MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1od Structured version   Visualization version   GIF version

Theorem f1od 7607
Description: Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 12-May-2014.)
Hypotheses
Ref Expression
f1od.1 𝐹 = (𝑥𝐴𝐶)
f1od.2 ((𝜑𝑥𝐴) → 𝐶𝑊)
f1od.3 ((𝜑𝑦𝐵) → 𝐷𝑋)
f1od.4 (𝜑 → ((𝑥𝐴𝑦 = 𝐶) ↔ (𝑦𝐵𝑥 = 𝐷)))
Assertion
Ref Expression
f1od (𝜑𝐹:𝐴1-1-onto𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)   𝐹(𝑥,𝑦)   𝑊(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem f1od
StepHypRef Expression
1 f1od.1 . . 3 𝐹 = (𝑥𝐴𝐶)
2 f1od.2 . . 3 ((𝜑𝑥𝐴) → 𝐶𝑊)
3 f1od.3 . . 3 ((𝜑𝑦𝐵) → 𝐷𝑋)
4 f1od.4 . . 3 (𝜑 → ((𝑥𝐴𝑦 = 𝐶) ↔ (𝑦𝐵𝑥 = 𝐷)))
51, 2, 3, 4f1ocnvd 7606 . 2 (𝜑 → (𝐹:𝐴1-1-onto𝐵𝐹 = (𝑦𝐵𝐷)))
65simpld 494 1 (𝜑𝐹:𝐴1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  cmpt 5176  ccnv 5620  1-1-ontowf1o 6488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496
This theorem is referenced by:  cnvf1o  8050  ixpsnf1o  8871  en2d  8920  pw2f1o  9005  seqf1olem1  13958  fsumrev  15696  fprodrev  15894  resf1o  32724  fpwrelmap  32727  actfunsnf1o  34628
  Copyright terms: Public domain W3C validator