MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsn2g Structured version   Visualization version   GIF version

Theorem fsn2g 6660
Description: A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by Thierry Arnoux, 11-Jul-2020.)
Assertion
Ref Expression
fsn2g (𝐴𝑉 → (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩})))

Proof of Theorem fsn2g
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 sneq 4409 . . . 4 (𝑎 = 𝐴 → {𝑎} = {𝐴})
21feq2d 6268 . . 3 (𝑎 = 𝐴 → (𝐹:{𝑎}⟶𝐵𝐹:{𝐴}⟶𝐵))
3 fveq2 6437 . . . . 5 (𝑎 = 𝐴 → (𝐹𝑎) = (𝐹𝐴))
43eleq1d 2891 . . . 4 (𝑎 = 𝐴 → ((𝐹𝑎) ∈ 𝐵 ↔ (𝐹𝐴) ∈ 𝐵))
5 eqidd 2826 . . . . 5 (𝑎 = 𝐴𝐹 = 𝐹)
6 id 22 . . . . . . 7 (𝑎 = 𝐴𝑎 = 𝐴)
76, 3opeq12d 4633 . . . . . 6 (𝑎 = 𝐴 → ⟨𝑎, (𝐹𝑎)⟩ = ⟨𝐴, (𝐹𝐴)⟩)
87sneqd 4411 . . . . 5 (𝑎 = 𝐴 → {⟨𝑎, (𝐹𝑎)⟩} = {⟨𝐴, (𝐹𝐴)⟩})
95, 8eqeq12d 2840 . . . 4 (𝑎 = 𝐴 → (𝐹 = {⟨𝑎, (𝐹𝑎)⟩} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))
104, 9anbi12d 624 . . 3 (𝑎 = 𝐴 → (((𝐹𝑎) ∈ 𝐵𝐹 = {⟨𝑎, (𝐹𝑎)⟩}) ↔ ((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩})))
112, 10bibi12d 337 . 2 (𝑎 = 𝐴 → ((𝐹:{𝑎}⟶𝐵 ↔ ((𝐹𝑎) ∈ 𝐵𝐹 = {⟨𝑎, (𝐹𝑎)⟩})) ↔ (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))))
12 vex 3417 . . 3 𝑎 ∈ V
1312fsn2 6658 . 2 (𝐹:{𝑎}⟶𝐵 ↔ ((𝐹𝑎) ∈ 𝐵𝐹 = {⟨𝑎, (𝐹𝑎)⟩}))
1411, 13vtoclg 3482 1 (𝐴𝑉 → (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1656  wcel 2164  {csn 4399  cop 4405  wf 6123  cfv 6127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pr 5129
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-br 4876  df-opab 4938  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135
This theorem is referenced by:  fsnex  6798  pt1hmeo  21987  k0004val0  39287  difmapsn  40205
  Copyright terms: Public domain W3C validator