![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dffn5f | Structured version Visualization version GIF version |
Description: Representation of a function in terms of its values. (Contributed by Mario Carneiro, 3-Jul-2015.) |
Ref | Expression |
---|---|
dffn5f.1 | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
dffn5f | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffn5 6953 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))) | |
2 | dffn5f.1 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
3 | nfcv 2892 | . . . . 5 ⊢ Ⅎ𝑥𝑧 | |
4 | 2, 3 | nffv 6903 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑧) |
5 | nfcv 2892 | . . . 4 ⊢ Ⅎ𝑧(𝐹‘𝑥) | |
6 | fveq2 6893 | . . . 4 ⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) | |
7 | 4, 5, 6 | cbvmpt 5256 | . . 3 ⊢ (𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧)) = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) |
8 | 7 | eqeq2i 2739 | . 2 ⊢ (𝐹 = (𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧)) ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
9 | 1, 8 | bitri 274 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1534 Ⅎwnfc 2876 ↦ cmpt 5228 Fn wfn 6541 ‘cfv 6546 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pr 5425 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3949 df-un 3951 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-iota 6498 df-fun 6548 df-fn 6549 df-fv 6554 |
This theorem is referenced by: prdsgsum 19975 lgamgulm2 27061 fcomptf 32575 esumsup 33935 poimirlem16 37350 poimirlem19 37353 pwsgprod 42234 refsum2cnlem1 44673 etransclem2 45893 |
Copyright terms: Public domain | W3C validator |