MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffn5f Structured version   Visualization version   GIF version

Theorem dffn5f 6893
Description: Representation of a function in terms of its values. (Contributed by Mario Carneiro, 3-Jul-2015.)
Hypothesis
Ref Expression
dffn5f.1 𝑥𝐹
Assertion
Ref Expression
dffn5f (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem dffn5f
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dffn5 6880 . 2 (𝐹 Fn 𝐴𝐹 = (𝑧𝐴 ↦ (𝐹𝑧)))
2 dffn5f.1 . . . . 5 𝑥𝐹
3 nfcv 2894 . . . . 5 𝑥𝑧
42, 3nffv 6832 . . . 4 𝑥(𝐹𝑧)
5 nfcv 2894 . . . 4 𝑧(𝐹𝑥)
6 fveq2 6822 . . . 4 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
74, 5, 6cbvmpt 5193 . . 3 (𝑧𝐴 ↦ (𝐹𝑧)) = (𝑥𝐴 ↦ (𝐹𝑥))
87eqeq2i 2744 . 2 (𝐹 = (𝑧𝐴 ↦ (𝐹𝑧)) ↔ 𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
91, 8bitri 275 1 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wnfc 2879  cmpt 5172   Fn wfn 6476  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489
This theorem is referenced by:  prdsgsum  19894  lgamgulm2  26974  fcomptf  32638  esumsup  34100  poimirlem16  37682  poimirlem19  37685  pwsgprod  42583  refsum2cnlem1  45080  etransclem2  46280
  Copyright terms: Public domain W3C validator