| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsn2g | Structured version Visualization version GIF version | ||
| Description: A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by Thierry Arnoux, 11-Jul-2020.) |
| Ref | Expression |
|---|---|
| fsn2g | ⊢ (𝐴 ∈ 𝑉 → (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹‘𝐴) ∈ 𝐵 ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 4599 | . . 3 ⊢ (𝑎 = 𝐴 → {𝑎} = {𝐴}) | |
| 2 | 1 | feq2d 6672 | . 2 ⊢ (𝑎 = 𝐴 → (𝐹:{𝑎}⟶𝐵 ↔ 𝐹:{𝐴}⟶𝐵)) |
| 3 | fveq2 6858 | . . . 4 ⊢ (𝑎 = 𝐴 → (𝐹‘𝑎) = (𝐹‘𝐴)) | |
| 4 | 3 | eleq1d 2813 | . . 3 ⊢ (𝑎 = 𝐴 → ((𝐹‘𝑎) ∈ 𝐵 ↔ (𝐹‘𝐴) ∈ 𝐵)) |
| 5 | id 22 | . . . . . 6 ⊢ (𝑎 = 𝐴 → 𝑎 = 𝐴) | |
| 6 | 5, 3 | opeq12d 4845 | . . . . 5 ⊢ (𝑎 = 𝐴 → 〈𝑎, (𝐹‘𝑎)〉 = 〈𝐴, (𝐹‘𝐴)〉) |
| 7 | 6 | sneqd 4601 | . . . 4 ⊢ (𝑎 = 𝐴 → {〈𝑎, (𝐹‘𝑎)〉} = {〈𝐴, (𝐹‘𝐴)〉}) |
| 8 | 7 | eqeq2d 2740 | . . 3 ⊢ (𝑎 = 𝐴 → (𝐹 = {〈𝑎, (𝐹‘𝑎)〉} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉})) |
| 9 | 4, 8 | anbi12d 632 | . 2 ⊢ (𝑎 = 𝐴 → (((𝐹‘𝑎) ∈ 𝐵 ∧ 𝐹 = {〈𝑎, (𝐹‘𝑎)〉}) ↔ ((𝐹‘𝐴) ∈ 𝐵 ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}))) |
| 10 | vex 3451 | . . 3 ⊢ 𝑎 ∈ V | |
| 11 | 10 | fsn2 7108 | . 2 ⊢ (𝐹:{𝑎}⟶𝐵 ↔ ((𝐹‘𝑎) ∈ 𝐵 ∧ 𝐹 = {〈𝑎, (𝐹‘𝑎)〉})) |
| 12 | 2, 9, 11 | vtoclbg 3523 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹‘𝐴) ∈ 𝐵 ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4589 〈cop 4595 ⟶wf 6507 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 |
| This theorem is referenced by: fsnex 7258 pt1hmeo 23693 k0004val0 44143 difmapsn 45206 fsetsniunop 47050 f1sn2g 48839 termcfuncval 49521 |
| Copyright terms: Public domain | W3C validator |