MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodrev Structured version   Visualization version   GIF version

Theorem fprodrev 16025
Description: Reversal of a finite product. (Contributed by Scott Fenton, 5-Jan-2018.)
Hypotheses
Ref Expression
fprodshft.1 (𝜑𝐾 ∈ ℤ)
fprodshft.2 (𝜑𝑀 ∈ ℤ)
fprodshft.3 (𝜑𝑁 ∈ ℤ)
fprodshft.4 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
fprodrev.5 (𝑗 = (𝐾𝑘) → 𝐴 = 𝐵)
Assertion
Ref Expression
fprodrev (𝜑 → ∏𝑗 ∈ (𝑀...𝑁)𝐴 = ∏𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))𝐵)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑗   𝑗,𝑘,𝜑   𝑗,𝐾,𝑘   𝜑,𝑘   𝑗,𝑀,𝑘   𝑗,𝑁,𝑘
Allowed substitution hints:   𝐴(𝑗)   𝐵(𝑘)

Proof of Theorem fprodrev
StepHypRef Expression
1 fprodrev.5 . 2 (𝑗 = (𝐾𝑘) → 𝐴 = 𝐵)
2 fzfid 14024 . 2 (𝜑 → ((𝐾𝑁)...(𝐾𝑀)) ∈ Fin)
3 eqid 2740 . . 3 (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ↦ (𝐾𝑗)) = (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ↦ (𝐾𝑗))
4 fprodshft.1 . . . . 5 (𝜑𝐾 ∈ ℤ)
54adantr 480 . . . 4 ((𝜑𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀))) → 𝐾 ∈ ℤ)
6 elfzelz 13584 . . . . 5 (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) → 𝑗 ∈ ℤ)
76adantl 481 . . . 4 ((𝜑𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀))) → 𝑗 ∈ ℤ)
85, 7zsubcld 12752 . . 3 ((𝜑𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀))) → (𝐾𝑗) ∈ ℤ)
94adantr 480 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐾 ∈ ℤ)
10 elfzelz 13584 . . . . 5 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ ℤ)
1110adantl 481 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝑘 ∈ ℤ)
129, 11zsubcld 12752 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐾𝑘) ∈ ℤ)
13 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → 𝑘 = (𝐾𝑗))
14 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → 𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)))
15 fprodshft.2 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
1615adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → 𝑀 ∈ ℤ)
17 fprodshft.3 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
1817adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → 𝑁 ∈ ℤ)
194adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → 𝐾 ∈ ℤ)
206ad2antrl 727 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → 𝑗 ∈ ℤ)
21 fzrev 13647 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ↔ (𝐾𝑗) ∈ (𝑀...𝑁)))
2216, 18, 19, 20, 21syl22anc 838 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ↔ (𝐾𝑗) ∈ (𝑀...𝑁)))
2314, 22mpbid 232 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → (𝐾𝑗) ∈ (𝑀...𝑁))
2413, 23eqeltrd 2844 . . . . 5 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → 𝑘 ∈ (𝑀...𝑁))
25 oveq2 7456 . . . . . . 7 (𝑘 = (𝐾𝑗) → (𝐾𝑘) = (𝐾 − (𝐾𝑗)))
2625ad2antll 728 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → (𝐾𝑘) = (𝐾 − (𝐾𝑗)))
274zcnd 12748 . . . . . . . 8 (𝜑𝐾 ∈ ℂ)
2827adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → 𝐾 ∈ ℂ)
296zcnd 12748 . . . . . . . 8 (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) → 𝑗 ∈ ℂ)
3029ad2antrl 727 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → 𝑗 ∈ ℂ)
3128, 30nncand 11652 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → (𝐾 − (𝐾𝑗)) = 𝑗)
3226, 31eqtr2d 2781 . . . . 5 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → 𝑗 = (𝐾𝑘))
3324, 32jca 511 . . . 4 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘)))
34 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → 𝑗 = (𝐾𝑘))
35 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → 𝑘 ∈ (𝑀...𝑁))
3615adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → 𝑀 ∈ ℤ)
3717adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → 𝑁 ∈ ℤ)
384adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → 𝐾 ∈ ℤ)
3910ad2antrl 727 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → 𝑘 ∈ ℤ)
40 fzrev2 13648 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝐾𝑘) ∈ ((𝐾𝑁)...(𝐾𝑀))))
4136, 37, 38, 39, 40syl22anc 838 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝐾𝑘) ∈ ((𝐾𝑁)...(𝐾𝑀))))
4235, 41mpbid 232 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → (𝐾𝑘) ∈ ((𝐾𝑁)...(𝐾𝑀)))
4334, 42eqeltrd 2844 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → 𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)))
44 oveq2 7456 . . . . . . 7 (𝑗 = (𝐾𝑘) → (𝐾𝑗) = (𝐾 − (𝐾𝑘)))
4544ad2antll 728 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → (𝐾𝑗) = (𝐾 − (𝐾𝑘)))
4627adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → 𝐾 ∈ ℂ)
4710zcnd 12748 . . . . . . . 8 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ ℂ)
4847ad2antrl 727 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → 𝑘 ∈ ℂ)
4946, 48nncand 11652 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → (𝐾 − (𝐾𝑘)) = 𝑘)
5045, 49eqtr2d 2781 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → 𝑘 = (𝐾𝑗))
5143, 50jca 511 . . . 4 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗)))
5233, 51impbida 800 . . 3 (𝜑 → ((𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗)) ↔ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))))
533, 8, 12, 52f1od 7702 . 2 (𝜑 → (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ↦ (𝐾𝑗)):((𝐾𝑁)...(𝐾𝑀))–1-1-onto→(𝑀...𝑁))
54 oveq2 7456 . . . 4 (𝑗 = 𝑘 → (𝐾𝑗) = (𝐾𝑘))
55 ovex 7481 . . . 4 (𝐾𝑘) ∈ V
5654, 3, 55fvmpt 7029 . . 3 (𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀)) → ((𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ↦ (𝐾𝑗))‘𝑘) = (𝐾𝑘))
5756adantl 481 . 2 ((𝜑𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))) → ((𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ↦ (𝐾𝑗))‘𝑘) = (𝐾𝑘))
58 fprodshft.4 . 2 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
591, 2, 53, 57, 58fprodf1o 15994 1 (𝜑 → ∏𝑗 ∈ (𝑀...𝑁)𝐴 = ∏𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  cmpt 5249  cfv 6573  (class class class)co 7448  cc 11182  cmin 11520  cz 12639  ...cfz 13567  cprod 15951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-prod 15952
This theorem is referenced by:  fallfacval3  16060  bcprod  35700
  Copyright terms: Public domain W3C validator