MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsn2g Structured version   Visualization version   GIF version

Theorem fsn2g 7141
Description: A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by Thierry Arnoux, 11-Jul-2020.)
Assertion
Ref Expression
fsn2g (𝐴𝑉 → (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩})))

Proof of Theorem fsn2g
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 sneq 4634 . . 3 (𝑎 = 𝐴 → {𝑎} = {𝐴})
21feq2d 6702 . 2 (𝑎 = 𝐴 → (𝐹:{𝑎}⟶𝐵𝐹:{𝐴}⟶𝐵))
3 fveq2 6891 . . . 4 (𝑎 = 𝐴 → (𝐹𝑎) = (𝐹𝐴))
43eleq1d 2813 . . 3 (𝑎 = 𝐴 → ((𝐹𝑎) ∈ 𝐵 ↔ (𝐹𝐴) ∈ 𝐵))
5 id 22 . . . . . 6 (𝑎 = 𝐴𝑎 = 𝐴)
65, 3opeq12d 4877 . . . . 5 (𝑎 = 𝐴 → ⟨𝑎, (𝐹𝑎)⟩ = ⟨𝐴, (𝐹𝐴)⟩)
76sneqd 4636 . . . 4 (𝑎 = 𝐴 → {⟨𝑎, (𝐹𝑎)⟩} = {⟨𝐴, (𝐹𝐴)⟩})
87eqeq2d 2738 . . 3 (𝑎 = 𝐴 → (𝐹 = {⟨𝑎, (𝐹𝑎)⟩} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))
94, 8anbi12d 630 . 2 (𝑎 = 𝐴 → (((𝐹𝑎) ∈ 𝐵𝐹 = {⟨𝑎, (𝐹𝑎)⟩}) ↔ ((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩})))
10 vex 3473 . . 3 𝑎 ∈ V
1110fsn2 7139 . 2 (𝐹:{𝑎}⟶𝐵 ↔ ((𝐹𝑎) ∈ 𝐵𝐹 = {⟨𝑎, (𝐹𝑎)⟩}))
122, 9, 11vtoclbg 3540 1 (𝐴𝑉 → (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  {csn 4624  cop 4630  wf 6538  cfv 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-ne 2936  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550
This theorem is referenced by:  fsnex  7286  pt1hmeo  23703  k0004val0  43556  difmapsn  44557  fsetsniunop  46403  f1sn2g  47875
  Copyright terms: Public domain W3C validator