MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsn2g Structured version   Visualization version   GIF version

Theorem fsn2g 7137
Description: A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by Thierry Arnoux, 11-Jul-2020.)
Assertion
Ref Expression
fsn2g (𝐴𝑉 → (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩})))

Proof of Theorem fsn2g
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 sneq 4637 . . 3 (𝑎 = 𝐴 → {𝑎} = {𝐴})
21feq2d 6702 . 2 (𝑎 = 𝐴 → (𝐹:{𝑎}⟶𝐵𝐹:{𝐴}⟶𝐵))
3 fveq2 6890 . . . 4 (𝑎 = 𝐴 → (𝐹𝑎) = (𝐹𝐴))
43eleq1d 2816 . . 3 (𝑎 = 𝐴 → ((𝐹𝑎) ∈ 𝐵 ↔ (𝐹𝐴) ∈ 𝐵))
5 id 22 . . . . . 6 (𝑎 = 𝐴𝑎 = 𝐴)
65, 3opeq12d 4880 . . . . 5 (𝑎 = 𝐴 → ⟨𝑎, (𝐹𝑎)⟩ = ⟨𝐴, (𝐹𝐴)⟩)
76sneqd 4639 . . . 4 (𝑎 = 𝐴 → {⟨𝑎, (𝐹𝑎)⟩} = {⟨𝐴, (𝐹𝐴)⟩})
87eqeq2d 2741 . . 3 (𝑎 = 𝐴 → (𝐹 = {⟨𝑎, (𝐹𝑎)⟩} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))
94, 8anbi12d 629 . 2 (𝑎 = 𝐴 → (((𝐹𝑎) ∈ 𝐵𝐹 = {⟨𝑎, (𝐹𝑎)⟩}) ↔ ((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩})))
10 vex 3476 . . 3 𝑎 ∈ V
1110fsn2 7135 . 2 (𝐹:{𝑎}⟶𝐵 ↔ ((𝐹𝑎) ∈ 𝐵𝐹 = {⟨𝑎, (𝐹𝑎)⟩}))
122, 9, 11vtoclbg 3543 1 (𝐴𝑉 → (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1539  wcel 2104  {csn 4627  cop 4633  wf 6538  cfv 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550
This theorem is referenced by:  fsnex  7283  pt1hmeo  23530  k0004val0  43207  difmapsn  44209  fsetsniunop  46057  f1sn2g  47604
  Copyright terms: Public domain W3C validator