Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fcomptf | Structured version Visualization version GIF version |
Description: Express composition of two functions as a maps-to applying both in sequence. This version has one less distinct variable restriction compared to fcompt 7005. (Contributed by Thierry Arnoux, 30-Jun-2017.) |
Ref | Expression |
---|---|
fcomptf.1 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
fcomptf | ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → (𝐴 ∘ 𝐵) = (𝑥 ∈ 𝐶 ↦ (𝐴‘(𝐵‘𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2907 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2907 | . . . . 5 ⊢ Ⅎ𝑥𝐷 | |
3 | nfcv 2907 | . . . . 5 ⊢ Ⅎ𝑥𝐸 | |
4 | 1, 2, 3 | nff 6596 | . . . 4 ⊢ Ⅎ𝑥 𝐴:𝐷⟶𝐸 |
5 | fcomptf.1 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
6 | nfcv 2907 | . . . . 5 ⊢ Ⅎ𝑥𝐶 | |
7 | 5, 6, 2 | nff 6596 | . . . 4 ⊢ Ⅎ𝑥 𝐵:𝐶⟶𝐷 |
8 | 4, 7 | nfan 1902 | . . 3 ⊢ Ⅎ𝑥(𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) |
9 | ffvelrn 6959 | . . . . 5 ⊢ ((𝐵:𝐶⟶𝐷 ∧ 𝑥 ∈ 𝐶) → (𝐵‘𝑥) ∈ 𝐷) | |
10 | 9 | adantll 711 | . . . 4 ⊢ (((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) ∧ 𝑥 ∈ 𝐶) → (𝐵‘𝑥) ∈ 𝐷) |
11 | 10 | ex 413 | . . 3 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → (𝑥 ∈ 𝐶 → (𝐵‘𝑥) ∈ 𝐷)) |
12 | 8, 11 | ralrimi 3141 | . 2 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → ∀𝑥 ∈ 𝐶 (𝐵‘𝑥) ∈ 𝐷) |
13 | ffn 6600 | . . . 4 ⊢ (𝐵:𝐶⟶𝐷 → 𝐵 Fn 𝐶) | |
14 | 13 | adantl 482 | . . 3 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → 𝐵 Fn 𝐶) |
15 | 5 | dffn5f 6840 | . . 3 ⊢ (𝐵 Fn 𝐶 ↔ 𝐵 = (𝑥 ∈ 𝐶 ↦ (𝐵‘𝑥))) |
16 | 14, 15 | sylib 217 | . 2 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → 𝐵 = (𝑥 ∈ 𝐶 ↦ (𝐵‘𝑥))) |
17 | ffn 6600 | . . . 4 ⊢ (𝐴:𝐷⟶𝐸 → 𝐴 Fn 𝐷) | |
18 | 17 | adantr 481 | . . 3 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → 𝐴 Fn 𝐷) |
19 | dffn5 6828 | . . 3 ⊢ (𝐴 Fn 𝐷 ↔ 𝐴 = (𝑦 ∈ 𝐷 ↦ (𝐴‘𝑦))) | |
20 | 18, 19 | sylib 217 | . 2 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → 𝐴 = (𝑦 ∈ 𝐷 ↦ (𝐴‘𝑦))) |
21 | fveq2 6774 | . 2 ⊢ (𝑦 = (𝐵‘𝑥) → (𝐴‘𝑦) = (𝐴‘(𝐵‘𝑥))) | |
22 | 12, 16, 20, 21 | fmptcof 7002 | 1 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → (𝐴 ∘ 𝐵) = (𝑥 ∈ 𝐶 ↦ (𝐴‘(𝐵‘𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Ⅎwnfc 2887 ↦ cmpt 5157 ∘ ccom 5593 Fn wfn 6428 ⟶wf 6429 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 |
This theorem is referenced by: ofoprabco 31001 |
Copyright terms: Public domain | W3C validator |