Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dffn5f | Structured version Visualization version GIF version |
Description: Representation of a function in terms of its values. (Contributed by Mario Carneiro, 3-Jul-2015.) |
Ref | Expression |
---|---|
dffn5f.1 | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
dffn5f | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffn5 6893 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))) | |
2 | dffn5f.1 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
3 | nfcv 2905 | . . . . 5 ⊢ Ⅎ𝑥𝑧 | |
4 | 2, 3 | nffv 6844 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑧) |
5 | nfcv 2905 | . . . 4 ⊢ Ⅎ𝑧(𝐹‘𝑥) | |
6 | fveq2 6834 | . . . 4 ⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) | |
7 | 4, 5, 6 | cbvmpt 5211 | . . 3 ⊢ (𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧)) = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) |
8 | 7 | eqeq2i 2750 | . 2 ⊢ (𝐹 = (𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧)) ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
9 | 1, 8 | bitri 275 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 Ⅎwnfc 2885 ↦ cmpt 5183 Fn wfn 6483 ‘cfv 6488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5251 ax-nul 5258 ax-pr 5379 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3406 df-v 3445 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4278 df-if 4482 df-sn 4582 df-pr 4584 df-op 4588 df-uni 4861 df-br 5101 df-opab 5163 df-mpt 5184 df-id 5525 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-iota 6440 df-fun 6490 df-fn 6491 df-fv 6496 |
This theorem is referenced by: prdsgsum 19681 lgamgulm2 26295 fcomptf 31346 esumsup 32419 poimirlem16 35949 poimirlem19 35952 pwsgprod 40580 refsum2cnlem1 42953 etransclem2 44165 |
Copyright terms: Public domain | W3C validator |