MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmss Structured version   Visualization version   GIF version

Theorem fmss 23809
Description: A finer filter produces a finer image filter. (Contributed by Jeff Hankins, 16-Nov-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Assertion
Ref Expression
fmss (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ ((𝑋 FilMap 𝐹)‘𝐶))

Proof of Theorem fmss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpl2 1193 . . . 4 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → 𝐵 ∈ (fBas‘𝑌))
2 simprl 770 . . . 4 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → 𝐹:𝑌𝑋)
3 simpl1 1192 . . . 4 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → 𝑋𝐴)
4 eqid 2729 . . . . 5 ran (𝑦𝐵 ↦ (𝐹𝑦)) = ran (𝑦𝐵 ↦ (𝐹𝑦))
54fbasrn 23747 . . . 4 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋𝑋𝐴) → ran (𝑦𝐵 ↦ (𝐹𝑦)) ∈ (fBas‘𝑋))
61, 2, 3, 5syl3anc 1373 . . 3 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → ran (𝑦𝐵 ↦ (𝐹𝑦)) ∈ (fBas‘𝑋))
7 simpl3 1194 . . . 4 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → 𝐶 ∈ (fBas‘𝑌))
8 eqid 2729 . . . . 5 ran (𝑦𝐶 ↦ (𝐹𝑦)) = ran (𝑦𝐶 ↦ (𝐹𝑦))
98fbasrn 23747 . . . 4 ((𝐶 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋𝑋𝐴) → ran (𝑦𝐶 ↦ (𝐹𝑦)) ∈ (fBas‘𝑋))
107, 2, 3, 9syl3anc 1373 . . 3 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → ran (𝑦𝐶 ↦ (𝐹𝑦)) ∈ (fBas‘𝑋))
11 resmpt 5997 . . . . . 6 (𝐵𝐶 → ((𝑦𝐶 ↦ (𝐹𝑦)) ↾ 𝐵) = (𝑦𝐵 ↦ (𝐹𝑦)))
1211ad2antll 729 . . . . 5 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → ((𝑦𝐶 ↦ (𝐹𝑦)) ↾ 𝐵) = (𝑦𝐵 ↦ (𝐹𝑦)))
13 resss 5961 . . . . 5 ((𝑦𝐶 ↦ (𝐹𝑦)) ↾ 𝐵) ⊆ (𝑦𝐶 ↦ (𝐹𝑦))
1412, 13eqsstrrdi 3989 . . . 4 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → (𝑦𝐵 ↦ (𝐹𝑦)) ⊆ (𝑦𝐶 ↦ (𝐹𝑦)))
15 rnss 5892 . . . 4 ((𝑦𝐵 ↦ (𝐹𝑦)) ⊆ (𝑦𝐶 ↦ (𝐹𝑦)) → ran (𝑦𝐵 ↦ (𝐹𝑦)) ⊆ ran (𝑦𝐶 ↦ (𝐹𝑦)))
1614, 15syl 17 . . 3 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → ran (𝑦𝐵 ↦ (𝐹𝑦)) ⊆ ran (𝑦𝐶 ↦ (𝐹𝑦)))
17 fgss 23736 . . 3 ((ran (𝑦𝐵 ↦ (𝐹𝑦)) ∈ (fBas‘𝑋) ∧ ran (𝑦𝐶 ↦ (𝐹𝑦)) ∈ (fBas‘𝑋) ∧ ran (𝑦𝐵 ↦ (𝐹𝑦)) ⊆ ran (𝑦𝐶 ↦ (𝐹𝑦))) → (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))) ⊆ (𝑋filGenran (𝑦𝐶 ↦ (𝐹𝑦))))
186, 10, 16, 17syl3anc 1373 . 2 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))) ⊆ (𝑋filGenran (𝑦𝐶 ↦ (𝐹𝑦))))
19 fmval 23806 . . 3 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))))
203, 1, 2, 19syl3anc 1373 . 2 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))))
21 fmval 23806 . . 3 ((𝑋𝐴𝐶 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐶) = (𝑋filGenran (𝑦𝐶 ↦ (𝐹𝑦))))
223, 7, 2, 21syl3anc 1373 . 2 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → ((𝑋 FilMap 𝐹)‘𝐶) = (𝑋filGenran (𝑦𝐶 ↦ (𝐹𝑦))))
2318, 20, 223sstr4d 3999 1 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ ((𝑋 FilMap 𝐹)‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3911  cmpt 5183  ran crn 5632  cres 5633  cima 5634  wf 6495  cfv 6499  (class class class)co 7369  fBascfbas 21228  filGencfg 21229   FilMap cfm 23796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-fbas 21237  df-fg 21238  df-fm 23801
This theorem is referenced by:  ufldom  23825  cnpfcfi  23903
  Copyright terms: Public domain W3C validator