| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fgss | Structured version Visualization version GIF version | ||
| Description: A bigger base generates a bigger filter. (Contributed by NM, 5-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
| Ref | Expression |
|---|---|
| fgss | ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝐺) → (𝑋filGen𝐹) ⊆ (𝑋filGen𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrexv 4016 | . . . . 5 ⊢ (𝐹 ⊆ 𝐺 → (∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 → ∃𝑥 ∈ 𝐺 𝑥 ⊆ 𝑡)) | |
| 2 | 1 | anim2d 612 | . . . 4 ⊢ (𝐹 ⊆ 𝐺 → ((𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡) → (𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐺 𝑥 ⊆ 𝑡))) |
| 3 | 2 | 3ad2ant3 1135 | . . 3 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝐺) → ((𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡) → (𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐺 𝑥 ⊆ 𝑡))) |
| 4 | elfg 23758 | . . . 4 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑡 ∈ (𝑋filGen𝐹) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡))) | |
| 5 | 4 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝐺) → (𝑡 ∈ (𝑋filGen𝐹) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡))) |
| 6 | elfg 23758 | . . . 4 ⊢ (𝐺 ∈ (fBas‘𝑋) → (𝑡 ∈ (𝑋filGen𝐺) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐺 𝑥 ⊆ 𝑡))) | |
| 7 | 6 | 3ad2ant2 1134 | . . 3 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝐺) → (𝑡 ∈ (𝑋filGen𝐺) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐺 𝑥 ⊆ 𝑡))) |
| 8 | 3, 5, 7 | 3imtr4d 294 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝐺) → (𝑡 ∈ (𝑋filGen𝐹) → 𝑡 ∈ (𝑋filGen𝐺))) |
| 9 | 8 | ssrdv 3952 | 1 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝐺) → (𝑋filGen𝐹) ⊆ (𝑋filGen𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ∃wrex 3053 ⊆ wss 3914 ‘cfv 6511 (class class class)co 7387 fBascfbas 21252 filGencfg 21253 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-fg 21262 |
| This theorem is referenced by: fgabs 23766 fgtr 23777 fmss 23833 |
| Copyright terms: Public domain | W3C validator |