26506 cnvmot 26911 f1otrg 27241 f1otrge 27242 axcontlem10 27350 usgrnbcnvfv 27741 wlkiswwlks2lem4 28246 clwlkclwwlklem2a4 28370 cnvunop 30289 unopadj 30290 bracnvbra 30484 abliso 31314 cycpmco2lem4 31405 cycpmco2lem5 31406 cycpmco2lem6 31407 cycpmco2lem7 31408 cycpmco2 31409 mndpluscn 31885 cvmfolem 33250 cvmliftlem6 33261 f1ocan1fv 35893 ismtycnv 35969 ismtyima 35970 ismtybndlem 35973 rngoisocnv 36148 lautcnvle 38110 lautcvr 38113 lautj 38114 lautm 38115 ltrncnvatb 38159 ltrncnvel 38163 ltrncnv 38167 ltrneq2 38169 cdlemg17h 38689 diainN 39078 diasslssN 39080 doca3N 39148 dihcnvid2 39294 dochocss 39387 mapdcnvid2 39678 sticksstones19 40128 rmxyval 40744 isomgrsym 45299 mgmhmf1o 45352 |
Copyright terms: Public domain | W3C validator |