MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmss Structured version   Visualization version   GIF version

Theorem fmss 23840
Description: A finer filter produces a finer image filter. (Contributed by Jeff Hankins, 16-Nov-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Assertion
Ref Expression
fmss (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ ((𝑋 FilMap 𝐹)‘𝐶))

Proof of Theorem fmss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpl2 1193 . . . 4 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → 𝐵 ∈ (fBas‘𝑌))
2 simprl 770 . . . 4 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → 𝐹:𝑌𝑋)
3 simpl1 1192 . . . 4 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → 𝑋𝐴)
4 eqid 2730 . . . . 5 ran (𝑦𝐵 ↦ (𝐹𝑦)) = ran (𝑦𝐵 ↦ (𝐹𝑦))
54fbasrn 23778 . . . 4 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋𝑋𝐴) → ran (𝑦𝐵 ↦ (𝐹𝑦)) ∈ (fBas‘𝑋))
61, 2, 3, 5syl3anc 1373 . . 3 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → ran (𝑦𝐵 ↦ (𝐹𝑦)) ∈ (fBas‘𝑋))
7 simpl3 1194 . . . 4 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → 𝐶 ∈ (fBas‘𝑌))
8 eqid 2730 . . . . 5 ran (𝑦𝐶 ↦ (𝐹𝑦)) = ran (𝑦𝐶 ↦ (𝐹𝑦))
98fbasrn 23778 . . . 4 ((𝐶 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋𝑋𝐴) → ran (𝑦𝐶 ↦ (𝐹𝑦)) ∈ (fBas‘𝑋))
107, 2, 3, 9syl3anc 1373 . . 3 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → ran (𝑦𝐶 ↦ (𝐹𝑦)) ∈ (fBas‘𝑋))
11 resmpt 6011 . . . . . 6 (𝐵𝐶 → ((𝑦𝐶 ↦ (𝐹𝑦)) ↾ 𝐵) = (𝑦𝐵 ↦ (𝐹𝑦)))
1211ad2antll 729 . . . . 5 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → ((𝑦𝐶 ↦ (𝐹𝑦)) ↾ 𝐵) = (𝑦𝐵 ↦ (𝐹𝑦)))
13 resss 5975 . . . . 5 ((𝑦𝐶 ↦ (𝐹𝑦)) ↾ 𝐵) ⊆ (𝑦𝐶 ↦ (𝐹𝑦))
1412, 13eqsstrrdi 3995 . . . 4 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → (𝑦𝐵 ↦ (𝐹𝑦)) ⊆ (𝑦𝐶 ↦ (𝐹𝑦)))
15 rnss 5906 . . . 4 ((𝑦𝐵 ↦ (𝐹𝑦)) ⊆ (𝑦𝐶 ↦ (𝐹𝑦)) → ran (𝑦𝐵 ↦ (𝐹𝑦)) ⊆ ran (𝑦𝐶 ↦ (𝐹𝑦)))
1614, 15syl 17 . . 3 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → ran (𝑦𝐵 ↦ (𝐹𝑦)) ⊆ ran (𝑦𝐶 ↦ (𝐹𝑦)))
17 fgss 23767 . . 3 ((ran (𝑦𝐵 ↦ (𝐹𝑦)) ∈ (fBas‘𝑋) ∧ ran (𝑦𝐶 ↦ (𝐹𝑦)) ∈ (fBas‘𝑋) ∧ ran (𝑦𝐵 ↦ (𝐹𝑦)) ⊆ ran (𝑦𝐶 ↦ (𝐹𝑦))) → (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))) ⊆ (𝑋filGenran (𝑦𝐶 ↦ (𝐹𝑦))))
186, 10, 16, 17syl3anc 1373 . 2 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))) ⊆ (𝑋filGenran (𝑦𝐶 ↦ (𝐹𝑦))))
19 fmval 23837 . . 3 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))))
203, 1, 2, 19syl3anc 1373 . 2 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))))
21 fmval 23837 . . 3 ((𝑋𝐴𝐶 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐶) = (𝑋filGenran (𝑦𝐶 ↦ (𝐹𝑦))))
223, 7, 2, 21syl3anc 1373 . 2 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → ((𝑋 FilMap 𝐹)‘𝐶) = (𝑋filGenran (𝑦𝐶 ↦ (𝐹𝑦))))
2318, 20, 223sstr4d 4005 1 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ ((𝑋 FilMap 𝐹)‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3917  cmpt 5191  ran crn 5642  cres 5643  cima 5644  wf 6510  cfv 6514  (class class class)co 7390  fBascfbas 21259  filGencfg 21260   FilMap cfm 23827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-fbas 21268  df-fg 21269  df-fm 23832
This theorem is referenced by:  ufldom  23856  cnpfcfi  23934
  Copyright terms: Public domain W3C validator