Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  acunirnmpt Structured version   Visualization version   GIF version

Theorem acunirnmpt 31575
Description: Axiom of choice for the union of the range of a mapping to function. (Contributed by Thierry Arnoux, 6-Nov-2019.)
Hypotheses
Ref Expression
acunirnmpt.0 (𝜑𝐴𝑉)
acunirnmpt.1 ((𝜑𝑗𝐴) → 𝐵 ≠ ∅)
acunirnmpt.2 𝐶 = ran (𝑗𝐴𝐵)
Assertion
Ref Expression
acunirnmpt (𝜑 → ∃𝑓(𝑓:𝐶 𝐶 ∧ ∀𝑦𝐶𝑗𝐴 (𝑓𝑦) ∈ 𝐵))
Distinct variable groups:   𝐴,𝑗   𝑓,𝑗,𝑦,𝐶   𝜑,𝑓,𝑗,𝑦
Allowed substitution hints:   𝐴(𝑦,𝑓)   𝐵(𝑦,𝑓,𝑗)   𝑉(𝑦,𝑓,𝑗)

Proof of Theorem acunirnmpt
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . . . 6 ((((𝜑𝑦𝐶) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵)
2 simplll 773 . . . . . . 7 ((((𝜑𝑦𝐶) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → 𝜑)
3 simplr 767 . . . . . . 7 ((((𝜑𝑦𝐶) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → 𝑗𝐴)
4 acunirnmpt.1 . . . . . . 7 ((𝜑𝑗𝐴) → 𝐵 ≠ ∅)
52, 3, 4syl2anc 584 . . . . . 6 ((((𝜑𝑦𝐶) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → 𝐵 ≠ ∅)
61, 5eqnetrd 3011 . . . . 5 ((((𝜑𝑦𝐶) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → 𝑦 ≠ ∅)
7 acunirnmpt.2 . . . . . . . . 9 𝐶 = ran (𝑗𝐴𝐵)
87eleq2i 2829 . . . . . . . 8 (𝑦𝐶𝑦 ∈ ran (𝑗𝐴𝐵))
9 vex 3449 . . . . . . . . 9 𝑦 ∈ V
10 eqid 2736 . . . . . . . . . 10 (𝑗𝐴𝐵) = (𝑗𝐴𝐵)
1110elrnmpt 5911 . . . . . . . . 9 (𝑦 ∈ V → (𝑦 ∈ ran (𝑗𝐴𝐵) ↔ ∃𝑗𝐴 𝑦 = 𝐵))
129, 11ax-mp 5 . . . . . . . 8 (𝑦 ∈ ran (𝑗𝐴𝐵) ↔ ∃𝑗𝐴 𝑦 = 𝐵)
138, 12bitri 274 . . . . . . 7 (𝑦𝐶 ↔ ∃𝑗𝐴 𝑦 = 𝐵)
1413biimpi 215 . . . . . 6 (𝑦𝐶 → ∃𝑗𝐴 𝑦 = 𝐵)
1514adantl 482 . . . . 5 ((𝜑𝑦𝐶) → ∃𝑗𝐴 𝑦 = 𝐵)
166, 15r19.29a 3159 . . . 4 ((𝜑𝑦𝐶) → 𝑦 ≠ ∅)
1716ralrimiva 3143 . . 3 (𝜑 → ∀𝑦𝐶 𝑦 ≠ ∅)
18 acunirnmpt.0 . . . . . 6 (𝜑𝐴𝑉)
19 mptexg 7171 . . . . . 6 (𝐴𝑉 → (𝑗𝐴𝐵) ∈ V)
20 rnexg 7841 . . . . . 6 ((𝑗𝐴𝐵) ∈ V → ran (𝑗𝐴𝐵) ∈ V)
2118, 19, 203syl 18 . . . . 5 (𝜑 → ran (𝑗𝐴𝐵) ∈ V)
227, 21eqeltrid 2842 . . . 4 (𝜑𝐶 ∈ V)
23 raleq 3309 . . . . . 6 (𝑐 = 𝐶 → (∀𝑦𝑐 𝑦 ≠ ∅ ↔ ∀𝑦𝐶 𝑦 ≠ ∅))
24 id 22 . . . . . . . . 9 (𝑐 = 𝐶𝑐 = 𝐶)
25 unieq 4876 . . . . . . . . 9 (𝑐 = 𝐶 𝑐 = 𝐶)
2624, 25feq23d 6663 . . . . . . . 8 (𝑐 = 𝐶 → (𝑓:𝑐 𝑐𝑓:𝐶 𝐶))
27 raleq 3309 . . . . . . . 8 (𝑐 = 𝐶 → (∀𝑦𝑐 (𝑓𝑦) ∈ 𝑦 ↔ ∀𝑦𝐶 (𝑓𝑦) ∈ 𝑦))
2826, 27anbi12d 631 . . . . . . 7 (𝑐 = 𝐶 → ((𝑓:𝑐 𝑐 ∧ ∀𝑦𝑐 (𝑓𝑦) ∈ 𝑦) ↔ (𝑓:𝐶 𝐶 ∧ ∀𝑦𝐶 (𝑓𝑦) ∈ 𝑦)))
2928exbidv 1924 . . . . . 6 (𝑐 = 𝐶 → (∃𝑓(𝑓:𝑐 𝑐 ∧ ∀𝑦𝑐 (𝑓𝑦) ∈ 𝑦) ↔ ∃𝑓(𝑓:𝐶 𝐶 ∧ ∀𝑦𝐶 (𝑓𝑦) ∈ 𝑦)))
3023, 29imbi12d 344 . . . . 5 (𝑐 = 𝐶 → ((∀𝑦𝑐 𝑦 ≠ ∅ → ∃𝑓(𝑓:𝑐 𝑐 ∧ ∀𝑦𝑐 (𝑓𝑦) ∈ 𝑦)) ↔ (∀𝑦𝐶 𝑦 ≠ ∅ → ∃𝑓(𝑓:𝐶 𝐶 ∧ ∀𝑦𝐶 (𝑓𝑦) ∈ 𝑦))))
31 vex 3449 . . . . . 6 𝑐 ∈ V
3231ac5b 10414 . . . . 5 (∀𝑦𝑐 𝑦 ≠ ∅ → ∃𝑓(𝑓:𝑐 𝑐 ∧ ∀𝑦𝑐 (𝑓𝑦) ∈ 𝑦))
3330, 32vtoclg 3525 . . . 4 (𝐶 ∈ V → (∀𝑦𝐶 𝑦 ≠ ∅ → ∃𝑓(𝑓:𝐶 𝐶 ∧ ∀𝑦𝐶 (𝑓𝑦) ∈ 𝑦)))
3422, 33syl 17 . . 3 (𝜑 → (∀𝑦𝐶 𝑦 ≠ ∅ → ∃𝑓(𝑓:𝐶 𝐶 ∧ ∀𝑦𝐶 (𝑓𝑦) ∈ 𝑦)))
3517, 34mpd 15 . 2 (𝜑 → ∃𝑓(𝑓:𝐶 𝐶 ∧ ∀𝑦𝐶 (𝑓𝑦) ∈ 𝑦))
3615adantr 481 . . . . . . 7 (((𝜑𝑦𝐶) ∧ (𝑓𝑦) ∈ 𝑦) → ∃𝑗𝐴 𝑦 = 𝐵)
37 simpllr 774 . . . . . . . . . 10 (((((𝜑𝑦𝐶) ∧ (𝑓𝑦) ∈ 𝑦) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → (𝑓𝑦) ∈ 𝑦)
38 simpr 485 . . . . . . . . . 10 (((((𝜑𝑦𝐶) ∧ (𝑓𝑦) ∈ 𝑦) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵)
3937, 38eleqtrd 2840 . . . . . . . . 9 (((((𝜑𝑦𝐶) ∧ (𝑓𝑦) ∈ 𝑦) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → (𝑓𝑦) ∈ 𝐵)
4039ex 413 . . . . . . . 8 ((((𝜑𝑦𝐶) ∧ (𝑓𝑦) ∈ 𝑦) ∧ 𝑗𝐴) → (𝑦 = 𝐵 → (𝑓𝑦) ∈ 𝐵))
4140reximdva 3165 . . . . . . 7 (((𝜑𝑦𝐶) ∧ (𝑓𝑦) ∈ 𝑦) → (∃𝑗𝐴 𝑦 = 𝐵 → ∃𝑗𝐴 (𝑓𝑦) ∈ 𝐵))
4236, 41mpd 15 . . . . . 6 (((𝜑𝑦𝐶) ∧ (𝑓𝑦) ∈ 𝑦) → ∃𝑗𝐴 (𝑓𝑦) ∈ 𝐵)
4342ex 413 . . . . 5 ((𝜑𝑦𝐶) → ((𝑓𝑦) ∈ 𝑦 → ∃𝑗𝐴 (𝑓𝑦) ∈ 𝐵))
4443ralimdva 3164 . . . 4 (𝜑 → (∀𝑦𝐶 (𝑓𝑦) ∈ 𝑦 → ∀𝑦𝐶𝑗𝐴 (𝑓𝑦) ∈ 𝐵))
4544anim2d 612 . . 3 (𝜑 → ((𝑓:𝐶 𝐶 ∧ ∀𝑦𝐶 (𝑓𝑦) ∈ 𝑦) → (𝑓:𝐶 𝐶 ∧ ∀𝑦𝐶𝑗𝐴 (𝑓𝑦) ∈ 𝐵)))
4645eximdv 1920 . 2 (𝜑 → (∃𝑓(𝑓:𝐶 𝐶 ∧ ∀𝑦𝐶 (𝑓𝑦) ∈ 𝑦) → ∃𝑓(𝑓:𝐶 𝐶 ∧ ∀𝑦𝐶𝑗𝐴 (𝑓𝑦) ∈ 𝐵)))
4735, 46mpd 15 1 (𝜑 → ∃𝑓(𝑓:𝐶 𝐶 ∧ ∀𝑦𝐶𝑗𝐴 (𝑓𝑦) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  wne 2943  wral 3064  wrex 3073  Vcvv 3445  c0 4282   cuni 4865  cmpt 5188  ran crn 5634  wf 6492  cfv 6496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-ac2 10399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-en 8884  df-card 9875  df-ac 10052
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator