| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fgss | Structured version Visualization version GIF version | ||
| Description: A bigger base generates a bigger filter. (Contributed by NM, 5-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
| Ref | Expression |
|---|---|
| fgss | ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝐺) → (𝑋filGen𝐹) ⊆ (𝑋filGen𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrexv 4053 | . . . . 5 ⊢ (𝐹 ⊆ 𝐺 → (∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 → ∃𝑥 ∈ 𝐺 𝑥 ⊆ 𝑡)) | |
| 2 | 1 | anim2d 612 | . . . 4 ⊢ (𝐹 ⊆ 𝐺 → ((𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡) → (𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐺 𝑥 ⊆ 𝑡))) |
| 3 | 2 | 3ad2ant3 1136 | . . 3 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝐺) → ((𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡) → (𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐺 𝑥 ⊆ 𝑡))) |
| 4 | elfg 23879 | . . . 4 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑡 ∈ (𝑋filGen𝐹) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡))) | |
| 5 | 4 | 3ad2ant1 1134 | . . 3 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝐺) → (𝑡 ∈ (𝑋filGen𝐹) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡))) |
| 6 | elfg 23879 | . . . 4 ⊢ (𝐺 ∈ (fBas‘𝑋) → (𝑡 ∈ (𝑋filGen𝐺) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐺 𝑥 ⊆ 𝑡))) | |
| 7 | 6 | 3ad2ant2 1135 | . . 3 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝐺) → (𝑡 ∈ (𝑋filGen𝐺) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐺 𝑥 ⊆ 𝑡))) |
| 8 | 3, 5, 7 | 3imtr4d 294 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝐺) → (𝑡 ∈ (𝑋filGen𝐹) → 𝑡 ∈ (𝑋filGen𝐺))) |
| 9 | 8 | ssrdv 3989 | 1 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝐺) → (𝑋filGen𝐹) ⊆ (𝑋filGen𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 ∃wrex 3070 ⊆ wss 3951 ‘cfv 6561 (class class class)co 7431 fBascfbas 21352 filGencfg 21353 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-iota 6514 df-fun 6563 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-fg 21362 |
| This theorem is referenced by: fgabs 23887 fgtr 23898 fmss 23954 |
| Copyright terms: Public domain | W3C validator |