Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dffn5f | Structured version Visualization version GIF version |
Description: Representation of a function in terms of its values. (Contributed by Mario Carneiro, 3-Jul-2015.) |
Ref | Expression |
---|---|
dffn5f.1 | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
dffn5f | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffn5 6810 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))) | |
2 | dffn5f.1 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
3 | nfcv 2906 | . . . . 5 ⊢ Ⅎ𝑥𝑧 | |
4 | 2, 3 | nffv 6766 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑧) |
5 | nfcv 2906 | . . . 4 ⊢ Ⅎ𝑧(𝐹‘𝑥) | |
6 | fveq2 6756 | . . . 4 ⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) | |
7 | 4, 5, 6 | cbvmpt 5181 | . . 3 ⊢ (𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧)) = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) |
8 | 7 | eqeq2i 2751 | . 2 ⊢ (𝐹 = (𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧)) ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
9 | 1, 8 | bitri 274 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 Ⅎwnfc 2886 ↦ cmpt 5153 Fn wfn 6413 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 |
This theorem is referenced by: prdsgsum 19497 lgamgulm2 26090 fcomptf 30897 esumsup 31957 poimirlem16 35720 poimirlem19 35723 pwsgprod 40194 refsum2cnlem1 42469 etransclem2 43667 |
Copyright terms: Public domain | W3C validator |