Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  acunirnmpt Structured version   Visualization version   GIF version

Theorem acunirnmpt 32604
Description: Axiom of choice for the union of the range of a mapping to function. (Contributed by Thierry Arnoux, 6-Nov-2019.)
Hypotheses
Ref Expression
acunirnmpt.0 (𝜑𝐴𝑉)
acunirnmpt.1 ((𝜑𝑗𝐴) → 𝐵 ≠ ∅)
acunirnmpt.2 𝐶 = ran (𝑗𝐴𝐵)
Assertion
Ref Expression
acunirnmpt (𝜑 → ∃𝑓(𝑓:𝐶 𝐶 ∧ ∀𝑦𝐶𝑗𝐴 (𝑓𝑦) ∈ 𝐵))
Distinct variable groups:   𝐴,𝑗   𝑓,𝑗,𝑦,𝐶   𝜑,𝑓,𝑗,𝑦
Allowed substitution hints:   𝐴(𝑦,𝑓)   𝐵(𝑦,𝑓,𝑗)   𝑉(𝑦,𝑓,𝑗)

Proof of Theorem acunirnmpt
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . 6 ((((𝜑𝑦𝐶) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵)
2 simplll 774 . . . . . . 7 ((((𝜑𝑦𝐶) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → 𝜑)
3 simplr 768 . . . . . . 7 ((((𝜑𝑦𝐶) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → 𝑗𝐴)
4 acunirnmpt.1 . . . . . . 7 ((𝜑𝑗𝐴) → 𝐵 ≠ ∅)
52, 3, 4syl2anc 584 . . . . . 6 ((((𝜑𝑦𝐶) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → 𝐵 ≠ ∅)
61, 5eqnetrd 2998 . . . . 5 ((((𝜑𝑦𝐶) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → 𝑦 ≠ ∅)
7 acunirnmpt.2 . . . . . . . . 9 𝐶 = ran (𝑗𝐴𝐵)
87eleq2i 2825 . . . . . . . 8 (𝑦𝐶𝑦 ∈ ran (𝑗𝐴𝐵))
9 vex 3467 . . . . . . . . 9 𝑦 ∈ V
10 eqid 2734 . . . . . . . . . 10 (𝑗𝐴𝐵) = (𝑗𝐴𝐵)
1110elrnmpt 5949 . . . . . . . . 9 (𝑦 ∈ V → (𝑦 ∈ ran (𝑗𝐴𝐵) ↔ ∃𝑗𝐴 𝑦 = 𝐵))
129, 11ax-mp 5 . . . . . . . 8 (𝑦 ∈ ran (𝑗𝐴𝐵) ↔ ∃𝑗𝐴 𝑦 = 𝐵)
138, 12bitri 275 . . . . . . 7 (𝑦𝐶 ↔ ∃𝑗𝐴 𝑦 = 𝐵)
1413biimpi 216 . . . . . 6 (𝑦𝐶 → ∃𝑗𝐴 𝑦 = 𝐵)
1514adantl 481 . . . . 5 ((𝜑𝑦𝐶) → ∃𝑗𝐴 𝑦 = 𝐵)
166, 15r19.29a 3149 . . . 4 ((𝜑𝑦𝐶) → 𝑦 ≠ ∅)
1716ralrimiva 3133 . . 3 (𝜑 → ∀𝑦𝐶 𝑦 ≠ ∅)
18 acunirnmpt.0 . . . . . 6 (𝜑𝐴𝑉)
19 mptexg 7223 . . . . . 6 (𝐴𝑉 → (𝑗𝐴𝐵) ∈ V)
20 rnexg 7906 . . . . . 6 ((𝑗𝐴𝐵) ∈ V → ran (𝑗𝐴𝐵) ∈ V)
2118, 19, 203syl 18 . . . . 5 (𝜑 → ran (𝑗𝐴𝐵) ∈ V)
227, 21eqeltrid 2837 . . . 4 (𝜑𝐶 ∈ V)
23 raleq 3306 . . . . . 6 (𝑐 = 𝐶 → (∀𝑦𝑐 𝑦 ≠ ∅ ↔ ∀𝑦𝐶 𝑦 ≠ ∅))
24 id 22 . . . . . . . . 9 (𝑐 = 𝐶𝑐 = 𝐶)
25 unieq 4898 . . . . . . . . 9 (𝑐 = 𝐶 𝑐 = 𝐶)
2624, 25feq23d 6711 . . . . . . . 8 (𝑐 = 𝐶 → (𝑓:𝑐 𝑐𝑓:𝐶 𝐶))
27 raleq 3306 . . . . . . . 8 (𝑐 = 𝐶 → (∀𝑦𝑐 (𝑓𝑦) ∈ 𝑦 ↔ ∀𝑦𝐶 (𝑓𝑦) ∈ 𝑦))
2826, 27anbi12d 632 . . . . . . 7 (𝑐 = 𝐶 → ((𝑓:𝑐 𝑐 ∧ ∀𝑦𝑐 (𝑓𝑦) ∈ 𝑦) ↔ (𝑓:𝐶 𝐶 ∧ ∀𝑦𝐶 (𝑓𝑦) ∈ 𝑦)))
2928exbidv 1920 . . . . . 6 (𝑐 = 𝐶 → (∃𝑓(𝑓:𝑐 𝑐 ∧ ∀𝑦𝑐 (𝑓𝑦) ∈ 𝑦) ↔ ∃𝑓(𝑓:𝐶 𝐶 ∧ ∀𝑦𝐶 (𝑓𝑦) ∈ 𝑦)))
3023, 29imbi12d 344 . . . . 5 (𝑐 = 𝐶 → ((∀𝑦𝑐 𝑦 ≠ ∅ → ∃𝑓(𝑓:𝑐 𝑐 ∧ ∀𝑦𝑐 (𝑓𝑦) ∈ 𝑦)) ↔ (∀𝑦𝐶 𝑦 ≠ ∅ → ∃𝑓(𝑓:𝐶 𝐶 ∧ ∀𝑦𝐶 (𝑓𝑦) ∈ 𝑦))))
31 vex 3467 . . . . . 6 𝑐 ∈ V
3231ac5b 10500 . . . . 5 (∀𝑦𝑐 𝑦 ≠ ∅ → ∃𝑓(𝑓:𝑐 𝑐 ∧ ∀𝑦𝑐 (𝑓𝑦) ∈ 𝑦))
3330, 32vtoclg 3537 . . . 4 (𝐶 ∈ V → (∀𝑦𝐶 𝑦 ≠ ∅ → ∃𝑓(𝑓:𝐶 𝐶 ∧ ∀𝑦𝐶 (𝑓𝑦) ∈ 𝑦)))
3422, 33syl 17 . . 3 (𝜑 → (∀𝑦𝐶 𝑦 ≠ ∅ → ∃𝑓(𝑓:𝐶 𝐶 ∧ ∀𝑦𝐶 (𝑓𝑦) ∈ 𝑦)))
3517, 34mpd 15 . 2 (𝜑 → ∃𝑓(𝑓:𝐶 𝐶 ∧ ∀𝑦𝐶 (𝑓𝑦) ∈ 𝑦))
3615adantr 480 . . . . . . 7 (((𝜑𝑦𝐶) ∧ (𝑓𝑦) ∈ 𝑦) → ∃𝑗𝐴 𝑦 = 𝐵)
37 simpllr 775 . . . . . . . . . 10 (((((𝜑𝑦𝐶) ∧ (𝑓𝑦) ∈ 𝑦) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → (𝑓𝑦) ∈ 𝑦)
38 simpr 484 . . . . . . . . . 10 (((((𝜑𝑦𝐶) ∧ (𝑓𝑦) ∈ 𝑦) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵)
3937, 38eleqtrd 2835 . . . . . . . . 9 (((((𝜑𝑦𝐶) ∧ (𝑓𝑦) ∈ 𝑦) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → (𝑓𝑦) ∈ 𝐵)
4039ex 412 . . . . . . . 8 ((((𝜑𝑦𝐶) ∧ (𝑓𝑦) ∈ 𝑦) ∧ 𝑗𝐴) → (𝑦 = 𝐵 → (𝑓𝑦) ∈ 𝐵))
4140reximdva 3155 . . . . . . 7 (((𝜑𝑦𝐶) ∧ (𝑓𝑦) ∈ 𝑦) → (∃𝑗𝐴 𝑦 = 𝐵 → ∃𝑗𝐴 (𝑓𝑦) ∈ 𝐵))
4236, 41mpd 15 . . . . . 6 (((𝜑𝑦𝐶) ∧ (𝑓𝑦) ∈ 𝑦) → ∃𝑗𝐴 (𝑓𝑦) ∈ 𝐵)
4342ex 412 . . . . 5 ((𝜑𝑦𝐶) → ((𝑓𝑦) ∈ 𝑦 → ∃𝑗𝐴 (𝑓𝑦) ∈ 𝐵))
4443ralimdva 3154 . . . 4 (𝜑 → (∀𝑦𝐶 (𝑓𝑦) ∈ 𝑦 → ∀𝑦𝐶𝑗𝐴 (𝑓𝑦) ∈ 𝐵))
4544anim2d 612 . . 3 (𝜑 → ((𝑓:𝐶 𝐶 ∧ ∀𝑦𝐶 (𝑓𝑦) ∈ 𝑦) → (𝑓:𝐶 𝐶 ∧ ∀𝑦𝐶𝑗𝐴 (𝑓𝑦) ∈ 𝐵)))
4645eximdv 1916 . 2 (𝜑 → (∃𝑓(𝑓:𝐶 𝐶 ∧ ∀𝑦𝐶 (𝑓𝑦) ∈ 𝑦) → ∃𝑓(𝑓:𝐶 𝐶 ∧ ∀𝑦𝐶𝑗𝐴 (𝑓𝑦) ∈ 𝐵)))
4735, 46mpd 15 1 (𝜑 → ∃𝑓(𝑓:𝐶 𝐶 ∧ ∀𝑦𝐶𝑗𝐴 (𝑓𝑦) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wex 1778  wcel 2107  wne 2931  wral 3050  wrex 3059  Vcvv 3463  c0 4313   cuni 4887  cmpt 5205  ran crn 5666  wf 6537  cfv 6541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-ac2 10485
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-en 8968  df-card 9961  df-ac 10138
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator