MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodrev Structured version   Visualization version   GIF version

Theorem fprodrev 15860
Description: Reversal of a finite product. (Contributed by Scott Fenton, 5-Jan-2018.)
Hypotheses
Ref Expression
fprodshft.1 (𝜑𝐾 ∈ ℤ)
fprodshft.2 (𝜑𝑀 ∈ ℤ)
fprodshft.3 (𝜑𝑁 ∈ ℤ)
fprodshft.4 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
fprodrev.5 (𝑗 = (𝐾𝑘) → 𝐴 = 𝐵)
Assertion
Ref Expression
fprodrev (𝜑 → ∏𝑗 ∈ (𝑀...𝑁)𝐴 = ∏𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))𝐵)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑗   𝑗,𝑘,𝜑   𝑗,𝐾,𝑘   𝜑,𝑘   𝑗,𝑀,𝑘   𝑗,𝑁,𝑘
Allowed substitution hints:   𝐴(𝑗)   𝐵(𝑘)

Proof of Theorem fprodrev
StepHypRef Expression
1 fprodrev.5 . 2 (𝑗 = (𝐾𝑘) → 𝐴 = 𝐵)
2 fzfid 13878 . 2 (𝜑 → ((𝐾𝑁)...(𝐾𝑀)) ∈ Fin)
3 eqid 2736 . . 3 (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ↦ (𝐾𝑗)) = (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ↦ (𝐾𝑗))
4 fprodshft.1 . . . . 5 (𝜑𝐾 ∈ ℤ)
54adantr 481 . . . 4 ((𝜑𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀))) → 𝐾 ∈ ℤ)
6 elfzelz 13441 . . . . 5 (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) → 𝑗 ∈ ℤ)
76adantl 482 . . . 4 ((𝜑𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀))) → 𝑗 ∈ ℤ)
85, 7zsubcld 12612 . . 3 ((𝜑𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀))) → (𝐾𝑗) ∈ ℤ)
94adantr 481 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐾 ∈ ℤ)
10 elfzelz 13441 . . . . 5 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ ℤ)
1110adantl 482 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝑘 ∈ ℤ)
129, 11zsubcld 12612 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐾𝑘) ∈ ℤ)
13 simprr 771 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → 𝑘 = (𝐾𝑗))
14 simprl 769 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → 𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)))
15 fprodshft.2 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
1615adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → 𝑀 ∈ ℤ)
17 fprodshft.3 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
1817adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → 𝑁 ∈ ℤ)
194adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → 𝐾 ∈ ℤ)
206ad2antrl 726 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → 𝑗 ∈ ℤ)
21 fzrev 13504 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ↔ (𝐾𝑗) ∈ (𝑀...𝑁)))
2216, 18, 19, 20, 21syl22anc 837 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ↔ (𝐾𝑗) ∈ (𝑀...𝑁)))
2314, 22mpbid 231 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → (𝐾𝑗) ∈ (𝑀...𝑁))
2413, 23eqeltrd 2838 . . . . 5 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → 𝑘 ∈ (𝑀...𝑁))
25 oveq2 7365 . . . . . . 7 (𝑘 = (𝐾𝑗) → (𝐾𝑘) = (𝐾 − (𝐾𝑗)))
2625ad2antll 727 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → (𝐾𝑘) = (𝐾 − (𝐾𝑗)))
274zcnd 12608 . . . . . . . 8 (𝜑𝐾 ∈ ℂ)
2827adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → 𝐾 ∈ ℂ)
296zcnd 12608 . . . . . . . 8 (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) → 𝑗 ∈ ℂ)
3029ad2antrl 726 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → 𝑗 ∈ ℂ)
3128, 30nncand 11517 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → (𝐾 − (𝐾𝑗)) = 𝑗)
3226, 31eqtr2d 2777 . . . . 5 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → 𝑗 = (𝐾𝑘))
3324, 32jca 512 . . . 4 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘)))
34 simprr 771 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → 𝑗 = (𝐾𝑘))
35 simprl 769 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → 𝑘 ∈ (𝑀...𝑁))
3615adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → 𝑀 ∈ ℤ)
3717adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → 𝑁 ∈ ℤ)
384adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → 𝐾 ∈ ℤ)
3910ad2antrl 726 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → 𝑘 ∈ ℤ)
40 fzrev2 13505 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝐾𝑘) ∈ ((𝐾𝑁)...(𝐾𝑀))))
4136, 37, 38, 39, 40syl22anc 837 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝐾𝑘) ∈ ((𝐾𝑁)...(𝐾𝑀))))
4235, 41mpbid 231 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → (𝐾𝑘) ∈ ((𝐾𝑁)...(𝐾𝑀)))
4334, 42eqeltrd 2838 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → 𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)))
44 oveq2 7365 . . . . . . 7 (𝑗 = (𝐾𝑘) → (𝐾𝑗) = (𝐾 − (𝐾𝑘)))
4544ad2antll 727 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → (𝐾𝑗) = (𝐾 − (𝐾𝑘)))
4627adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → 𝐾 ∈ ℂ)
4710zcnd 12608 . . . . . . . 8 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ ℂ)
4847ad2antrl 726 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → 𝑘 ∈ ℂ)
4946, 48nncand 11517 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → (𝐾 − (𝐾𝑘)) = 𝑘)
5045, 49eqtr2d 2777 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → 𝑘 = (𝐾𝑗))
5143, 50jca 512 . . . 4 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗)))
5233, 51impbida 799 . . 3 (𝜑 → ((𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗)) ↔ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))))
533, 8, 12, 52f1od 7605 . 2 (𝜑 → (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ↦ (𝐾𝑗)):((𝐾𝑁)...(𝐾𝑀))–1-1-onto→(𝑀...𝑁))
54 oveq2 7365 . . . 4 (𝑗 = 𝑘 → (𝐾𝑗) = (𝐾𝑘))
55 ovex 7390 . . . 4 (𝐾𝑘) ∈ V
5654, 3, 55fvmpt 6948 . . 3 (𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀)) → ((𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ↦ (𝐾𝑗))‘𝑘) = (𝐾𝑘))
5756adantl 482 . 2 ((𝜑𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))) → ((𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ↦ (𝐾𝑗))‘𝑘) = (𝐾𝑘))
58 fprodshft.4 . 2 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
591, 2, 53, 57, 58fprodf1o 15829 1 (𝜑 → ∏𝑗 ∈ (𝑀...𝑁)𝐴 = ∏𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  cmpt 5188  cfv 6496  (class class class)co 7357  cc 11049  cmin 11385  cz 12499  ...cfz 13424  cprod 15788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-prod 15789
This theorem is referenced by:  fallfacval3  15895  bcprod  34311
  Copyright terms: Public domain W3C validator