Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcomptf Structured version   Visualization version   GIF version

Theorem fcomptf 30995
Description: Express composition of two functions as a maps-to applying both in sequence. This version has one less distinct variable restriction compared to fcompt 7005. (Contributed by Thierry Arnoux, 30-Jun-2017.)
Hypothesis
Ref Expression
fcomptf.1 𝑥𝐵
Assertion
Ref Expression
fcomptf ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → (𝐴𝐵) = (𝑥𝐶 ↦ (𝐴‘(𝐵𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝑥,𝐸
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem fcomptf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2907 . . . . 5 𝑥𝐴
2 nfcv 2907 . . . . 5 𝑥𝐷
3 nfcv 2907 . . . . 5 𝑥𝐸
41, 2, 3nff 6596 . . . 4 𝑥 𝐴:𝐷𝐸
5 fcomptf.1 . . . . 5 𝑥𝐵
6 nfcv 2907 . . . . 5 𝑥𝐶
75, 6, 2nff 6596 . . . 4 𝑥 𝐵:𝐶𝐷
84, 7nfan 1902 . . 3 𝑥(𝐴:𝐷𝐸𝐵:𝐶𝐷)
9 ffvelrn 6959 . . . . 5 ((𝐵:𝐶𝐷𝑥𝐶) → (𝐵𝑥) ∈ 𝐷)
109adantll 711 . . . 4 (((𝐴:𝐷𝐸𝐵:𝐶𝐷) ∧ 𝑥𝐶) → (𝐵𝑥) ∈ 𝐷)
1110ex 413 . . 3 ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → (𝑥𝐶 → (𝐵𝑥) ∈ 𝐷))
128, 11ralrimi 3141 . 2 ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → ∀𝑥𝐶 (𝐵𝑥) ∈ 𝐷)
13 ffn 6600 . . . 4 (𝐵:𝐶𝐷𝐵 Fn 𝐶)
1413adantl 482 . . 3 ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → 𝐵 Fn 𝐶)
155dffn5f 6840 . . 3 (𝐵 Fn 𝐶𝐵 = (𝑥𝐶 ↦ (𝐵𝑥)))
1614, 15sylib 217 . 2 ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → 𝐵 = (𝑥𝐶 ↦ (𝐵𝑥)))
17 ffn 6600 . . . 4 (𝐴:𝐷𝐸𝐴 Fn 𝐷)
1817adantr 481 . . 3 ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → 𝐴 Fn 𝐷)
19 dffn5 6828 . . 3 (𝐴 Fn 𝐷𝐴 = (𝑦𝐷 ↦ (𝐴𝑦)))
2018, 19sylib 217 . 2 ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → 𝐴 = (𝑦𝐷 ↦ (𝐴𝑦)))
21 fveq2 6774 . 2 (𝑦 = (𝐵𝑥) → (𝐴𝑦) = (𝐴‘(𝐵𝑥)))
2212, 16, 20, 21fmptcof 7002 1 ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → (𝐴𝐵) = (𝑥𝐶 ↦ (𝐴‘(𝐵𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wnfc 2887  cmpt 5157  ccom 5593   Fn wfn 6428  wf 6429  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441
This theorem is referenced by:  ofoprabco  31001
  Copyright terms: Public domain W3C validator