MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fgss Structured version   Visualization version   GIF version

Theorem fgss 23902
Description: A bigger base generates a bigger filter. (Contributed by NM, 5-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
fgss ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋) ∧ 𝐹𝐺) → (𝑋filGen𝐹) ⊆ (𝑋filGen𝐺))

Proof of Theorem fgss
Dummy variables 𝑥 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrexv 4078 . . . . 5 (𝐹𝐺 → (∃𝑥𝐹 𝑥𝑡 → ∃𝑥𝐺 𝑥𝑡))
21anim2d 611 . . . 4 (𝐹𝐺 → ((𝑡𝑋 ∧ ∃𝑥𝐹 𝑥𝑡) → (𝑡𝑋 ∧ ∃𝑥𝐺 𝑥𝑡)))
323ad2ant3 1135 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋) ∧ 𝐹𝐺) → ((𝑡𝑋 ∧ ∃𝑥𝐹 𝑥𝑡) → (𝑡𝑋 ∧ ∃𝑥𝐺 𝑥𝑡)))
4 elfg 23900 . . . 4 (𝐹 ∈ (fBas‘𝑋) → (𝑡 ∈ (𝑋filGen𝐹) ↔ (𝑡𝑋 ∧ ∃𝑥𝐹 𝑥𝑡)))
543ad2ant1 1133 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋) ∧ 𝐹𝐺) → (𝑡 ∈ (𝑋filGen𝐹) ↔ (𝑡𝑋 ∧ ∃𝑥𝐹 𝑥𝑡)))
6 elfg 23900 . . . 4 (𝐺 ∈ (fBas‘𝑋) → (𝑡 ∈ (𝑋filGen𝐺) ↔ (𝑡𝑋 ∧ ∃𝑥𝐺 𝑥𝑡)))
763ad2ant2 1134 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋) ∧ 𝐹𝐺) → (𝑡 ∈ (𝑋filGen𝐺) ↔ (𝑡𝑋 ∧ ∃𝑥𝐺 𝑥𝑡)))
83, 5, 73imtr4d 294 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋) ∧ 𝐹𝐺) → (𝑡 ∈ (𝑋filGen𝐹) → 𝑡 ∈ (𝑋filGen𝐺)))
98ssrdv 4014 1 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋) ∧ 𝐹𝐺) → (𝑋filGen𝐹) ⊆ (𝑋filGen𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087  wcel 2108  wrex 3076  wss 3976  cfv 6573  (class class class)co 7448  fBascfbas 21375  filGencfg 21376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-fg 21385
This theorem is referenced by:  fgabs  23908  fgtr  23919  fmss  23975
  Copyright terms: Public domain W3C validator