Step | Hyp | Ref
| Expression |
1 | | simpl2 1190 |
. . . 4
⊢ (((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌⟶𝑋 ∧ 𝐵 ⊆ 𝐶)) → 𝐵 ∈ (fBas‘𝑌)) |
2 | | simprl 767 |
. . . 4
⊢ (((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌⟶𝑋 ∧ 𝐵 ⊆ 𝐶)) → 𝐹:𝑌⟶𝑋) |
3 | | simpl1 1189 |
. . . 4
⊢ (((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌⟶𝑋 ∧ 𝐵 ⊆ 𝐶)) → 𝑋 ∈ 𝐴) |
4 | | eqid 2738 |
. . . . 5
⊢ ran
(𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)) = ran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)) |
5 | 4 | fbasrn 22943 |
. . . 4
⊢ ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋 ∧ 𝑋 ∈ 𝐴) → ran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)) ∈ (fBas‘𝑋)) |
6 | 1, 2, 3, 5 | syl3anc 1369 |
. . 3
⊢ (((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌⟶𝑋 ∧ 𝐵 ⊆ 𝐶)) → ran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)) ∈ (fBas‘𝑋)) |
7 | | simpl3 1191 |
. . . 4
⊢ (((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌⟶𝑋 ∧ 𝐵 ⊆ 𝐶)) → 𝐶 ∈ (fBas‘𝑌)) |
8 | | eqid 2738 |
. . . . 5
⊢ ran
(𝑦 ∈ 𝐶 ↦ (𝐹 “ 𝑦)) = ran (𝑦 ∈ 𝐶 ↦ (𝐹 “ 𝑦)) |
9 | 8 | fbasrn 22943 |
. . . 4
⊢ ((𝐶 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋 ∧ 𝑋 ∈ 𝐴) → ran (𝑦 ∈ 𝐶 ↦ (𝐹 “ 𝑦)) ∈ (fBas‘𝑋)) |
10 | 7, 2, 3, 9 | syl3anc 1369 |
. . 3
⊢ (((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌⟶𝑋 ∧ 𝐵 ⊆ 𝐶)) → ran (𝑦 ∈ 𝐶 ↦ (𝐹 “ 𝑦)) ∈ (fBas‘𝑋)) |
11 | | resmpt 5934 |
. . . . . 6
⊢ (𝐵 ⊆ 𝐶 → ((𝑦 ∈ 𝐶 ↦ (𝐹 “ 𝑦)) ↾ 𝐵) = (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦))) |
12 | 11 | ad2antll 725 |
. . . . 5
⊢ (((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌⟶𝑋 ∧ 𝐵 ⊆ 𝐶)) → ((𝑦 ∈ 𝐶 ↦ (𝐹 “ 𝑦)) ↾ 𝐵) = (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦))) |
13 | | resss 5905 |
. . . . 5
⊢ ((𝑦 ∈ 𝐶 ↦ (𝐹 “ 𝑦)) ↾ 𝐵) ⊆ (𝑦 ∈ 𝐶 ↦ (𝐹 “ 𝑦)) |
14 | 12, 13 | eqsstrrdi 3972 |
. . . 4
⊢ (((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌⟶𝑋 ∧ 𝐵 ⊆ 𝐶)) → (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)) ⊆ (𝑦 ∈ 𝐶 ↦ (𝐹 “ 𝑦))) |
15 | | rnss 5837 |
. . . 4
⊢ ((𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)) ⊆ (𝑦 ∈ 𝐶 ↦ (𝐹 “ 𝑦)) → ran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)) ⊆ ran (𝑦 ∈ 𝐶 ↦ (𝐹 “ 𝑦))) |
16 | 14, 15 | syl 17 |
. . 3
⊢ (((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌⟶𝑋 ∧ 𝐵 ⊆ 𝐶)) → ran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)) ⊆ ran (𝑦 ∈ 𝐶 ↦ (𝐹 “ 𝑦))) |
17 | | fgss 22932 |
. . 3
⊢ ((ran
(𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)) ∈ (fBas‘𝑋) ∧ ran (𝑦 ∈ 𝐶 ↦ (𝐹 “ 𝑦)) ∈ (fBas‘𝑋) ∧ ran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)) ⊆ ran (𝑦 ∈ 𝐶 ↦ (𝐹 “ 𝑦))) → (𝑋filGenran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦))) ⊆ (𝑋filGenran (𝑦 ∈ 𝐶 ↦ (𝐹 “ 𝑦)))) |
18 | 6, 10, 16, 17 | syl3anc 1369 |
. 2
⊢ (((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌⟶𝑋 ∧ 𝐵 ⊆ 𝐶)) → (𝑋filGenran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦))) ⊆ (𝑋filGenran (𝑦 ∈ 𝐶 ↦ (𝐹 “ 𝑦)))) |
19 | | fmval 23002 |
. . 3
⊢ ((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)))) |
20 | 3, 1, 2, 19 | syl3anc 1369 |
. 2
⊢ (((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌⟶𝑋 ∧ 𝐵 ⊆ 𝐶)) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)))) |
21 | | fmval 23002 |
. . 3
⊢ ((𝑋 ∈ 𝐴 ∧ 𝐶 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹)‘𝐶) = (𝑋filGenran (𝑦 ∈ 𝐶 ↦ (𝐹 “ 𝑦)))) |
22 | 3, 7, 2, 21 | syl3anc 1369 |
. 2
⊢ (((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌⟶𝑋 ∧ 𝐵 ⊆ 𝐶)) → ((𝑋 FilMap 𝐹)‘𝐶) = (𝑋filGenran (𝑦 ∈ 𝐶 ↦ (𝐹 “ 𝑦)))) |
23 | 18, 20, 22 | 3sstr4d 3964 |
1
⊢ (((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌⟶𝑋 ∧ 𝐵 ⊆ 𝐶)) → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ ((𝑋 FilMap 𝐹)‘𝐶)) |