MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmss Structured version   Visualization version   GIF version

Theorem fmss 22843
Description: A finer filter produces a finer image filter. (Contributed by Jeff Hankins, 16-Nov-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Assertion
Ref Expression
fmss (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ ((𝑋 FilMap 𝐹)‘𝐶))

Proof of Theorem fmss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpl2 1194 . . . 4 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → 𝐵 ∈ (fBas‘𝑌))
2 simprl 771 . . . 4 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → 𝐹:𝑌𝑋)
3 simpl1 1193 . . . 4 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → 𝑋𝐴)
4 eqid 2737 . . . . 5 ran (𝑦𝐵 ↦ (𝐹𝑦)) = ran (𝑦𝐵 ↦ (𝐹𝑦))
54fbasrn 22781 . . . 4 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋𝑋𝐴) → ran (𝑦𝐵 ↦ (𝐹𝑦)) ∈ (fBas‘𝑋))
61, 2, 3, 5syl3anc 1373 . . 3 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → ran (𝑦𝐵 ↦ (𝐹𝑦)) ∈ (fBas‘𝑋))
7 simpl3 1195 . . . 4 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → 𝐶 ∈ (fBas‘𝑌))
8 eqid 2737 . . . . 5 ran (𝑦𝐶 ↦ (𝐹𝑦)) = ran (𝑦𝐶 ↦ (𝐹𝑦))
98fbasrn 22781 . . . 4 ((𝐶 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋𝑋𝐴) → ran (𝑦𝐶 ↦ (𝐹𝑦)) ∈ (fBas‘𝑋))
107, 2, 3, 9syl3anc 1373 . . 3 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → ran (𝑦𝐶 ↦ (𝐹𝑦)) ∈ (fBas‘𝑋))
11 resmpt 5905 . . . . . 6 (𝐵𝐶 → ((𝑦𝐶 ↦ (𝐹𝑦)) ↾ 𝐵) = (𝑦𝐵 ↦ (𝐹𝑦)))
1211ad2antll 729 . . . . 5 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → ((𝑦𝐶 ↦ (𝐹𝑦)) ↾ 𝐵) = (𝑦𝐵 ↦ (𝐹𝑦)))
13 resss 5876 . . . . 5 ((𝑦𝐶 ↦ (𝐹𝑦)) ↾ 𝐵) ⊆ (𝑦𝐶 ↦ (𝐹𝑦))
1412, 13eqsstrrdi 3956 . . . 4 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → (𝑦𝐵 ↦ (𝐹𝑦)) ⊆ (𝑦𝐶 ↦ (𝐹𝑦)))
15 rnss 5808 . . . 4 ((𝑦𝐵 ↦ (𝐹𝑦)) ⊆ (𝑦𝐶 ↦ (𝐹𝑦)) → ran (𝑦𝐵 ↦ (𝐹𝑦)) ⊆ ran (𝑦𝐶 ↦ (𝐹𝑦)))
1614, 15syl 17 . . 3 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → ran (𝑦𝐵 ↦ (𝐹𝑦)) ⊆ ran (𝑦𝐶 ↦ (𝐹𝑦)))
17 fgss 22770 . . 3 ((ran (𝑦𝐵 ↦ (𝐹𝑦)) ∈ (fBas‘𝑋) ∧ ran (𝑦𝐶 ↦ (𝐹𝑦)) ∈ (fBas‘𝑋) ∧ ran (𝑦𝐵 ↦ (𝐹𝑦)) ⊆ ran (𝑦𝐶 ↦ (𝐹𝑦))) → (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))) ⊆ (𝑋filGenran (𝑦𝐶 ↦ (𝐹𝑦))))
186, 10, 16, 17syl3anc 1373 . 2 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))) ⊆ (𝑋filGenran (𝑦𝐶 ↦ (𝐹𝑦))))
19 fmval 22840 . . 3 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))))
203, 1, 2, 19syl3anc 1373 . 2 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))))
21 fmval 22840 . . 3 ((𝑋𝐴𝐶 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐶) = (𝑋filGenran (𝑦𝐶 ↦ (𝐹𝑦))))
223, 7, 2, 21syl3anc 1373 . 2 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → ((𝑋 FilMap 𝐹)‘𝐶) = (𝑋filGenran (𝑦𝐶 ↦ (𝐹𝑦))))
2318, 20, 223sstr4d 3948 1 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ ((𝑋 FilMap 𝐹)‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  wss 3866  cmpt 5135  ran crn 5552  cres 5553  cima 5554  wf 6376  cfv 6380  (class class class)co 7213  fBascfbas 20351  filGencfg 20352   FilMap cfm 22830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-fbas 20360  df-fg 20361  df-fm 22835
This theorem is referenced by:  ufldom  22859  cnpfcfi  22937
  Copyright terms: Public domain W3C validator