MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsn2g Structured version   Visualization version   GIF version

Theorem fsn2g 6893
Description: A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by Thierry Arnoux, 11-Jul-2020.)
Assertion
Ref Expression
fsn2g (𝐴𝑉 → (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩})))

Proof of Theorem fsn2g
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 sneq 4569 . . 3 (𝑎 = 𝐴 → {𝑎} = {𝐴})
21feq2d 6493 . 2 (𝑎 = 𝐴 → (𝐹:{𝑎}⟶𝐵𝐹:{𝐴}⟶𝐵))
3 fveq2 6663 . . . 4 (𝑎 = 𝐴 → (𝐹𝑎) = (𝐹𝐴))
43eleq1d 2895 . . 3 (𝑎 = 𝐴 → ((𝐹𝑎) ∈ 𝐵 ↔ (𝐹𝐴) ∈ 𝐵))
5 id 22 . . . . . 6 (𝑎 = 𝐴𝑎 = 𝐴)
65, 3opeq12d 4803 . . . . 5 (𝑎 = 𝐴 → ⟨𝑎, (𝐹𝑎)⟩ = ⟨𝐴, (𝐹𝐴)⟩)
76sneqd 4571 . . . 4 (𝑎 = 𝐴 → {⟨𝑎, (𝐹𝑎)⟩} = {⟨𝐴, (𝐹𝐴)⟩})
87eqeq2d 2830 . . 3 (𝑎 = 𝐴 → (𝐹 = {⟨𝑎, (𝐹𝑎)⟩} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))
94, 8anbi12d 632 . 2 (𝑎 = 𝐴 → (((𝐹𝑎) ∈ 𝐵𝐹 = {⟨𝑎, (𝐹𝑎)⟩}) ↔ ((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩})))
10 vex 3496 . . 3 𝑎 ∈ V
1110fsn2 6891 . 2 (𝐹:{𝑎}⟶𝐵 ↔ ((𝐹𝑎) ∈ 𝐵𝐹 = {⟨𝑎, (𝐹𝑎)⟩}))
122, 9, 11vtoclbg 3567 1 (𝐴𝑉 → (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1531  wcel 2108  {csn 4559  cop 4565  wf 6344  cfv 6348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356
This theorem is referenced by:  fsnex  7031  pt1hmeo  22406  k0004val0  40494  difmapsn  41464
  Copyright terms: Public domain W3C validator