Proof of Theorem fsumrev
Step | Hyp | Ref
| Expression |
1 | | fsumrev.5 |
. 2
⊢ (𝑗 = (𝐾 − 𝑘) → 𝐴 = 𝐵) |
2 | | fzfid 13074 |
. 2
⊢ (𝜑 → ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∈ Fin) |
3 | | eqid 2825 |
. . 3
⊢ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ↦ (𝐾 − 𝑗)) = (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ↦ (𝐾 − 𝑗)) |
4 | | ovexd 6944 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))) → (𝐾 − 𝑗) ∈ V) |
5 | | ovexd 6944 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐾 − 𝑘) ∈ V) |
6 | | simprr 789 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → 𝑘 = (𝐾 − 𝑗)) |
7 | | simprl 787 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → 𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))) |
8 | | fsumrev.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℤ) |
9 | 8 | adantr 474 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → 𝑀 ∈ ℤ) |
10 | | fsumrev.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ ℤ) |
11 | 10 | adantr 474 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → 𝑁 ∈ ℤ) |
12 | | fsumrev.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ ℤ) |
13 | 12 | adantr 474 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → 𝐾 ∈ ℤ) |
14 | | elfzelz 12642 |
. . . . . . . . 9
⊢ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) → 𝑗 ∈ ℤ) |
15 | 7, 14 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → 𝑗 ∈ ℤ) |
16 | | fzrev 12704 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ↔ (𝐾 − 𝑗) ∈ (𝑀...𝑁))) |
17 | 9, 11, 13, 15, 16 | syl22anc 872 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ↔ (𝐾 − 𝑗) ∈ (𝑀...𝑁))) |
18 | 7, 17 | mpbid 224 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → (𝐾 − 𝑗) ∈ (𝑀...𝑁)) |
19 | 6, 18 | eqeltrd 2906 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → 𝑘 ∈ (𝑀...𝑁)) |
20 | 6 | oveq2d 6926 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → (𝐾 − 𝑘) = (𝐾 − (𝐾 − 𝑗))) |
21 | | zcn 11716 |
. . . . . . . 8
⊢ (𝐾 ∈ ℤ → 𝐾 ∈
ℂ) |
22 | | zcn 11716 |
. . . . . . . 8
⊢ (𝑗 ∈ ℤ → 𝑗 ∈
ℂ) |
23 | | nncan 10638 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (𝐾 − (𝐾 − 𝑗)) = 𝑗) |
24 | 21, 22, 23 | syl2an 589 |
. . . . . . 7
⊢ ((𝐾 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝐾 − (𝐾 − 𝑗)) = 𝑗) |
25 | 12, 15, 24 | syl2an2r 675 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → (𝐾 − (𝐾 − 𝑗)) = 𝑗) |
26 | 20, 25 | eqtr2d 2862 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → 𝑗 = (𝐾 − 𝑘)) |
27 | 19, 26 | jca 507 |
. . . 4
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) |
28 | | simprr 789 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → 𝑗 = (𝐾 − 𝑘)) |
29 | | simprl 787 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → 𝑘 ∈ (𝑀...𝑁)) |
30 | 8 | adantr 474 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → 𝑀 ∈ ℤ) |
31 | 10 | adantr 474 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → 𝑁 ∈ ℤ) |
32 | 12 | adantr 474 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → 𝐾 ∈ ℤ) |
33 | | elfzelz 12642 |
. . . . . . . . 9
⊢ (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ ℤ) |
34 | 29, 33 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → 𝑘 ∈ ℤ) |
35 | | fzrev2 12705 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝐾 − 𝑘) ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)))) |
36 | 30, 31, 32, 34, 35 | syl22anc 872 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝐾 − 𝑘) ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)))) |
37 | 29, 36 | mpbid 224 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → (𝐾 − 𝑘) ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))) |
38 | 28, 37 | eqeltrd 2906 |
. . . . 5
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → 𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))) |
39 | 28 | oveq2d 6926 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → (𝐾 − 𝑗) = (𝐾 − (𝐾 − 𝑘))) |
40 | | zcn 11716 |
. . . . . . . 8
⊢ (𝑘 ∈ ℤ → 𝑘 ∈
ℂ) |
41 | | nncan 10638 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐾 − (𝐾 − 𝑘)) = 𝑘) |
42 | 21, 40, 41 | syl2an 589 |
. . . . . . 7
⊢ ((𝐾 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝐾 − (𝐾 − 𝑘)) = 𝑘) |
43 | 12, 34, 42 | syl2an2r 675 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → (𝐾 − (𝐾 − 𝑘)) = 𝑘) |
44 | 39, 43 | eqtr2d 2862 |
. . . . 5
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → 𝑘 = (𝐾 − 𝑗)) |
45 | 38, 44 | jca 507 |
. . . 4
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) |
46 | 27, 45 | impbida 835 |
. . 3
⊢ (𝜑 → ((𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗)) ↔ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘)))) |
47 | 3, 4, 5, 46 | f1od 7150 |
. 2
⊢ (𝜑 → (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ↦ (𝐾 − 𝑗)):((𝐾 − 𝑁)...(𝐾 − 𝑀))–1-1-onto→(𝑀...𝑁)) |
48 | | oveq2 6918 |
. . . 4
⊢ (𝑗 = 𝑘 → (𝐾 − 𝑗) = (𝐾 − 𝑘)) |
49 | | ovex 6942 |
. . . 4
⊢ (𝐾 − 𝑘) ∈ V |
50 | 48, 3, 49 | fvmpt 6533 |
. . 3
⊢ (𝑘 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) → ((𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ↦ (𝐾 − 𝑗))‘𝑘) = (𝐾 − 𝑘)) |
51 | 50 | adantl 475 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))) → ((𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ↦ (𝐾 − 𝑗))‘𝑘) = (𝐾 − 𝑘)) |
52 | | fsumrev.4 |
. 2
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
53 | 1, 2, 47, 51, 52 | fsumf1o 14838 |
1
⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))𝐵) |