MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfg Structured version   Visualization version   GIF version

Theorem elfg 23895
Description: A condition for elements of a generated filter. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
elfg (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ (𝐴𝑋 ∧ ∃𝑥𝐹 𝑥𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝑋(𝑥)

Proof of Theorem elfg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fgval 23894 . . 3 (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) = {𝑦 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑦) ≠ ∅})
21eleq2d 2825 . 2 (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ 𝐴 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑦) ≠ ∅}))
3 pweq 4619 . . . . . 6 (𝑦 = 𝐴 → 𝒫 𝑦 = 𝒫 𝐴)
43ineq2d 4228 . . . . 5 (𝑦 = 𝐴 → (𝐹 ∩ 𝒫 𝑦) = (𝐹 ∩ 𝒫 𝐴))
54neeq1d 2998 . . . 4 (𝑦 = 𝐴 → ((𝐹 ∩ 𝒫 𝑦) ≠ ∅ ↔ (𝐹 ∩ 𝒫 𝐴) ≠ ∅))
65elrab 3695 . . 3 (𝐴 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑦) ≠ ∅} ↔ (𝐴 ∈ 𝒫 𝑋 ∧ (𝐹 ∩ 𝒫 𝐴) ≠ ∅))
7 elfvdm 6944 . . . . 5 (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ dom fBas)
8 elpw2g 5339 . . . . 5 (𝑋 ∈ dom fBas → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
97, 8syl 17 . . . 4 (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
10 elin 3979 . . . . . . . 8 (𝑥 ∈ (𝐹 ∩ 𝒫 𝐴) ↔ (𝑥𝐹𝑥 ∈ 𝒫 𝐴))
11 velpw 4610 . . . . . . . . 9 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
1211anbi2i 623 . . . . . . . 8 ((𝑥𝐹𝑥 ∈ 𝒫 𝐴) ↔ (𝑥𝐹𝑥𝐴))
1310, 12bitri 275 . . . . . . 7 (𝑥 ∈ (𝐹 ∩ 𝒫 𝐴) ↔ (𝑥𝐹𝑥𝐴))
1413exbii 1845 . . . . . 6 (∃𝑥 𝑥 ∈ (𝐹 ∩ 𝒫 𝐴) ↔ ∃𝑥(𝑥𝐹𝑥𝐴))
15 n0 4359 . . . . . 6 ((𝐹 ∩ 𝒫 𝐴) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐹 ∩ 𝒫 𝐴))
16 df-rex 3069 . . . . . 6 (∃𝑥𝐹 𝑥𝐴 ↔ ∃𝑥(𝑥𝐹𝑥𝐴))
1714, 15, 163bitr4i 303 . . . . 5 ((𝐹 ∩ 𝒫 𝐴) ≠ ∅ ↔ ∃𝑥𝐹 𝑥𝐴)
1817a1i 11 . . . 4 (𝐹 ∈ (fBas‘𝑋) → ((𝐹 ∩ 𝒫 𝐴) ≠ ∅ ↔ ∃𝑥𝐹 𝑥𝐴))
199, 18anbi12d 632 . . 3 (𝐹 ∈ (fBas‘𝑋) → ((𝐴 ∈ 𝒫 𝑋 ∧ (𝐹 ∩ 𝒫 𝐴) ≠ ∅) ↔ (𝐴𝑋 ∧ ∃𝑥𝐹 𝑥𝐴)))
206, 19bitrid 283 . 2 (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑦) ≠ ∅} ↔ (𝐴𝑋 ∧ ∃𝑥𝐹 𝑥𝐴)))
212, 20bitrd 279 1 (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ (𝐴𝑋 ∧ ∃𝑥𝐹 𝑥𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1776  wcel 2106  wne 2938  wrex 3068  {crab 3433  cin 3962  wss 3963  c0 4339  𝒫 cpw 4605  dom cdm 5689  cfv 6563  (class class class)co 7431  fBascfbas 21370  filGencfg 21371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-fg 21380
This theorem is referenced by:  ssfg  23896  fgss  23897  fgss2  23898  fgfil  23899  elfilss  23900  fgcl  23902  fgabs  23903  fgtr  23914  trfg  23915  uffix  23945  elfm  23971  elfm2  23972  elfm3  23974  fbflim  24000  flffbas  24019  fclsbas  24045  isucn2  24304  metust  24587  cfilucfil  24588  metuel  24593  fgcfil  25319  fgmin  36353  filnetlem4  36364
  Copyright terms: Public domain W3C validator