Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofoprabco Structured version   Visualization version   GIF version

Theorem ofoprabco 32681
Description: Function operation as a composition with an operation. (Contributed by Thierry Arnoux, 4-Jun-2017.)
Hypotheses
Ref Expression
ofoprabco.1 𝑎𝑀
ofoprabco.2 (𝜑𝐹:𝐴𝐵)
ofoprabco.3 (𝜑𝐺:𝐴𝐶)
ofoprabco.4 (𝜑𝐴𝑉)
ofoprabco.5 (𝜑𝑀 = (𝑎𝐴 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩))
ofoprabco.6 (𝜑𝑁 = (𝑥𝐵, 𝑦𝐶 ↦ (𝑥𝑅𝑦)))
Assertion
Ref Expression
ofoprabco (𝜑 → (𝐹f 𝑅𝐺) = (𝑁𝑀))
Distinct variable groups:   𝑥,𝑎,𝑦,𝐴   𝐵,𝑎,𝑥,𝑦   𝐶,𝑎,𝑥,𝑦   𝐹,𝑎,𝑥,𝑦   𝐺,𝑎,𝑥,𝑦   𝑁,𝑎   𝑅,𝑎,𝑥,𝑦   𝜑,𝑎,𝑥,𝑦
Allowed substitution hints:   𝑀(𝑥,𝑦,𝑎)   𝑁(𝑥,𝑦)   𝑉(𝑥,𝑦,𝑎)

Proof of Theorem ofoprabco
StepHypRef Expression
1 ofoprabco.5 . . . . . 6 (𝜑𝑀 = (𝑎𝐴 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩))
2 ofoprabco.2 . . . . . . . 8 (𝜑𝐹:𝐴𝐵)
32ffvelcdmda 7104 . . . . . . 7 ((𝜑𝑎𝐴) → (𝐹𝑎) ∈ 𝐵)
4 ofoprabco.3 . . . . . . . 8 (𝜑𝐺:𝐴𝐶)
54ffvelcdmda 7104 . . . . . . 7 ((𝜑𝑎𝐴) → (𝐺𝑎) ∈ 𝐶)
6 opelxpi 5726 . . . . . . 7 (((𝐹𝑎) ∈ 𝐵 ∧ (𝐺𝑎) ∈ 𝐶) → ⟨(𝐹𝑎), (𝐺𝑎)⟩ ∈ (𝐵 × 𝐶))
73, 5, 6syl2anc 584 . . . . . 6 ((𝜑𝑎𝐴) → ⟨(𝐹𝑎), (𝐺𝑎)⟩ ∈ (𝐵 × 𝐶))
81, 7fvmpt2d 7029 . . . . 5 ((𝜑𝑎𝐴) → (𝑀𝑎) = ⟨(𝐹𝑎), (𝐺𝑎)⟩)
98fveq2d 6911 . . . 4 ((𝜑𝑎𝐴) → (𝑁‘(𝑀𝑎)) = (𝑁‘⟨(𝐹𝑎), (𝐺𝑎)⟩))
10 df-ov 7434 . . . . 5 ((𝐹𝑎)𝑁(𝐺𝑎)) = (𝑁‘⟨(𝐹𝑎), (𝐺𝑎)⟩)
1110a1i 11 . . . 4 ((𝜑𝑎𝐴) → ((𝐹𝑎)𝑁(𝐺𝑎)) = (𝑁‘⟨(𝐹𝑎), (𝐺𝑎)⟩))
12 ofoprabco.6 . . . . . 6 (𝜑𝑁 = (𝑥𝐵, 𝑦𝐶 ↦ (𝑥𝑅𝑦)))
1312adantr 480 . . . . 5 ((𝜑𝑎𝐴) → 𝑁 = (𝑥𝐵, 𝑦𝐶 ↦ (𝑥𝑅𝑦)))
14 simprl 771 . . . . . 6 (((𝜑𝑎𝐴) ∧ (𝑥 = (𝐹𝑎) ∧ 𝑦 = (𝐺𝑎))) → 𝑥 = (𝐹𝑎))
15 simprr 773 . . . . . 6 (((𝜑𝑎𝐴) ∧ (𝑥 = (𝐹𝑎) ∧ 𝑦 = (𝐺𝑎))) → 𝑦 = (𝐺𝑎))
1614, 15oveq12d 7449 . . . . 5 (((𝜑𝑎𝐴) ∧ (𝑥 = (𝐹𝑎) ∧ 𝑦 = (𝐺𝑎))) → (𝑥𝑅𝑦) = ((𝐹𝑎)𝑅(𝐺𝑎)))
17 ovexd 7466 . . . . 5 ((𝜑𝑎𝐴) → ((𝐹𝑎)𝑅(𝐺𝑎)) ∈ V)
1813, 16, 3, 5, 17ovmpod 7585 . . . 4 ((𝜑𝑎𝐴) → ((𝐹𝑎)𝑁(𝐺𝑎)) = ((𝐹𝑎)𝑅(𝐺𝑎)))
199, 11, 183eqtr2d 2781 . . 3 ((𝜑𝑎𝐴) → (𝑁‘(𝑀𝑎)) = ((𝐹𝑎)𝑅(𝐺𝑎)))
2019mpteq2dva 5248 . 2 (𝜑 → (𝑎𝐴 ↦ (𝑁‘(𝑀𝑎))) = (𝑎𝐴 ↦ ((𝐹𝑎)𝑅(𝐺𝑎))))
21 ovex 7464 . . . . . 6 (𝑥𝑅𝑦) ∈ V
2221rgen2w 3064 . . . . 5 𝑥𝐵𝑦𝐶 (𝑥𝑅𝑦) ∈ V
23 eqid 2735 . . . . . 6 (𝑥𝐵, 𝑦𝐶 ↦ (𝑥𝑅𝑦)) = (𝑥𝐵, 𝑦𝐶 ↦ (𝑥𝑅𝑦))
2423fmpo 8092 . . . . 5 (∀𝑥𝐵𝑦𝐶 (𝑥𝑅𝑦) ∈ V ↔ (𝑥𝐵, 𝑦𝐶 ↦ (𝑥𝑅𝑦)):(𝐵 × 𝐶)⟶V)
2522, 24mpbi 230 . . . 4 (𝑥𝐵, 𝑦𝐶 ↦ (𝑥𝑅𝑦)):(𝐵 × 𝐶)⟶V
2612feq1d 6721 . . . 4 (𝜑 → (𝑁:(𝐵 × 𝐶)⟶V ↔ (𝑥𝐵, 𝑦𝐶 ↦ (𝑥𝑅𝑦)):(𝐵 × 𝐶)⟶V))
2725, 26mpbiri 258 . . 3 (𝜑𝑁:(𝐵 × 𝐶)⟶V)
281, 7fmpt3d 7136 . . 3 (𝜑𝑀:𝐴⟶(𝐵 × 𝐶))
29 ofoprabco.1 . . . 4 𝑎𝑀
3029fcomptf 32675 . . 3 ((𝑁:(𝐵 × 𝐶)⟶V ∧ 𝑀:𝐴⟶(𝐵 × 𝐶)) → (𝑁𝑀) = (𝑎𝐴 ↦ (𝑁‘(𝑀𝑎))))
3127, 28, 30syl2anc 584 . 2 (𝜑 → (𝑁𝑀) = (𝑎𝐴 ↦ (𝑁‘(𝑀𝑎))))
32 ofoprabco.4 . . 3 (𝜑𝐴𝑉)
332feqmptd 6977 . . 3 (𝜑𝐹 = (𝑎𝐴 ↦ (𝐹𝑎)))
344feqmptd 6977 . . 3 (𝜑𝐺 = (𝑎𝐴 ↦ (𝐺𝑎)))
3532, 3, 5, 33, 34offval2 7717 . 2 (𝜑 → (𝐹f 𝑅𝐺) = (𝑎𝐴 ↦ ((𝐹𝑎)𝑅(𝐺𝑎))))
3620, 31, 353eqtr4rd 2786 1 (𝜑 → (𝐹f 𝑅𝐺) = (𝑁𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wnfc 2888  wral 3059  Vcvv 3478  cop 4637  cmpt 5231   × cxp 5687  ccom 5693  wf 6559  cfv 6563  (class class class)co 7431  cmpo 7433  f cof 7695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-1st 8013  df-2nd 8014
This theorem is referenced by:  ofpreima  32682  rrvadd  34434
  Copyright terms: Public domain W3C validator