Proof of Theorem fprodrev
Step | Hyp | Ref
| Expression |
1 | | fprodrev.5 |
. 2
⊢ (𝑗 = (𝐾 − 𝑘) → 𝐴 = 𝐵) |
2 | | fzfid 13621 |
. 2
⊢ (𝜑 → ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∈ Fin) |
3 | | eqid 2738 |
. . 3
⊢ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ↦ (𝐾 − 𝑗)) = (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ↦ (𝐾 − 𝑗)) |
4 | | fprodshft.1 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ ℤ) |
5 | 4 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))) → 𝐾 ∈ ℤ) |
6 | | elfzelz 13185 |
. . . . 5
⊢ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) → 𝑗 ∈ ℤ) |
7 | 6 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))) → 𝑗 ∈ ℤ) |
8 | 5, 7 | zsubcld 12360 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))) → (𝐾 − 𝑗) ∈ ℤ) |
9 | 4 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐾 ∈ ℤ) |
10 | | elfzelz 13185 |
. . . . 5
⊢ (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ ℤ) |
11 | 10 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 ∈ ℤ) |
12 | 9, 11 | zsubcld 12360 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐾 − 𝑘) ∈ ℤ) |
13 | | simprr 769 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → 𝑘 = (𝐾 − 𝑗)) |
14 | | simprl 767 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → 𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))) |
15 | | fprodshft.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℤ) |
16 | 15 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → 𝑀 ∈ ℤ) |
17 | | fprodshft.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ ℤ) |
18 | 17 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → 𝑁 ∈ ℤ) |
19 | 4 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → 𝐾 ∈ ℤ) |
20 | 6 | ad2antrl 724 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → 𝑗 ∈ ℤ) |
21 | | fzrev 13248 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ↔ (𝐾 − 𝑗) ∈ (𝑀...𝑁))) |
22 | 16, 18, 19, 20, 21 | syl22anc 835 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ↔ (𝐾 − 𝑗) ∈ (𝑀...𝑁))) |
23 | 14, 22 | mpbid 231 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → (𝐾 − 𝑗) ∈ (𝑀...𝑁)) |
24 | 13, 23 | eqeltrd 2839 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → 𝑘 ∈ (𝑀...𝑁)) |
25 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑘 = (𝐾 − 𝑗) → (𝐾 − 𝑘) = (𝐾 − (𝐾 − 𝑗))) |
26 | 25 | ad2antll 725 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → (𝐾 − 𝑘) = (𝐾 − (𝐾 − 𝑗))) |
27 | 4 | zcnd 12356 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ ℂ) |
28 | 27 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → 𝐾 ∈ ℂ) |
29 | 6 | zcnd 12356 |
. . . . . . . 8
⊢ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) → 𝑗 ∈ ℂ) |
30 | 29 | ad2antrl 724 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → 𝑗 ∈ ℂ) |
31 | 28, 30 | nncand 11267 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → (𝐾 − (𝐾 − 𝑗)) = 𝑗) |
32 | 26, 31 | eqtr2d 2779 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → 𝑗 = (𝐾 − 𝑘)) |
33 | 24, 32 | jca 511 |
. . . 4
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) |
34 | | simprr 769 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → 𝑗 = (𝐾 − 𝑘)) |
35 | | simprl 767 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → 𝑘 ∈ (𝑀...𝑁)) |
36 | 15 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → 𝑀 ∈ ℤ) |
37 | 17 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → 𝑁 ∈ ℤ) |
38 | 4 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → 𝐾 ∈ ℤ) |
39 | 10 | ad2antrl 724 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → 𝑘 ∈ ℤ) |
40 | | fzrev2 13249 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝐾 − 𝑘) ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)))) |
41 | 36, 37, 38, 39, 40 | syl22anc 835 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝐾 − 𝑘) ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)))) |
42 | 35, 41 | mpbid 231 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → (𝐾 − 𝑘) ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))) |
43 | 34, 42 | eqeltrd 2839 |
. . . . 5
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → 𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))) |
44 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑗 = (𝐾 − 𝑘) → (𝐾 − 𝑗) = (𝐾 − (𝐾 − 𝑘))) |
45 | 44 | ad2antll 725 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → (𝐾 − 𝑗) = (𝐾 − (𝐾 − 𝑘))) |
46 | 27 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → 𝐾 ∈ ℂ) |
47 | 10 | zcnd 12356 |
. . . . . . . 8
⊢ (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ ℂ) |
48 | 47 | ad2antrl 724 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → 𝑘 ∈ ℂ) |
49 | 46, 48 | nncand 11267 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → (𝐾 − (𝐾 − 𝑘)) = 𝑘) |
50 | 45, 49 | eqtr2d 2779 |
. . . . 5
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → 𝑘 = (𝐾 − 𝑗)) |
51 | 43, 50 | jca 511 |
. . . 4
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) |
52 | 33, 51 | impbida 797 |
. . 3
⊢ (𝜑 → ((𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗)) ↔ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘)))) |
53 | 3, 8, 12, 52 | f1od 7499 |
. 2
⊢ (𝜑 → (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ↦ (𝐾 − 𝑗)):((𝐾 − 𝑁)...(𝐾 − 𝑀))–1-1-onto→(𝑀...𝑁)) |
54 | | oveq2 7263 |
. . . 4
⊢ (𝑗 = 𝑘 → (𝐾 − 𝑗) = (𝐾 − 𝑘)) |
55 | | ovex 7288 |
. . . 4
⊢ (𝐾 − 𝑘) ∈ V |
56 | 54, 3, 55 | fvmpt 6857 |
. . 3
⊢ (𝑘 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) → ((𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ↦ (𝐾 − 𝑗))‘𝑘) = (𝐾 − 𝑘)) |
57 | 56 | adantl 481 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))) → ((𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ↦ (𝐾 − 𝑗))‘𝑘) = (𝐾 − 𝑘)) |
58 | | fprodshft.4 |
. 2
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
59 | 1, 2, 53, 57, 58 | fprodf1o 15584 |
1
⊢ (𝜑 → ∏𝑗 ∈ (𝑀...𝑁)𝐴 = ∏𝑘 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))𝐵) |