![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fcomptf | Structured version Visualization version GIF version |
Description: Express composition of two functions as a maps-to applying both in sequence. This version has one less distinct variable restriction compared to fcompt 7167. (Contributed by Thierry Arnoux, 30-Jun-2017.) |
Ref | Expression |
---|---|
fcomptf.1 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
fcomptf | ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → (𝐴 ∘ 𝐵) = (𝑥 ∈ 𝐶 ↦ (𝐴‘(𝐵‘𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2908 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2908 | . . . . 5 ⊢ Ⅎ𝑥𝐷 | |
3 | nfcv 2908 | . . . . 5 ⊢ Ⅎ𝑥𝐸 | |
4 | 1, 2, 3 | nff 6743 | . . . 4 ⊢ Ⅎ𝑥 𝐴:𝐷⟶𝐸 |
5 | fcomptf.1 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
6 | nfcv 2908 | . . . . 5 ⊢ Ⅎ𝑥𝐶 | |
7 | 5, 6, 2 | nff 6743 | . . . 4 ⊢ Ⅎ𝑥 𝐵:𝐶⟶𝐷 |
8 | 4, 7 | nfan 1898 | . . 3 ⊢ Ⅎ𝑥(𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) |
9 | ffvelcdm 7115 | . . . . 5 ⊢ ((𝐵:𝐶⟶𝐷 ∧ 𝑥 ∈ 𝐶) → (𝐵‘𝑥) ∈ 𝐷) | |
10 | 9 | adantll 713 | . . . 4 ⊢ (((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) ∧ 𝑥 ∈ 𝐶) → (𝐵‘𝑥) ∈ 𝐷) |
11 | 10 | ex 412 | . . 3 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → (𝑥 ∈ 𝐶 → (𝐵‘𝑥) ∈ 𝐷)) |
12 | 8, 11 | ralrimi 3263 | . 2 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → ∀𝑥 ∈ 𝐶 (𝐵‘𝑥) ∈ 𝐷) |
13 | ffn 6747 | . . . 4 ⊢ (𝐵:𝐶⟶𝐷 → 𝐵 Fn 𝐶) | |
14 | 13 | adantl 481 | . . 3 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → 𝐵 Fn 𝐶) |
15 | 5 | dffn5f 6993 | . . 3 ⊢ (𝐵 Fn 𝐶 ↔ 𝐵 = (𝑥 ∈ 𝐶 ↦ (𝐵‘𝑥))) |
16 | 14, 15 | sylib 218 | . 2 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → 𝐵 = (𝑥 ∈ 𝐶 ↦ (𝐵‘𝑥))) |
17 | ffn 6747 | . . . 4 ⊢ (𝐴:𝐷⟶𝐸 → 𝐴 Fn 𝐷) | |
18 | 17 | adantr 480 | . . 3 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → 𝐴 Fn 𝐷) |
19 | dffn5 6980 | . . 3 ⊢ (𝐴 Fn 𝐷 ↔ 𝐴 = (𝑦 ∈ 𝐷 ↦ (𝐴‘𝑦))) | |
20 | 18, 19 | sylib 218 | . 2 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → 𝐴 = (𝑦 ∈ 𝐷 ↦ (𝐴‘𝑦))) |
21 | fveq2 6920 | . 2 ⊢ (𝑦 = (𝐵‘𝑥) → (𝐴‘𝑦) = (𝐴‘(𝐵‘𝑥))) | |
22 | 12, 16, 20, 21 | fmptcof 7164 | 1 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → (𝐴 ∘ 𝐵) = (𝑥 ∈ 𝐶 ↦ (𝐴‘(𝐵‘𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Ⅎwnfc 2893 ↦ cmpt 5249 ∘ ccom 5704 Fn wfn 6568 ⟶wf 6569 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 |
This theorem is referenced by: ofoprabco 32682 |
Copyright terms: Public domain | W3C validator |