![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsn2g | Structured version Visualization version GIF version |
Description: A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by Thierry Arnoux, 11-Jul-2020.) |
Ref | Expression |
---|---|
fsn2g | ⊢ (𝐴 ∈ 𝑉 → (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹‘𝐴) ∈ 𝐵 ∧ 𝐹 = {⟨𝐴, (𝐹‘𝐴)⟩}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4637 | . . 3 ⊢ (𝑎 = 𝐴 → {𝑎} = {𝐴}) | |
2 | 1 | feq2d 6702 | . 2 ⊢ (𝑎 = 𝐴 → (𝐹:{𝑎}⟶𝐵 ↔ 𝐹:{𝐴}⟶𝐵)) |
3 | fveq2 6890 | . . . 4 ⊢ (𝑎 = 𝐴 → (𝐹‘𝑎) = (𝐹‘𝐴)) | |
4 | 3 | eleq1d 2816 | . . 3 ⊢ (𝑎 = 𝐴 → ((𝐹‘𝑎) ∈ 𝐵 ↔ (𝐹‘𝐴) ∈ 𝐵)) |
5 | id 22 | . . . . . 6 ⊢ (𝑎 = 𝐴 → 𝑎 = 𝐴) | |
6 | 5, 3 | opeq12d 4880 | . . . . 5 ⊢ (𝑎 = 𝐴 → ⟨𝑎, (𝐹‘𝑎)⟩ = ⟨𝐴, (𝐹‘𝐴)⟩) |
7 | 6 | sneqd 4639 | . . . 4 ⊢ (𝑎 = 𝐴 → {⟨𝑎, (𝐹‘𝑎)⟩} = {⟨𝐴, (𝐹‘𝐴)⟩}) |
8 | 7 | eqeq2d 2741 | . . 3 ⊢ (𝑎 = 𝐴 → (𝐹 = {⟨𝑎, (𝐹‘𝑎)⟩} ↔ 𝐹 = {⟨𝐴, (𝐹‘𝐴)⟩})) |
9 | 4, 8 | anbi12d 629 | . 2 ⊢ (𝑎 = 𝐴 → (((𝐹‘𝑎) ∈ 𝐵 ∧ 𝐹 = {⟨𝑎, (𝐹‘𝑎)⟩}) ↔ ((𝐹‘𝐴) ∈ 𝐵 ∧ 𝐹 = {⟨𝐴, (𝐹‘𝐴)⟩}))) |
10 | vex 3476 | . . 3 ⊢ 𝑎 ∈ V | |
11 | 10 | fsn2 7135 | . 2 ⊢ (𝐹:{𝑎}⟶𝐵 ↔ ((𝐹‘𝑎) ∈ 𝐵 ∧ 𝐹 = {⟨𝑎, (𝐹‘𝑎)⟩})) |
12 | 2, 9, 11 | vtoclbg 3543 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹‘𝐴) ∈ 𝐵 ∧ 𝐹 = {⟨𝐴, (𝐹‘𝐴)⟩}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1539 ∈ wcel 2104 {csn 4627 ⟨cop 4633 ⟶wf 6538 ‘cfv 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 |
This theorem is referenced by: fsnex 7283 pt1hmeo 23530 k0004val0 43207 difmapsn 44209 fsetsniunop 46057 f1sn2g 47604 |
Copyright terms: Public domain | W3C validator |