MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffn5f Structured version   Visualization version   GIF version

Theorem dffn5f 6822
Description: Representation of a function in terms of its values. (Contributed by Mario Carneiro, 3-Jul-2015.)
Hypothesis
Ref Expression
dffn5f.1 𝑥𝐹
Assertion
Ref Expression
dffn5f (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem dffn5f
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dffn5 6810 . 2 (𝐹 Fn 𝐴𝐹 = (𝑧𝐴 ↦ (𝐹𝑧)))
2 dffn5f.1 . . . . 5 𝑥𝐹
3 nfcv 2906 . . . . 5 𝑥𝑧
42, 3nffv 6766 . . . 4 𝑥(𝐹𝑧)
5 nfcv 2906 . . . 4 𝑧(𝐹𝑥)
6 fveq2 6756 . . . 4 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
74, 5, 6cbvmpt 5181 . . 3 (𝑧𝐴 ↦ (𝐹𝑧)) = (𝑥𝐴 ↦ (𝐹𝑥))
87eqeq2i 2751 . 2 (𝐹 = (𝑧𝐴 ↦ (𝐹𝑧)) ↔ 𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
91, 8bitri 274 1 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wnfc 2886  cmpt 5153   Fn wfn 6413  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426
This theorem is referenced by:  prdsgsum  19497  lgamgulm2  26090  fcomptf  30897  esumsup  31957  poimirlem16  35720  poimirlem19  35723  pwsgprod  40194  refsum2cnlem1  42469  etransclem2  43667
  Copyright terms: Public domain W3C validator