Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fsn2g | Structured version Visualization version GIF version |
Description: A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by Thierry Arnoux, 11-Jul-2020.) |
Ref | Expression |
---|---|
fsn2g | ⊢ (𝐴 ∈ 𝑉 → (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹‘𝐴) ∈ 𝐵 ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4527 | . . 3 ⊢ (𝑎 = 𝐴 → {𝑎} = {𝐴}) | |
2 | 1 | feq2d 6491 | . 2 ⊢ (𝑎 = 𝐴 → (𝐹:{𝑎}⟶𝐵 ↔ 𝐹:{𝐴}⟶𝐵)) |
3 | fveq2 6677 | . . . 4 ⊢ (𝑎 = 𝐴 → (𝐹‘𝑎) = (𝐹‘𝐴)) | |
4 | 3 | eleq1d 2818 | . . 3 ⊢ (𝑎 = 𝐴 → ((𝐹‘𝑎) ∈ 𝐵 ↔ (𝐹‘𝐴) ∈ 𝐵)) |
5 | id 22 | . . . . . 6 ⊢ (𝑎 = 𝐴 → 𝑎 = 𝐴) | |
6 | 5, 3 | opeq12d 4770 | . . . . 5 ⊢ (𝑎 = 𝐴 → 〈𝑎, (𝐹‘𝑎)〉 = 〈𝐴, (𝐹‘𝐴)〉) |
7 | 6 | sneqd 4529 | . . . 4 ⊢ (𝑎 = 𝐴 → {〈𝑎, (𝐹‘𝑎)〉} = {〈𝐴, (𝐹‘𝐴)〉}) |
8 | 7 | eqeq2d 2750 | . . 3 ⊢ (𝑎 = 𝐴 → (𝐹 = {〈𝑎, (𝐹‘𝑎)〉} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉})) |
9 | 4, 8 | anbi12d 634 | . 2 ⊢ (𝑎 = 𝐴 → (((𝐹‘𝑎) ∈ 𝐵 ∧ 𝐹 = {〈𝑎, (𝐹‘𝑎)〉}) ↔ ((𝐹‘𝐴) ∈ 𝐵 ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}))) |
10 | vex 3403 | . . 3 ⊢ 𝑎 ∈ V | |
11 | 10 | fsn2 6911 | . 2 ⊢ (𝐹:{𝑎}⟶𝐵 ↔ ((𝐹‘𝑎) ∈ 𝐵 ∧ 𝐹 = {〈𝑎, (𝐹‘𝑎)〉})) |
12 | 2, 9, 11 | vtoclbg 3473 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹‘𝐴) ∈ 𝐵 ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2114 {csn 4517 〈cop 4523 ⟶wf 6336 ‘cfv 6340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5168 ax-nul 5175 ax-pr 5297 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ral 3059 df-rex 3060 df-reu 3061 df-rab 3063 df-v 3401 df-sbc 3682 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-nul 4213 df-if 4416 df-sn 4518 df-pr 4520 df-op 4524 df-uni 4798 df-br 5032 df-opab 5094 df-id 5430 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 |
This theorem is referenced by: fsnex 7053 pt1hmeo 22560 k0004val0 41333 difmapsn 42313 fsetsniunop 44105 |
Copyright terms: Public domain | W3C validator |