MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumrev Structured version   Visualization version   GIF version

Theorem fsumrev 14797
Description: Reversal of a finite sum. (Contributed by NM, 26-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsumrev.1 (𝜑𝐾 ∈ ℤ)
fsumrev.2 (𝜑𝑀 ∈ ℤ)
fsumrev.3 (𝜑𝑁 ∈ ℤ)
fsumrev.4 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
fsumrev.5 (𝑗 = (𝐾𝑘) → 𝐴 = 𝐵)
Assertion
Ref Expression
fsumrev (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))𝐵)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑗   𝑗,𝑘,𝐾   𝑗,𝑀,𝑘   𝑗,𝑁,𝑘   𝜑,𝑗,𝑘
Allowed substitution hints:   𝐴(𝑗)   𝐵(𝑘)

Proof of Theorem fsumrev
StepHypRef Expression
1 fsumrev.5 . 2 (𝑗 = (𝐾𝑘) → 𝐴 = 𝐵)
2 fzfid 12980 . 2 (𝜑 → ((𝐾𝑁)...(𝐾𝑀)) ∈ Fin)
3 eqid 2765 . . 3 (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ↦ (𝐾𝑗)) = (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ↦ (𝐾𝑗))
4 ovexd 6876 . . 3 ((𝜑𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀))) → (𝐾𝑗) ∈ V)
5 ovexd 6876 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐾𝑘) ∈ V)
6 simprr 789 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → 𝑘 = (𝐾𝑗))
7 simprl 787 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → 𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)))
8 fsumrev.2 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
98adantr 472 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → 𝑀 ∈ ℤ)
10 fsumrev.3 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
1110adantr 472 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → 𝑁 ∈ ℤ)
12 fsumrev.1 . . . . . . . . 9 (𝜑𝐾 ∈ ℤ)
1312adantr 472 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → 𝐾 ∈ ℤ)
14 elfzelz 12549 . . . . . . . . 9 (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) → 𝑗 ∈ ℤ)
157, 14syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → 𝑗 ∈ ℤ)
16 fzrev 12610 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ↔ (𝐾𝑗) ∈ (𝑀...𝑁)))
179, 11, 13, 15, 16syl22anc 867 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ↔ (𝐾𝑗) ∈ (𝑀...𝑁)))
187, 17mpbid 223 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → (𝐾𝑗) ∈ (𝑀...𝑁))
196, 18eqeltrd 2844 . . . . 5 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → 𝑘 ∈ (𝑀...𝑁))
206oveq2d 6858 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → (𝐾𝑘) = (𝐾 − (𝐾𝑗)))
21 zcn 11629 . . . . . . . 8 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
22 zcn 11629 . . . . . . . 8 (𝑗 ∈ ℤ → 𝑗 ∈ ℂ)
23 nncan 10564 . . . . . . . 8 ((𝐾 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (𝐾 − (𝐾𝑗)) = 𝑗)
2421, 22, 23syl2an 589 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝐾 − (𝐾𝑗)) = 𝑗)
2512, 15, 24syl2an2r 675 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → (𝐾 − (𝐾𝑗)) = 𝑗)
2620, 25eqtr2d 2800 . . . . 5 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → 𝑗 = (𝐾𝑘))
2719, 26jca 507 . . . 4 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘)))
28 simprr 789 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → 𝑗 = (𝐾𝑘))
29 simprl 787 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → 𝑘 ∈ (𝑀...𝑁))
308adantr 472 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → 𝑀 ∈ ℤ)
3110adantr 472 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → 𝑁 ∈ ℤ)
3212adantr 472 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → 𝐾 ∈ ℤ)
33 elfzelz 12549 . . . . . . . . 9 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ ℤ)
3429, 33syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → 𝑘 ∈ ℤ)
35 fzrev2 12611 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝐾𝑘) ∈ ((𝐾𝑁)...(𝐾𝑀))))
3630, 31, 32, 34, 35syl22anc 867 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝐾𝑘) ∈ ((𝐾𝑁)...(𝐾𝑀))))
3729, 36mpbid 223 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → (𝐾𝑘) ∈ ((𝐾𝑁)...(𝐾𝑀)))
3828, 37eqeltrd 2844 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → 𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)))
3928oveq2d 6858 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → (𝐾𝑗) = (𝐾 − (𝐾𝑘)))
40 zcn 11629 . . . . . . . 8 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
41 nncan 10564 . . . . . . . 8 ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐾 − (𝐾𝑘)) = 𝑘)
4221, 40, 41syl2an 589 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝐾 − (𝐾𝑘)) = 𝑘)
4312, 34, 42syl2an2r 675 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → (𝐾 − (𝐾𝑘)) = 𝑘)
4439, 43eqtr2d 2800 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → 𝑘 = (𝐾𝑗))
4538, 44jca 507 . . . 4 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗)))
4627, 45impbida 835 . . 3 (𝜑 → ((𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗)) ↔ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))))
473, 4, 5, 46f1od 7083 . 2 (𝜑 → (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ↦ (𝐾𝑗)):((𝐾𝑁)...(𝐾𝑀))–1-1-onto→(𝑀...𝑁))
48 oveq2 6850 . . . 4 (𝑗 = 𝑘 → (𝐾𝑗) = (𝐾𝑘))
49 ovex 6874 . . . 4 (𝐾𝑘) ∈ V
5048, 3, 49fvmpt 6471 . . 3 (𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀)) → ((𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ↦ (𝐾𝑗))‘𝑘) = (𝐾𝑘))
5150adantl 473 . 2 ((𝜑𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))) → ((𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ↦ (𝐾𝑗))‘𝑘) = (𝐾𝑘))
52 fsumrev.4 . 2 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
531, 2, 47, 51, 52fsumf1o 14741 1 (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  Vcvv 3350  cmpt 4888  cfv 6068  (class class class)co 6842  cc 10187  cmin 10520  cz 11624  ...cfz 12533  Σcsu 14703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-sup 8555  df-oi 8622  df-card 9016  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-n0 11539  df-z 11625  df-uz 11887  df-rp 12029  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14126  df-re 14127  df-im 14128  df-sqrt 14262  df-abs 14263  df-clim 14506  df-sum 14704
This theorem is referenced by:  fsumrev2  14800  birthdaylem2  24970
  Copyright terms: Public domain W3C validator