![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fgss | Structured version Visualization version GIF version |
Description: A bigger base generates a bigger filter. (Contributed by NM, 5-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
Ref | Expression |
---|---|
fgss | ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝐺) → (𝑋filGen𝐹) ⊆ (𝑋filGen𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrexv 4065 | . . . . 5 ⊢ (𝐹 ⊆ 𝐺 → (∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 → ∃𝑥 ∈ 𝐺 𝑥 ⊆ 𝑡)) | |
2 | 1 | anim2d 612 | . . . 4 ⊢ (𝐹 ⊆ 𝐺 → ((𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡) → (𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐺 𝑥 ⊆ 𝑡))) |
3 | 2 | 3ad2ant3 1134 | . . 3 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝐺) → ((𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡) → (𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐺 𝑥 ⊆ 𝑡))) |
4 | elfg 23895 | . . . 4 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑡 ∈ (𝑋filGen𝐹) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡))) | |
5 | 4 | 3ad2ant1 1132 | . . 3 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝐺) → (𝑡 ∈ (𝑋filGen𝐹) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡))) |
6 | elfg 23895 | . . . 4 ⊢ (𝐺 ∈ (fBas‘𝑋) → (𝑡 ∈ (𝑋filGen𝐺) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐺 𝑥 ⊆ 𝑡))) | |
7 | 6 | 3ad2ant2 1133 | . . 3 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝐺) → (𝑡 ∈ (𝑋filGen𝐺) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐺 𝑥 ⊆ 𝑡))) |
8 | 3, 5, 7 | 3imtr4d 294 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝐺) → (𝑡 ∈ (𝑋filGen𝐹) → 𝑡 ∈ (𝑋filGen𝐺))) |
9 | 8 | ssrdv 4001 | 1 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝐺) → (𝑋filGen𝐹) ⊆ (𝑋filGen𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2106 ∃wrex 3068 ⊆ wss 3963 ‘cfv 6563 (class class class)co 7431 fBascfbas 21370 filGencfg 21371 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-fg 21380 |
This theorem is referenced by: fgabs 23903 fgtr 23914 fmss 23970 |
Copyright terms: Public domain | W3C validator |