| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfg | Structured version Visualization version GIF version | ||
| Description: A condition for elements of a generated filter. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
| Ref | Expression |
|---|---|
| elfg | ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fgval 23757 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) = {𝑦 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑦) ≠ ∅}) | |
| 2 | 1 | eleq2d 2814 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ 𝐴 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑦) ≠ ∅})) |
| 3 | pweq 4577 | . . . . . 6 ⊢ (𝑦 = 𝐴 → 𝒫 𝑦 = 𝒫 𝐴) | |
| 4 | 3 | ineq2d 4183 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝐹 ∩ 𝒫 𝑦) = (𝐹 ∩ 𝒫 𝐴)) |
| 5 | 4 | neeq1d 2984 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝐹 ∩ 𝒫 𝑦) ≠ ∅ ↔ (𝐹 ∩ 𝒫 𝐴) ≠ ∅)) |
| 6 | 5 | elrab 3659 | . . 3 ⊢ (𝐴 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑦) ≠ ∅} ↔ (𝐴 ∈ 𝒫 𝑋 ∧ (𝐹 ∩ 𝒫 𝐴) ≠ ∅)) |
| 7 | elfvdm 6895 | . . . . 5 ⊢ (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ dom fBas) | |
| 8 | elpw2g 5288 | . . . . 5 ⊢ (𝑋 ∈ dom fBas → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) | |
| 9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) |
| 10 | elin 3930 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝐹 ∩ 𝒫 𝐴) ↔ (𝑥 ∈ 𝐹 ∧ 𝑥 ∈ 𝒫 𝐴)) | |
| 11 | velpw 4568 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
| 12 | 11 | anbi2i 623 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐹 ∧ 𝑥 ∈ 𝒫 𝐴) ↔ (𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝐴)) |
| 13 | 10, 12 | bitri 275 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐹 ∩ 𝒫 𝐴) ↔ (𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝐴)) |
| 14 | 13 | exbii 1848 | . . . . . 6 ⊢ (∃𝑥 𝑥 ∈ (𝐹 ∩ 𝒫 𝐴) ↔ ∃𝑥(𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝐴)) |
| 15 | n0 4316 | . . . . . 6 ⊢ ((𝐹 ∩ 𝒫 𝐴) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐹 ∩ 𝒫 𝐴)) | |
| 16 | df-rex 3054 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴 ↔ ∃𝑥(𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝐴)) | |
| 17 | 14, 15, 16 | 3bitr4i 303 | . . . . 5 ⊢ ((𝐹 ∩ 𝒫 𝐴) ≠ ∅ ↔ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴) |
| 18 | 17 | a1i 11 | . . . 4 ⊢ (𝐹 ∈ (fBas‘𝑋) → ((𝐹 ∩ 𝒫 𝐴) ≠ ∅ ↔ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴)) |
| 19 | 9, 18 | anbi12d 632 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝑋) → ((𝐴 ∈ 𝒫 𝑋 ∧ (𝐹 ∩ 𝒫 𝐴) ≠ ∅) ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴))) |
| 20 | 6, 19 | bitrid 283 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑦) ≠ ∅} ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴))) |
| 21 | 2, 20 | bitrd 279 | 1 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 {crab 3405 ∩ cin 3913 ⊆ wss 3914 ∅c0 4296 𝒫 cpw 4563 dom cdm 5638 ‘cfv 6511 (class class class)co 7387 fBascfbas 21252 filGencfg 21253 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-fg 21262 |
| This theorem is referenced by: ssfg 23759 fgss 23760 fgss2 23761 fgfil 23762 elfilss 23763 fgcl 23765 fgabs 23766 fgtr 23777 trfg 23778 uffix 23808 elfm 23834 elfm2 23835 elfm3 23837 fbflim 23863 flffbas 23882 fclsbas 23908 isucn2 24166 metust 24446 cfilucfil 24447 metuel 24452 fgcfil 25171 fgmin 36358 filnetlem4 36369 |
| Copyright terms: Public domain | W3C validator |