Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofoprabco Structured version   Visualization version   GIF version

Theorem ofoprabco 32595
Description: Function operation as a composition with an operation. (Contributed by Thierry Arnoux, 4-Jun-2017.)
Hypotheses
Ref Expression
ofoprabco.1 𝑎𝑀
ofoprabco.2 (𝜑𝐹:𝐴𝐵)
ofoprabco.3 (𝜑𝐺:𝐴𝐶)
ofoprabco.4 (𝜑𝐴𝑉)
ofoprabco.5 (𝜑𝑀 = (𝑎𝐴 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩))
ofoprabco.6 (𝜑𝑁 = (𝑥𝐵, 𝑦𝐶 ↦ (𝑥𝑅𝑦)))
Assertion
Ref Expression
ofoprabco (𝜑 → (𝐹f 𝑅𝐺) = (𝑁𝑀))
Distinct variable groups:   𝑥,𝑎,𝑦,𝐴   𝐵,𝑎,𝑥,𝑦   𝐶,𝑎,𝑥,𝑦   𝐹,𝑎,𝑥,𝑦   𝐺,𝑎,𝑥,𝑦   𝑁,𝑎   𝑅,𝑎,𝑥,𝑦   𝜑,𝑎,𝑥,𝑦
Allowed substitution hints:   𝑀(𝑥,𝑦,𝑎)   𝑁(𝑥,𝑦)   𝑉(𝑥,𝑦,𝑎)

Proof of Theorem ofoprabco
StepHypRef Expression
1 ofoprabco.5 . . . . . 6 (𝜑𝑀 = (𝑎𝐴 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩))
2 ofoprabco.2 . . . . . . . 8 (𝜑𝐹:𝐴𝐵)
32ffvelcdmda 7059 . . . . . . 7 ((𝜑𝑎𝐴) → (𝐹𝑎) ∈ 𝐵)
4 ofoprabco.3 . . . . . . . 8 (𝜑𝐺:𝐴𝐶)
54ffvelcdmda 7059 . . . . . . 7 ((𝜑𝑎𝐴) → (𝐺𝑎) ∈ 𝐶)
6 opelxpi 5678 . . . . . . 7 (((𝐹𝑎) ∈ 𝐵 ∧ (𝐺𝑎) ∈ 𝐶) → ⟨(𝐹𝑎), (𝐺𝑎)⟩ ∈ (𝐵 × 𝐶))
73, 5, 6syl2anc 584 . . . . . 6 ((𝜑𝑎𝐴) → ⟨(𝐹𝑎), (𝐺𝑎)⟩ ∈ (𝐵 × 𝐶))
81, 7fvmpt2d 6984 . . . . 5 ((𝜑𝑎𝐴) → (𝑀𝑎) = ⟨(𝐹𝑎), (𝐺𝑎)⟩)
98fveq2d 6865 . . . 4 ((𝜑𝑎𝐴) → (𝑁‘(𝑀𝑎)) = (𝑁‘⟨(𝐹𝑎), (𝐺𝑎)⟩))
10 df-ov 7393 . . . . 5 ((𝐹𝑎)𝑁(𝐺𝑎)) = (𝑁‘⟨(𝐹𝑎), (𝐺𝑎)⟩)
1110a1i 11 . . . 4 ((𝜑𝑎𝐴) → ((𝐹𝑎)𝑁(𝐺𝑎)) = (𝑁‘⟨(𝐹𝑎), (𝐺𝑎)⟩))
12 ofoprabco.6 . . . . . 6 (𝜑𝑁 = (𝑥𝐵, 𝑦𝐶 ↦ (𝑥𝑅𝑦)))
1312adantr 480 . . . . 5 ((𝜑𝑎𝐴) → 𝑁 = (𝑥𝐵, 𝑦𝐶 ↦ (𝑥𝑅𝑦)))
14 simprl 770 . . . . . 6 (((𝜑𝑎𝐴) ∧ (𝑥 = (𝐹𝑎) ∧ 𝑦 = (𝐺𝑎))) → 𝑥 = (𝐹𝑎))
15 simprr 772 . . . . . 6 (((𝜑𝑎𝐴) ∧ (𝑥 = (𝐹𝑎) ∧ 𝑦 = (𝐺𝑎))) → 𝑦 = (𝐺𝑎))
1614, 15oveq12d 7408 . . . . 5 (((𝜑𝑎𝐴) ∧ (𝑥 = (𝐹𝑎) ∧ 𝑦 = (𝐺𝑎))) → (𝑥𝑅𝑦) = ((𝐹𝑎)𝑅(𝐺𝑎)))
17 ovexd 7425 . . . . 5 ((𝜑𝑎𝐴) → ((𝐹𝑎)𝑅(𝐺𝑎)) ∈ V)
1813, 16, 3, 5, 17ovmpod 7544 . . . 4 ((𝜑𝑎𝐴) → ((𝐹𝑎)𝑁(𝐺𝑎)) = ((𝐹𝑎)𝑅(𝐺𝑎)))
199, 11, 183eqtr2d 2771 . . 3 ((𝜑𝑎𝐴) → (𝑁‘(𝑀𝑎)) = ((𝐹𝑎)𝑅(𝐺𝑎)))
2019mpteq2dva 5203 . 2 (𝜑 → (𝑎𝐴 ↦ (𝑁‘(𝑀𝑎))) = (𝑎𝐴 ↦ ((𝐹𝑎)𝑅(𝐺𝑎))))
21 ovex 7423 . . . . . 6 (𝑥𝑅𝑦) ∈ V
2221rgen2w 3050 . . . . 5 𝑥𝐵𝑦𝐶 (𝑥𝑅𝑦) ∈ V
23 eqid 2730 . . . . . 6 (𝑥𝐵, 𝑦𝐶 ↦ (𝑥𝑅𝑦)) = (𝑥𝐵, 𝑦𝐶 ↦ (𝑥𝑅𝑦))
2423fmpo 8050 . . . . 5 (∀𝑥𝐵𝑦𝐶 (𝑥𝑅𝑦) ∈ V ↔ (𝑥𝐵, 𝑦𝐶 ↦ (𝑥𝑅𝑦)):(𝐵 × 𝐶)⟶V)
2522, 24mpbi 230 . . . 4 (𝑥𝐵, 𝑦𝐶 ↦ (𝑥𝑅𝑦)):(𝐵 × 𝐶)⟶V
2612feq1d 6673 . . . 4 (𝜑 → (𝑁:(𝐵 × 𝐶)⟶V ↔ (𝑥𝐵, 𝑦𝐶 ↦ (𝑥𝑅𝑦)):(𝐵 × 𝐶)⟶V))
2725, 26mpbiri 258 . . 3 (𝜑𝑁:(𝐵 × 𝐶)⟶V)
281, 7fmpt3d 7091 . . 3 (𝜑𝑀:𝐴⟶(𝐵 × 𝐶))
29 ofoprabco.1 . . . 4 𝑎𝑀
3029fcomptf 32589 . . 3 ((𝑁:(𝐵 × 𝐶)⟶V ∧ 𝑀:𝐴⟶(𝐵 × 𝐶)) → (𝑁𝑀) = (𝑎𝐴 ↦ (𝑁‘(𝑀𝑎))))
3127, 28, 30syl2anc 584 . 2 (𝜑 → (𝑁𝑀) = (𝑎𝐴 ↦ (𝑁‘(𝑀𝑎))))
32 ofoprabco.4 . . 3 (𝜑𝐴𝑉)
332feqmptd 6932 . . 3 (𝜑𝐹 = (𝑎𝐴 ↦ (𝐹𝑎)))
344feqmptd 6932 . . 3 (𝜑𝐺 = (𝑎𝐴 ↦ (𝐺𝑎)))
3532, 3, 5, 33, 34offval2 7676 . 2 (𝜑 → (𝐹f 𝑅𝐺) = (𝑎𝐴 ↦ ((𝐹𝑎)𝑅(𝐺𝑎))))
3620, 31, 353eqtr4rd 2776 1 (𝜑 → (𝐹f 𝑅𝐺) = (𝑁𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wnfc 2877  wral 3045  Vcvv 3450  cop 4598  cmpt 5191   × cxp 5639  ccom 5645  wf 6510  cfv 6514  (class class class)co 7390  cmpo 7392  f cof 7654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-1st 7971  df-2nd 7972
This theorem is referenced by:  ofpreima  32596  rrvadd  34450
  Copyright terms: Public domain W3C validator