Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  acunirnmpt Structured version   Visualization version   GIF version

Theorem acunirnmpt 30996
Description: Axiom of choice for the union of the range of a mapping to function. (Contributed by Thierry Arnoux, 6-Nov-2019.)
Hypotheses
Ref Expression
acunirnmpt.0 (𝜑𝐴𝑉)
acunirnmpt.1 ((𝜑𝑗𝐴) → 𝐵 ≠ ∅)
acunirnmpt.2 𝐶 = ran (𝑗𝐴𝐵)
Assertion
Ref Expression
acunirnmpt (𝜑 → ∃𝑓(𝑓:𝐶 𝐶 ∧ ∀𝑦𝐶𝑗𝐴 (𝑓𝑦) ∈ 𝐵))
Distinct variable groups:   𝐴,𝑗   𝑓,𝑗,𝑦,𝐶   𝜑,𝑓,𝑗,𝑦
Allowed substitution hints:   𝐴(𝑦,𝑓)   𝐵(𝑦,𝑓,𝑗)   𝑉(𝑦,𝑓,𝑗)

Proof of Theorem acunirnmpt
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . . . 6 ((((𝜑𝑦𝐶) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵)
2 simplll 772 . . . . . . 7 ((((𝜑𝑦𝐶) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → 𝜑)
3 simplr 766 . . . . . . 7 ((((𝜑𝑦𝐶) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → 𝑗𝐴)
4 acunirnmpt.1 . . . . . . 7 ((𝜑𝑗𝐴) → 𝐵 ≠ ∅)
52, 3, 4syl2anc 584 . . . . . 6 ((((𝜑𝑦𝐶) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → 𝐵 ≠ ∅)
61, 5eqnetrd 3011 . . . . 5 ((((𝜑𝑦𝐶) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → 𝑦 ≠ ∅)
7 acunirnmpt.2 . . . . . . . . 9 𝐶 = ran (𝑗𝐴𝐵)
87eleq2i 2830 . . . . . . . 8 (𝑦𝐶𝑦 ∈ ran (𝑗𝐴𝐵))
9 vex 3436 . . . . . . . . 9 𝑦 ∈ V
10 eqid 2738 . . . . . . . . . 10 (𝑗𝐴𝐵) = (𝑗𝐴𝐵)
1110elrnmpt 5865 . . . . . . . . 9 (𝑦 ∈ V → (𝑦 ∈ ran (𝑗𝐴𝐵) ↔ ∃𝑗𝐴 𝑦 = 𝐵))
129, 11ax-mp 5 . . . . . . . 8 (𝑦 ∈ ran (𝑗𝐴𝐵) ↔ ∃𝑗𝐴 𝑦 = 𝐵)
138, 12bitri 274 . . . . . . 7 (𝑦𝐶 ↔ ∃𝑗𝐴 𝑦 = 𝐵)
1413biimpi 215 . . . . . 6 (𝑦𝐶 → ∃𝑗𝐴 𝑦 = 𝐵)
1514adantl 482 . . . . 5 ((𝜑𝑦𝐶) → ∃𝑗𝐴 𝑦 = 𝐵)
166, 15r19.29a 3218 . . . 4 ((𝜑𝑦𝐶) → 𝑦 ≠ ∅)
1716ralrimiva 3103 . . 3 (𝜑 → ∀𝑦𝐶 𝑦 ≠ ∅)
18 acunirnmpt.0 . . . . . 6 (𝜑𝐴𝑉)
19 mptexg 7097 . . . . . 6 (𝐴𝑉 → (𝑗𝐴𝐵) ∈ V)
20 rnexg 7751 . . . . . 6 ((𝑗𝐴𝐵) ∈ V → ran (𝑗𝐴𝐵) ∈ V)
2118, 19, 203syl 18 . . . . 5 (𝜑 → ran (𝑗𝐴𝐵) ∈ V)
227, 21eqeltrid 2843 . . . 4 (𝜑𝐶 ∈ V)
23 raleq 3342 . . . . . 6 (𝑐 = 𝐶 → (∀𝑦𝑐 𝑦 ≠ ∅ ↔ ∀𝑦𝐶 𝑦 ≠ ∅))
24 id 22 . . . . . . . . 9 (𝑐 = 𝐶𝑐 = 𝐶)
25 unieq 4850 . . . . . . . . 9 (𝑐 = 𝐶 𝑐 = 𝐶)
2624, 25feq23d 6595 . . . . . . . 8 (𝑐 = 𝐶 → (𝑓:𝑐 𝑐𝑓:𝐶 𝐶))
27 raleq 3342 . . . . . . . 8 (𝑐 = 𝐶 → (∀𝑦𝑐 (𝑓𝑦) ∈ 𝑦 ↔ ∀𝑦𝐶 (𝑓𝑦) ∈ 𝑦))
2826, 27anbi12d 631 . . . . . . 7 (𝑐 = 𝐶 → ((𝑓:𝑐 𝑐 ∧ ∀𝑦𝑐 (𝑓𝑦) ∈ 𝑦) ↔ (𝑓:𝐶 𝐶 ∧ ∀𝑦𝐶 (𝑓𝑦) ∈ 𝑦)))
2928exbidv 1924 . . . . . 6 (𝑐 = 𝐶 → (∃𝑓(𝑓:𝑐 𝑐 ∧ ∀𝑦𝑐 (𝑓𝑦) ∈ 𝑦) ↔ ∃𝑓(𝑓:𝐶 𝐶 ∧ ∀𝑦𝐶 (𝑓𝑦) ∈ 𝑦)))
3023, 29imbi12d 345 . . . . 5 (𝑐 = 𝐶 → ((∀𝑦𝑐 𝑦 ≠ ∅ → ∃𝑓(𝑓:𝑐 𝑐 ∧ ∀𝑦𝑐 (𝑓𝑦) ∈ 𝑦)) ↔ (∀𝑦𝐶 𝑦 ≠ ∅ → ∃𝑓(𝑓:𝐶 𝐶 ∧ ∀𝑦𝐶 (𝑓𝑦) ∈ 𝑦))))
31 vex 3436 . . . . . 6 𝑐 ∈ V
3231ac5b 10234 . . . . 5 (∀𝑦𝑐 𝑦 ≠ ∅ → ∃𝑓(𝑓:𝑐 𝑐 ∧ ∀𝑦𝑐 (𝑓𝑦) ∈ 𝑦))
3330, 32vtoclg 3505 . . . 4 (𝐶 ∈ V → (∀𝑦𝐶 𝑦 ≠ ∅ → ∃𝑓(𝑓:𝐶 𝐶 ∧ ∀𝑦𝐶 (𝑓𝑦) ∈ 𝑦)))
3422, 33syl 17 . . 3 (𝜑 → (∀𝑦𝐶 𝑦 ≠ ∅ → ∃𝑓(𝑓:𝐶 𝐶 ∧ ∀𝑦𝐶 (𝑓𝑦) ∈ 𝑦)))
3517, 34mpd 15 . 2 (𝜑 → ∃𝑓(𝑓:𝐶 𝐶 ∧ ∀𝑦𝐶 (𝑓𝑦) ∈ 𝑦))
3615adantr 481 . . . . . . 7 (((𝜑𝑦𝐶) ∧ (𝑓𝑦) ∈ 𝑦) → ∃𝑗𝐴 𝑦 = 𝐵)
37 simpllr 773 . . . . . . . . . 10 (((((𝜑𝑦𝐶) ∧ (𝑓𝑦) ∈ 𝑦) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → (𝑓𝑦) ∈ 𝑦)
38 simpr 485 . . . . . . . . . 10 (((((𝜑𝑦𝐶) ∧ (𝑓𝑦) ∈ 𝑦) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵)
3937, 38eleqtrd 2841 . . . . . . . . 9 (((((𝜑𝑦𝐶) ∧ (𝑓𝑦) ∈ 𝑦) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → (𝑓𝑦) ∈ 𝐵)
4039ex 413 . . . . . . . 8 ((((𝜑𝑦𝐶) ∧ (𝑓𝑦) ∈ 𝑦) ∧ 𝑗𝐴) → (𝑦 = 𝐵 → (𝑓𝑦) ∈ 𝐵))
4140reximdva 3203 . . . . . . 7 (((𝜑𝑦𝐶) ∧ (𝑓𝑦) ∈ 𝑦) → (∃𝑗𝐴 𝑦 = 𝐵 → ∃𝑗𝐴 (𝑓𝑦) ∈ 𝐵))
4236, 41mpd 15 . . . . . 6 (((𝜑𝑦𝐶) ∧ (𝑓𝑦) ∈ 𝑦) → ∃𝑗𝐴 (𝑓𝑦) ∈ 𝐵)
4342ex 413 . . . . 5 ((𝜑𝑦𝐶) → ((𝑓𝑦) ∈ 𝑦 → ∃𝑗𝐴 (𝑓𝑦) ∈ 𝐵))
4443ralimdva 3108 . . . 4 (𝜑 → (∀𝑦𝐶 (𝑓𝑦) ∈ 𝑦 → ∀𝑦𝐶𝑗𝐴 (𝑓𝑦) ∈ 𝐵))
4544anim2d 612 . . 3 (𝜑 → ((𝑓:𝐶 𝐶 ∧ ∀𝑦𝐶 (𝑓𝑦) ∈ 𝑦) → (𝑓:𝐶 𝐶 ∧ ∀𝑦𝐶𝑗𝐴 (𝑓𝑦) ∈ 𝐵)))
4645eximdv 1920 . 2 (𝜑 → (∃𝑓(𝑓:𝐶 𝐶 ∧ ∀𝑦𝐶 (𝑓𝑦) ∈ 𝑦) → ∃𝑓(𝑓:𝐶 𝐶 ∧ ∀𝑦𝐶𝑗𝐴 (𝑓𝑦) ∈ 𝐵)))
4735, 46mpd 15 1 (𝜑 → ∃𝑓(𝑓:𝐶 𝐶 ∧ ∀𝑦𝐶𝑗𝐴 (𝑓𝑦) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  wne 2943  wral 3064  wrex 3065  Vcvv 3432  c0 4256   cuni 4839  cmpt 5157  ran crn 5590  wf 6429  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-ac2 10219
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-en 8734  df-card 9697  df-ac 9872
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator