Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcomptf Structured version   Visualization version   GIF version

Theorem fcomptf 30897
Description: Express composition of two functions as a maps-to applying both in sequence. This version has one less distinct variable restriction compared to fcompt 6987. (Contributed by Thierry Arnoux, 30-Jun-2017.)
Hypothesis
Ref Expression
fcomptf.1 𝑥𝐵
Assertion
Ref Expression
fcomptf ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → (𝐴𝐵) = (𝑥𝐶 ↦ (𝐴‘(𝐵𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝑥,𝐸
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem fcomptf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2906 . . . . 5 𝑥𝐴
2 nfcv 2906 . . . . 5 𝑥𝐷
3 nfcv 2906 . . . . 5 𝑥𝐸
41, 2, 3nff 6580 . . . 4 𝑥 𝐴:𝐷𝐸
5 fcomptf.1 . . . . 5 𝑥𝐵
6 nfcv 2906 . . . . 5 𝑥𝐶
75, 6, 2nff 6580 . . . 4 𝑥 𝐵:𝐶𝐷
84, 7nfan 1903 . . 3 𝑥(𝐴:𝐷𝐸𝐵:𝐶𝐷)
9 ffvelrn 6941 . . . . 5 ((𝐵:𝐶𝐷𝑥𝐶) → (𝐵𝑥) ∈ 𝐷)
109adantll 710 . . . 4 (((𝐴:𝐷𝐸𝐵:𝐶𝐷) ∧ 𝑥𝐶) → (𝐵𝑥) ∈ 𝐷)
1110ex 412 . . 3 ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → (𝑥𝐶 → (𝐵𝑥) ∈ 𝐷))
128, 11ralrimi 3139 . 2 ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → ∀𝑥𝐶 (𝐵𝑥) ∈ 𝐷)
13 ffn 6584 . . . 4 (𝐵:𝐶𝐷𝐵 Fn 𝐶)
1413adantl 481 . . 3 ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → 𝐵 Fn 𝐶)
155dffn5f 6822 . . 3 (𝐵 Fn 𝐶𝐵 = (𝑥𝐶 ↦ (𝐵𝑥)))
1614, 15sylib 217 . 2 ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → 𝐵 = (𝑥𝐶 ↦ (𝐵𝑥)))
17 ffn 6584 . . . 4 (𝐴:𝐷𝐸𝐴 Fn 𝐷)
1817adantr 480 . . 3 ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → 𝐴 Fn 𝐷)
19 dffn5 6810 . . 3 (𝐴 Fn 𝐷𝐴 = (𝑦𝐷 ↦ (𝐴𝑦)))
2018, 19sylib 217 . 2 ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → 𝐴 = (𝑦𝐷 ↦ (𝐴𝑦)))
21 fveq2 6756 . 2 (𝑦 = (𝐵𝑥) → (𝐴𝑦) = (𝐴‘(𝐵𝑥)))
2212, 16, 20, 21fmptcof 6984 1 ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → (𝐴𝐵) = (𝑥𝐶 ↦ (𝐴‘(𝐵𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wnfc 2886  cmpt 5153  ccom 5584   Fn wfn 6413  wf 6414  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426
This theorem is referenced by:  ofoprabco  30903
  Copyright terms: Public domain W3C validator