Proof of Theorem fsumrev
| Step | Hyp | Ref
| Expression |
| 1 | | fsumrev.5 |
. 2
⊢ (𝑗 = (𝐾 − 𝑘) → 𝐴 = 𝐵) |
| 2 | | fzfid 14014 |
. 2
⊢ (𝜑 → ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∈ Fin) |
| 3 | | eqid 2737 |
. . 3
⊢ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ↦ (𝐾 − 𝑗)) = (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ↦ (𝐾 − 𝑗)) |
| 4 | | ovexd 7466 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))) → (𝐾 − 𝑗) ∈ V) |
| 5 | | ovexd 7466 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐾 − 𝑘) ∈ V) |
| 6 | | simprr 773 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → 𝑘 = (𝐾 − 𝑗)) |
| 7 | | simprl 771 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → 𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))) |
| 8 | | fsumrev.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 9 | 8 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → 𝑀 ∈ ℤ) |
| 10 | | fsumrev.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 11 | 10 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → 𝑁 ∈ ℤ) |
| 12 | | fsumrev.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ ℤ) |
| 13 | 12 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → 𝐾 ∈ ℤ) |
| 14 | 7 | elfzelzd 13565 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → 𝑗 ∈ ℤ) |
| 15 | | fzrev 13627 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ↔ (𝐾 − 𝑗) ∈ (𝑀...𝑁))) |
| 16 | 9, 11, 13, 14, 15 | syl22anc 839 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ↔ (𝐾 − 𝑗) ∈ (𝑀...𝑁))) |
| 17 | 7, 16 | mpbid 232 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → (𝐾 − 𝑗) ∈ (𝑀...𝑁)) |
| 18 | 6, 17 | eqeltrd 2841 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → 𝑘 ∈ (𝑀...𝑁)) |
| 19 | 6 | oveq2d 7447 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → (𝐾 − 𝑘) = (𝐾 − (𝐾 − 𝑗))) |
| 20 | | zcn 12618 |
. . . . . . . 8
⊢ (𝐾 ∈ ℤ → 𝐾 ∈
ℂ) |
| 21 | | zcn 12618 |
. . . . . . . 8
⊢ (𝑗 ∈ ℤ → 𝑗 ∈
ℂ) |
| 22 | | nncan 11538 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (𝐾 − (𝐾 − 𝑗)) = 𝑗) |
| 23 | 20, 21, 22 | syl2an 596 |
. . . . . . 7
⊢ ((𝐾 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝐾 − (𝐾 − 𝑗)) = 𝑗) |
| 24 | 12, 14, 23 | syl2an2r 685 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → (𝐾 − (𝐾 − 𝑗)) = 𝑗) |
| 25 | 19, 24 | eqtr2d 2778 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → 𝑗 = (𝐾 − 𝑘)) |
| 26 | 18, 25 | jca 511 |
. . . 4
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) |
| 27 | | simprr 773 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → 𝑗 = (𝐾 − 𝑘)) |
| 28 | | simprl 771 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → 𝑘 ∈ (𝑀...𝑁)) |
| 29 | 8 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → 𝑀 ∈ ℤ) |
| 30 | 10 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → 𝑁 ∈ ℤ) |
| 31 | 12 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → 𝐾 ∈ ℤ) |
| 32 | 28 | elfzelzd 13565 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → 𝑘 ∈ ℤ) |
| 33 | | fzrev2 13628 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝐾 − 𝑘) ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)))) |
| 34 | 29, 30, 31, 32, 33 | syl22anc 839 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝐾 − 𝑘) ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)))) |
| 35 | 28, 34 | mpbid 232 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → (𝐾 − 𝑘) ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))) |
| 36 | 27, 35 | eqeltrd 2841 |
. . . . 5
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → 𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))) |
| 37 | 27 | oveq2d 7447 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → (𝐾 − 𝑗) = (𝐾 − (𝐾 − 𝑘))) |
| 38 | | zcn 12618 |
. . . . . . . 8
⊢ (𝑘 ∈ ℤ → 𝑘 ∈
ℂ) |
| 39 | | nncan 11538 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐾 − (𝐾 − 𝑘)) = 𝑘) |
| 40 | 20, 38, 39 | syl2an 596 |
. . . . . . 7
⊢ ((𝐾 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝐾 − (𝐾 − 𝑘)) = 𝑘) |
| 41 | 12, 32, 40 | syl2an2r 685 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → (𝐾 − (𝐾 − 𝑘)) = 𝑘) |
| 42 | 37, 41 | eqtr2d 2778 |
. . . . 5
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → 𝑘 = (𝐾 − 𝑗)) |
| 43 | 36, 42 | jca 511 |
. . . 4
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) |
| 44 | 26, 43 | impbida 801 |
. . 3
⊢ (𝜑 → ((𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗)) ↔ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘)))) |
| 45 | 3, 4, 5, 44 | f1od 7685 |
. 2
⊢ (𝜑 → (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ↦ (𝐾 − 𝑗)):((𝐾 − 𝑁)...(𝐾 − 𝑀))–1-1-onto→(𝑀...𝑁)) |
| 46 | | oveq2 7439 |
. . . 4
⊢ (𝑗 = 𝑘 → (𝐾 − 𝑗) = (𝐾 − 𝑘)) |
| 47 | | ovex 7464 |
. . . 4
⊢ (𝐾 − 𝑘) ∈ V |
| 48 | 46, 3, 47 | fvmpt 7016 |
. . 3
⊢ (𝑘 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) → ((𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ↦ (𝐾 − 𝑗))‘𝑘) = (𝐾 − 𝑘)) |
| 49 | 48 | adantl 481 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))) → ((𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ↦ (𝐾 − 𝑗))‘𝑘) = (𝐾 − 𝑘)) |
| 50 | | fsumrev.4 |
. 2
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
| 51 | 1, 2, 45, 49, 50 | fsumf1o 15759 |
1
⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))𝐵) |