![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fgss | Structured version Visualization version GIF version |
Description: A bigger base generates a bigger filter. (Contributed by NM, 5-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
Ref | Expression |
---|---|
fgss | ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝐺) → (𝑋filGen𝐹) ⊆ (𝑋filGen𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrexv 4051 | . . . . 5 ⊢ (𝐹 ⊆ 𝐺 → (∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 → ∃𝑥 ∈ 𝐺 𝑥 ⊆ 𝑡)) | |
2 | 1 | anim2d 612 | . . . 4 ⊢ (𝐹 ⊆ 𝐺 → ((𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡) → (𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐺 𝑥 ⊆ 𝑡))) |
3 | 2 | 3ad2ant3 1135 | . . 3 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝐺) → ((𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡) → (𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐺 𝑥 ⊆ 𝑡))) |
4 | elfg 23374 | . . . 4 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑡 ∈ (𝑋filGen𝐹) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡))) | |
5 | 4 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝐺) → (𝑡 ∈ (𝑋filGen𝐹) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡))) |
6 | elfg 23374 | . . . 4 ⊢ (𝐺 ∈ (fBas‘𝑋) → (𝑡 ∈ (𝑋filGen𝐺) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐺 𝑥 ⊆ 𝑡))) | |
7 | 6 | 3ad2ant2 1134 | . . 3 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝐺) → (𝑡 ∈ (𝑋filGen𝐺) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐺 𝑥 ⊆ 𝑡))) |
8 | 3, 5, 7 | 3imtr4d 293 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝐺) → (𝑡 ∈ (𝑋filGen𝐹) → 𝑡 ∈ (𝑋filGen𝐺))) |
9 | 8 | ssrdv 3988 | 1 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝐺) → (𝑋filGen𝐹) ⊆ (𝑋filGen𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 ∈ wcel 2106 ∃wrex 3070 ⊆ wss 3948 ‘cfv 6543 (class class class)co 7408 fBascfbas 20931 filGencfg 20932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-fg 20941 |
This theorem is referenced by: fgabs 23382 fgtr 23393 fmss 23449 |
Copyright terms: Public domain | W3C validator |