| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dffn5f | Structured version Visualization version GIF version | ||
| Description: Representation of a function in terms of its values. (Contributed by Mario Carneiro, 3-Jul-2015.) |
| Ref | Expression |
|---|---|
| dffn5f.1 | ⊢ Ⅎ𝑥𝐹 |
| Ref | Expression |
|---|---|
| dffn5f | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffn5 6880 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))) | |
| 2 | dffn5f.1 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
| 3 | nfcv 2894 | . . . . 5 ⊢ Ⅎ𝑥𝑧 | |
| 4 | 2, 3 | nffv 6832 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑧) |
| 5 | nfcv 2894 | . . . 4 ⊢ Ⅎ𝑧(𝐹‘𝑥) | |
| 6 | fveq2 6822 | . . . 4 ⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) | |
| 7 | 4, 5, 6 | cbvmpt 5193 | . . 3 ⊢ (𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧)) = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) |
| 8 | 7 | eqeq2i 2744 | . 2 ⊢ (𝐹 = (𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧)) ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
| 9 | 1, 8 | bitri 275 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 Ⅎwnfc 2879 ↦ cmpt 5172 Fn wfn 6476 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fn 6484 df-fv 6489 |
| This theorem is referenced by: prdsgsum 19894 lgamgulm2 26974 fcomptf 32638 esumsup 34100 poimirlem16 37682 poimirlem19 37685 pwsgprod 42583 refsum2cnlem1 45080 etransclem2 46280 |
| Copyright terms: Public domain | W3C validator |