Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcomptf Structured version   Visualization version   GIF version

Theorem fcomptf 32642
Description: Express composition of two functions as a maps-to applying both in sequence. This version has one less distinct variable restriction compared to fcompt 7072. (Contributed by Thierry Arnoux, 30-Jun-2017.)
Hypothesis
Ref Expression
fcomptf.1 𝑥𝐵
Assertion
Ref Expression
fcomptf ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → (𝐴𝐵) = (𝑥𝐶 ↦ (𝐴‘(𝐵𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝑥,𝐸
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem fcomptf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2895 . . . . 5 𝑥𝐴
2 nfcv 2895 . . . . 5 𝑥𝐷
3 nfcv 2895 . . . . 5 𝑥𝐸
41, 2, 3nff 6652 . . . 4 𝑥 𝐴:𝐷𝐸
5 fcomptf.1 . . . . 5 𝑥𝐵
6 nfcv 2895 . . . . 5 𝑥𝐶
75, 6, 2nff 6652 . . . 4 𝑥 𝐵:𝐶𝐷
84, 7nfan 1900 . . 3 𝑥(𝐴:𝐷𝐸𝐵:𝐶𝐷)
9 ffvelcdm 7020 . . . . 5 ((𝐵:𝐶𝐷𝑥𝐶) → (𝐵𝑥) ∈ 𝐷)
109adantll 714 . . . 4 (((𝐴:𝐷𝐸𝐵:𝐶𝐷) ∧ 𝑥𝐶) → (𝐵𝑥) ∈ 𝐷)
1110ex 412 . . 3 ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → (𝑥𝐶 → (𝐵𝑥) ∈ 𝐷))
128, 11ralrimi 3231 . 2 ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → ∀𝑥𝐶 (𝐵𝑥) ∈ 𝐷)
13 ffn 6656 . . . 4 (𝐵:𝐶𝐷𝐵 Fn 𝐶)
1413adantl 481 . . 3 ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → 𝐵 Fn 𝐶)
155dffn5f 6899 . . 3 (𝐵 Fn 𝐶𝐵 = (𝑥𝐶 ↦ (𝐵𝑥)))
1614, 15sylib 218 . 2 ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → 𝐵 = (𝑥𝐶 ↦ (𝐵𝑥)))
17 ffn 6656 . . . 4 (𝐴:𝐷𝐸𝐴 Fn 𝐷)
1817adantr 480 . . 3 ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → 𝐴 Fn 𝐷)
19 dffn5 6886 . . 3 (𝐴 Fn 𝐷𝐴 = (𝑦𝐷 ↦ (𝐴𝑦)))
2018, 19sylib 218 . 2 ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → 𝐴 = (𝑦𝐷 ↦ (𝐴𝑦)))
21 fveq2 6828 . 2 (𝑦 = (𝐵𝑥) → (𝐴𝑦) = (𝐴‘(𝐵𝑥)))
2212, 16, 20, 21fmptcof 7069 1 ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → (𝐴𝐵) = (𝑥𝐶 ↦ (𝐴‘(𝐵𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wnfc 2880  cmpt 5174  ccom 5623   Fn wfn 6481  wf 6482  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494
This theorem is referenced by:  ofoprabco  32648
  Copyright terms: Public domain W3C validator