Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  acunirnmpt Structured version   Visualization version   GIF version

Theorem acunirnmpt 30992
Description: Axiom of choice for the union of the range of a mapping to function. (Contributed by Thierry Arnoux, 6-Nov-2019.)
Hypotheses
Ref Expression
acunirnmpt.0 (𝜑𝐴𝑉)
acunirnmpt.1 ((𝜑𝑗𝐴) → 𝐵 ≠ ∅)
acunirnmpt.2 𝐶 = ran (𝑗𝐴𝐵)
Assertion
Ref Expression
acunirnmpt (𝜑 → ∃𝑓(𝑓:𝐶 𝐶 ∧ ∀𝑦𝐶𝑗𝐴 (𝑓𝑦) ∈ 𝐵))
Distinct variable groups:   𝐴,𝑗   𝑓,𝑗,𝑦,𝐶   𝜑,𝑓,𝑗,𝑦
Allowed substitution hints:   𝐴(𝑦,𝑓)   𝐵(𝑦,𝑓,𝑗)   𝑉(𝑦,𝑓,𝑗)

Proof of Theorem acunirnmpt
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . . . 6 ((((𝜑𝑦𝐶) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵)
2 simplll 772 . . . . . . 7 ((((𝜑𝑦𝐶) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → 𝜑)
3 simplr 766 . . . . . . 7 ((((𝜑𝑦𝐶) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → 𝑗𝐴)
4 acunirnmpt.1 . . . . . . 7 ((𝜑𝑗𝐴) → 𝐵 ≠ ∅)
52, 3, 4syl2anc 584 . . . . . 6 ((((𝜑𝑦𝐶) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → 𝐵 ≠ ∅)
61, 5eqnetrd 3013 . . . . 5 ((((𝜑𝑦𝐶) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → 𝑦 ≠ ∅)
7 acunirnmpt.2 . . . . . . . . 9 𝐶 = ran (𝑗𝐴𝐵)
87eleq2i 2832 . . . . . . . 8 (𝑦𝐶𝑦 ∈ ran (𝑗𝐴𝐵))
9 vex 3435 . . . . . . . . 9 𝑦 ∈ V
10 eqid 2740 . . . . . . . . . 10 (𝑗𝐴𝐵) = (𝑗𝐴𝐵)
1110elrnmpt 5864 . . . . . . . . 9 (𝑦 ∈ V → (𝑦 ∈ ran (𝑗𝐴𝐵) ↔ ∃𝑗𝐴 𝑦 = 𝐵))
129, 11ax-mp 5 . . . . . . . 8 (𝑦 ∈ ran (𝑗𝐴𝐵) ↔ ∃𝑗𝐴 𝑦 = 𝐵)
138, 12bitri 274 . . . . . . 7 (𝑦𝐶 ↔ ∃𝑗𝐴 𝑦 = 𝐵)
1413biimpi 215 . . . . . 6 (𝑦𝐶 → ∃𝑗𝐴 𝑦 = 𝐵)
1514adantl 482 . . . . 5 ((𝜑𝑦𝐶) → ∃𝑗𝐴 𝑦 = 𝐵)
166, 15r19.29a 3220 . . . 4 ((𝜑𝑦𝐶) → 𝑦 ≠ ∅)
1716ralrimiva 3110 . . 3 (𝜑 → ∀𝑦𝐶 𝑦 ≠ ∅)
18 acunirnmpt.0 . . . . . 6 (𝜑𝐴𝑉)
19 mptexg 7094 . . . . . 6 (𝐴𝑉 → (𝑗𝐴𝐵) ∈ V)
20 rnexg 7745 . . . . . 6 ((𝑗𝐴𝐵) ∈ V → ran (𝑗𝐴𝐵) ∈ V)
2118, 19, 203syl 18 . . . . 5 (𝜑 → ran (𝑗𝐴𝐵) ∈ V)
227, 21eqeltrid 2845 . . . 4 (𝜑𝐶 ∈ V)
23 raleq 3341 . . . . . 6 (𝑐 = 𝐶 → (∀𝑦𝑐 𝑦 ≠ ∅ ↔ ∀𝑦𝐶 𝑦 ≠ ∅))
24 id 22 . . . . . . . . 9 (𝑐 = 𝐶𝑐 = 𝐶)
25 unieq 4856 . . . . . . . . 9 (𝑐 = 𝐶 𝑐 = 𝐶)
2624, 25feq23d 6593 . . . . . . . 8 (𝑐 = 𝐶 → (𝑓:𝑐 𝑐𝑓:𝐶 𝐶))
27 raleq 3341 . . . . . . . 8 (𝑐 = 𝐶 → (∀𝑦𝑐 (𝑓𝑦) ∈ 𝑦 ↔ ∀𝑦𝐶 (𝑓𝑦) ∈ 𝑦))
2826, 27anbi12d 631 . . . . . . 7 (𝑐 = 𝐶 → ((𝑓:𝑐 𝑐 ∧ ∀𝑦𝑐 (𝑓𝑦) ∈ 𝑦) ↔ (𝑓:𝐶 𝐶 ∧ ∀𝑦𝐶 (𝑓𝑦) ∈ 𝑦)))
2928exbidv 1928 . . . . . 6 (𝑐 = 𝐶 → (∃𝑓(𝑓:𝑐 𝑐 ∧ ∀𝑦𝑐 (𝑓𝑦) ∈ 𝑦) ↔ ∃𝑓(𝑓:𝐶 𝐶 ∧ ∀𝑦𝐶 (𝑓𝑦) ∈ 𝑦)))
3023, 29imbi12d 345 . . . . 5 (𝑐 = 𝐶 → ((∀𝑦𝑐 𝑦 ≠ ∅ → ∃𝑓(𝑓:𝑐 𝑐 ∧ ∀𝑦𝑐 (𝑓𝑦) ∈ 𝑦)) ↔ (∀𝑦𝐶 𝑦 ≠ ∅ → ∃𝑓(𝑓:𝐶 𝐶 ∧ ∀𝑦𝐶 (𝑓𝑦) ∈ 𝑦))))
31 vex 3435 . . . . . 6 𝑐 ∈ V
3231ac5b 10235 . . . . 5 (∀𝑦𝑐 𝑦 ≠ ∅ → ∃𝑓(𝑓:𝑐 𝑐 ∧ ∀𝑦𝑐 (𝑓𝑦) ∈ 𝑦))
3330, 32vtoclg 3504 . . . 4 (𝐶 ∈ V → (∀𝑦𝐶 𝑦 ≠ ∅ → ∃𝑓(𝑓:𝐶 𝐶 ∧ ∀𝑦𝐶 (𝑓𝑦) ∈ 𝑦)))
3422, 33syl 17 . . 3 (𝜑 → (∀𝑦𝐶 𝑦 ≠ ∅ → ∃𝑓(𝑓:𝐶 𝐶 ∧ ∀𝑦𝐶 (𝑓𝑦) ∈ 𝑦)))
3517, 34mpd 15 . 2 (𝜑 → ∃𝑓(𝑓:𝐶 𝐶 ∧ ∀𝑦𝐶 (𝑓𝑦) ∈ 𝑦))
3615adantr 481 . . . . . . 7 (((𝜑𝑦𝐶) ∧ (𝑓𝑦) ∈ 𝑦) → ∃𝑗𝐴 𝑦 = 𝐵)
37 simpllr 773 . . . . . . . . . 10 (((((𝜑𝑦𝐶) ∧ (𝑓𝑦) ∈ 𝑦) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → (𝑓𝑦) ∈ 𝑦)
38 simpr 485 . . . . . . . . . 10 (((((𝜑𝑦𝐶) ∧ (𝑓𝑦) ∈ 𝑦) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵)
3937, 38eleqtrd 2843 . . . . . . . . 9 (((((𝜑𝑦𝐶) ∧ (𝑓𝑦) ∈ 𝑦) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → (𝑓𝑦) ∈ 𝐵)
4039ex 413 . . . . . . . 8 ((((𝜑𝑦𝐶) ∧ (𝑓𝑦) ∈ 𝑦) ∧ 𝑗𝐴) → (𝑦 = 𝐵 → (𝑓𝑦) ∈ 𝐵))
4140reximdva 3205 . . . . . . 7 (((𝜑𝑦𝐶) ∧ (𝑓𝑦) ∈ 𝑦) → (∃𝑗𝐴 𝑦 = 𝐵 → ∃𝑗𝐴 (𝑓𝑦) ∈ 𝐵))
4236, 41mpd 15 . . . . . 6 (((𝜑𝑦𝐶) ∧ (𝑓𝑦) ∈ 𝑦) → ∃𝑗𝐴 (𝑓𝑦) ∈ 𝐵)
4342ex 413 . . . . 5 ((𝜑𝑦𝐶) → ((𝑓𝑦) ∈ 𝑦 → ∃𝑗𝐴 (𝑓𝑦) ∈ 𝐵))
4443ralimdva 3105 . . . 4 (𝜑 → (∀𝑦𝐶 (𝑓𝑦) ∈ 𝑦 → ∀𝑦𝐶𝑗𝐴 (𝑓𝑦) ∈ 𝐵))
4544anim2d 612 . . 3 (𝜑 → ((𝑓:𝐶 𝐶 ∧ ∀𝑦𝐶 (𝑓𝑦) ∈ 𝑦) → (𝑓:𝐶 𝐶 ∧ ∀𝑦𝐶𝑗𝐴 (𝑓𝑦) ∈ 𝐵)))
4645eximdv 1924 . 2 (𝜑 → (∃𝑓(𝑓:𝐶 𝐶 ∧ ∀𝑦𝐶 (𝑓𝑦) ∈ 𝑦) → ∃𝑓(𝑓:𝐶 𝐶 ∧ ∀𝑦𝐶𝑗𝐴 (𝑓𝑦) ∈ 𝐵)))
4735, 46mpd 15 1 (𝜑 → ∃𝑓(𝑓:𝐶 𝐶 ∧ ∀𝑦𝐶𝑗𝐴 (𝑓𝑦) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  wex 1786  wcel 2110  wne 2945  wral 3066  wrex 3067  Vcvv 3431  c0 4262   cuni 4845  cmpt 5162  ran crn 5591  wf 6428  cfv 6432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-ac2 10220
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-en 8717  df-card 9698  df-ac 9873
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator