MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fgss Structured version   Visualization version   GIF version

Theorem fgss 23771
Description: A bigger base generates a bigger filter. (Contributed by NM, 5-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
fgss ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋) ∧ 𝐹𝐺) → (𝑋filGen𝐹) ⊆ (𝑋filGen𝐺))

Proof of Theorem fgss
Dummy variables 𝑥 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrexv 4048 . . . . 5 (𝐹𝐺 → (∃𝑥𝐹 𝑥𝑡 → ∃𝑥𝐺 𝑥𝑡))
21anim2d 611 . . . 4 (𝐹𝐺 → ((𝑡𝑋 ∧ ∃𝑥𝐹 𝑥𝑡) → (𝑡𝑋 ∧ ∃𝑥𝐺 𝑥𝑡)))
323ad2ant3 1133 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋) ∧ 𝐹𝐺) → ((𝑡𝑋 ∧ ∃𝑥𝐹 𝑥𝑡) → (𝑡𝑋 ∧ ∃𝑥𝐺 𝑥𝑡)))
4 elfg 23769 . . . 4 (𝐹 ∈ (fBas‘𝑋) → (𝑡 ∈ (𝑋filGen𝐹) ↔ (𝑡𝑋 ∧ ∃𝑥𝐹 𝑥𝑡)))
543ad2ant1 1131 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋) ∧ 𝐹𝐺) → (𝑡 ∈ (𝑋filGen𝐹) ↔ (𝑡𝑋 ∧ ∃𝑥𝐹 𝑥𝑡)))
6 elfg 23769 . . . 4 (𝐺 ∈ (fBas‘𝑋) → (𝑡 ∈ (𝑋filGen𝐺) ↔ (𝑡𝑋 ∧ ∃𝑥𝐺 𝑥𝑡)))
763ad2ant2 1132 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋) ∧ 𝐹𝐺) → (𝑡 ∈ (𝑋filGen𝐺) ↔ (𝑡𝑋 ∧ ∃𝑥𝐺 𝑥𝑡)))
83, 5, 73imtr4d 294 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋) ∧ 𝐹𝐺) → (𝑡 ∈ (𝑋filGen𝐹) → 𝑡 ∈ (𝑋filGen𝐺)))
98ssrdv 3985 1 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋) ∧ 𝐹𝐺) → (𝑋filGen𝐹) ⊆ (𝑋filGen𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085  wcel 2099  wrex 3066  wss 3945  cfv 6543  (class class class)co 7415  fBascfbas 21261  filGencfg 21262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-sbc 3776  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-br 5144  df-opab 5206  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7418  df-oprab 7419  df-mpo 7420  df-fg 21271
This theorem is referenced by:  fgabs  23777  fgtr  23788  fmss  23844
  Copyright terms: Public domain W3C validator