MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffn5f Structured version   Visualization version   GIF version

Theorem dffn5f 6898
Description: Representation of a function in terms of its values. (Contributed by Mario Carneiro, 3-Jul-2015.)
Hypothesis
Ref Expression
dffn5f.1 𝑥𝐹
Assertion
Ref Expression
dffn5f (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem dffn5f
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dffn5 6885 . 2 (𝐹 Fn 𝐴𝐹 = (𝑧𝐴 ↦ (𝐹𝑧)))
2 dffn5f.1 . . . . 5 𝑥𝐹
3 nfcv 2891 . . . . 5 𝑥𝑧
42, 3nffv 6836 . . . 4 𝑥(𝐹𝑧)
5 nfcv 2891 . . . 4 𝑧(𝐹𝑥)
6 fveq2 6826 . . . 4 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
74, 5, 6cbvmpt 5197 . . 3 (𝑧𝐴 ↦ (𝐹𝑧)) = (𝑥𝐴 ↦ (𝐹𝑥))
87eqeq2i 2742 . 2 (𝐹 = (𝑧𝐴 ↦ (𝐹𝑧)) ↔ 𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
91, 8bitri 275 1 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wnfc 2876  cmpt 5176   Fn wfn 6481  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fn 6489  df-fv 6494
This theorem is referenced by:  prdsgsum  19878  lgamgulm2  26962  fcomptf  32615  esumsup  34058  poimirlem16  37618  poimirlem19  37621  pwsgprod  42520  refsum2cnlem1  45018  etransclem2  46221
  Copyright terms: Public domain W3C validator