| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fcomptf | Structured version Visualization version GIF version | ||
| Description: Express composition of two functions as a maps-to applying both in sequence. This version has one less distinct variable restriction compared to fcompt 7108. (Contributed by Thierry Arnoux, 30-Jun-2017.) |
| Ref | Expression |
|---|---|
| fcomptf.1 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| fcomptf | ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → (𝐴 ∘ 𝐵) = (𝑥 ∈ 𝐶 ↦ (𝐴‘(𝐵‘𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2892 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2892 | . . . . 5 ⊢ Ⅎ𝑥𝐷 | |
| 3 | nfcv 2892 | . . . . 5 ⊢ Ⅎ𝑥𝐸 | |
| 4 | 1, 2, 3 | nff 6687 | . . . 4 ⊢ Ⅎ𝑥 𝐴:𝐷⟶𝐸 |
| 5 | fcomptf.1 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 6 | nfcv 2892 | . . . . 5 ⊢ Ⅎ𝑥𝐶 | |
| 7 | 5, 6, 2 | nff 6687 | . . . 4 ⊢ Ⅎ𝑥 𝐵:𝐶⟶𝐷 |
| 8 | 4, 7 | nfan 1899 | . . 3 ⊢ Ⅎ𝑥(𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) |
| 9 | ffvelcdm 7056 | . . . . 5 ⊢ ((𝐵:𝐶⟶𝐷 ∧ 𝑥 ∈ 𝐶) → (𝐵‘𝑥) ∈ 𝐷) | |
| 10 | 9 | adantll 714 | . . . 4 ⊢ (((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) ∧ 𝑥 ∈ 𝐶) → (𝐵‘𝑥) ∈ 𝐷) |
| 11 | 10 | ex 412 | . . 3 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → (𝑥 ∈ 𝐶 → (𝐵‘𝑥) ∈ 𝐷)) |
| 12 | 8, 11 | ralrimi 3236 | . 2 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → ∀𝑥 ∈ 𝐶 (𝐵‘𝑥) ∈ 𝐷) |
| 13 | ffn 6691 | . . . 4 ⊢ (𝐵:𝐶⟶𝐷 → 𝐵 Fn 𝐶) | |
| 14 | 13 | adantl 481 | . . 3 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → 𝐵 Fn 𝐶) |
| 15 | 5 | dffn5f 6935 | . . 3 ⊢ (𝐵 Fn 𝐶 ↔ 𝐵 = (𝑥 ∈ 𝐶 ↦ (𝐵‘𝑥))) |
| 16 | 14, 15 | sylib 218 | . 2 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → 𝐵 = (𝑥 ∈ 𝐶 ↦ (𝐵‘𝑥))) |
| 17 | ffn 6691 | . . . 4 ⊢ (𝐴:𝐷⟶𝐸 → 𝐴 Fn 𝐷) | |
| 18 | 17 | adantr 480 | . . 3 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → 𝐴 Fn 𝐷) |
| 19 | dffn5 6922 | . . 3 ⊢ (𝐴 Fn 𝐷 ↔ 𝐴 = (𝑦 ∈ 𝐷 ↦ (𝐴‘𝑦))) | |
| 20 | 18, 19 | sylib 218 | . 2 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → 𝐴 = (𝑦 ∈ 𝐷 ↦ (𝐴‘𝑦))) |
| 21 | fveq2 6861 | . 2 ⊢ (𝑦 = (𝐵‘𝑥) → (𝐴‘𝑦) = (𝐴‘(𝐵‘𝑥))) | |
| 22 | 12, 16, 20, 21 | fmptcof 7105 | 1 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → (𝐴 ∘ 𝐵) = (𝑥 ∈ 𝐶 ↦ (𝐴‘(𝐵‘𝑥)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Ⅎwnfc 2877 ↦ cmpt 5191 ∘ ccom 5645 Fn wfn 6509 ⟶wf 6510 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 |
| This theorem is referenced by: ofoprabco 32595 |
| Copyright terms: Public domain | W3C validator |