Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fcomptf | Structured version Visualization version GIF version |
Description: Express composition of two functions as a maps-to applying both in sequence. This version has one less distinct variable restriction compared to fcompt 6987. (Contributed by Thierry Arnoux, 30-Jun-2017.) |
Ref | Expression |
---|---|
fcomptf.1 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
fcomptf | ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → (𝐴 ∘ 𝐵) = (𝑥 ∈ 𝐶 ↦ (𝐴‘(𝐵‘𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2906 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2906 | . . . . 5 ⊢ Ⅎ𝑥𝐷 | |
3 | nfcv 2906 | . . . . 5 ⊢ Ⅎ𝑥𝐸 | |
4 | 1, 2, 3 | nff 6580 | . . . 4 ⊢ Ⅎ𝑥 𝐴:𝐷⟶𝐸 |
5 | fcomptf.1 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
6 | nfcv 2906 | . . . . 5 ⊢ Ⅎ𝑥𝐶 | |
7 | 5, 6, 2 | nff 6580 | . . . 4 ⊢ Ⅎ𝑥 𝐵:𝐶⟶𝐷 |
8 | 4, 7 | nfan 1903 | . . 3 ⊢ Ⅎ𝑥(𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) |
9 | ffvelrn 6941 | . . . . 5 ⊢ ((𝐵:𝐶⟶𝐷 ∧ 𝑥 ∈ 𝐶) → (𝐵‘𝑥) ∈ 𝐷) | |
10 | 9 | adantll 710 | . . . 4 ⊢ (((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) ∧ 𝑥 ∈ 𝐶) → (𝐵‘𝑥) ∈ 𝐷) |
11 | 10 | ex 412 | . . 3 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → (𝑥 ∈ 𝐶 → (𝐵‘𝑥) ∈ 𝐷)) |
12 | 8, 11 | ralrimi 3139 | . 2 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → ∀𝑥 ∈ 𝐶 (𝐵‘𝑥) ∈ 𝐷) |
13 | ffn 6584 | . . . 4 ⊢ (𝐵:𝐶⟶𝐷 → 𝐵 Fn 𝐶) | |
14 | 13 | adantl 481 | . . 3 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → 𝐵 Fn 𝐶) |
15 | 5 | dffn5f 6822 | . . 3 ⊢ (𝐵 Fn 𝐶 ↔ 𝐵 = (𝑥 ∈ 𝐶 ↦ (𝐵‘𝑥))) |
16 | 14, 15 | sylib 217 | . 2 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → 𝐵 = (𝑥 ∈ 𝐶 ↦ (𝐵‘𝑥))) |
17 | ffn 6584 | . . . 4 ⊢ (𝐴:𝐷⟶𝐸 → 𝐴 Fn 𝐷) | |
18 | 17 | adantr 480 | . . 3 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → 𝐴 Fn 𝐷) |
19 | dffn5 6810 | . . 3 ⊢ (𝐴 Fn 𝐷 ↔ 𝐴 = (𝑦 ∈ 𝐷 ↦ (𝐴‘𝑦))) | |
20 | 18, 19 | sylib 217 | . 2 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → 𝐴 = (𝑦 ∈ 𝐷 ↦ (𝐴‘𝑦))) |
21 | fveq2 6756 | . 2 ⊢ (𝑦 = (𝐵‘𝑥) → (𝐴‘𝑦) = (𝐴‘(𝐵‘𝑥))) | |
22 | 12, 16, 20, 21 | fmptcof 6984 | 1 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → (𝐴 ∘ 𝐵) = (𝑥 ∈ 𝐶 ↦ (𝐴‘(𝐵‘𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Ⅎwnfc 2886 ↦ cmpt 5153 ∘ ccom 5584 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 |
This theorem is referenced by: ofoprabco 30903 |
Copyright terms: Public domain | W3C validator |