![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfg | Structured version Visualization version GIF version |
Description: A condition for elements of a generated filter. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
Ref | Expression |
---|---|
elfg | ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fgval 23894 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) = {𝑦 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑦) ≠ ∅}) | |
2 | 1 | eleq2d 2825 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ 𝐴 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑦) ≠ ∅})) |
3 | pweq 4619 | . . . . . 6 ⊢ (𝑦 = 𝐴 → 𝒫 𝑦 = 𝒫 𝐴) | |
4 | 3 | ineq2d 4228 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝐹 ∩ 𝒫 𝑦) = (𝐹 ∩ 𝒫 𝐴)) |
5 | 4 | neeq1d 2998 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝐹 ∩ 𝒫 𝑦) ≠ ∅ ↔ (𝐹 ∩ 𝒫 𝐴) ≠ ∅)) |
6 | 5 | elrab 3695 | . . 3 ⊢ (𝐴 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑦) ≠ ∅} ↔ (𝐴 ∈ 𝒫 𝑋 ∧ (𝐹 ∩ 𝒫 𝐴) ≠ ∅)) |
7 | elfvdm 6944 | . . . . 5 ⊢ (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ dom fBas) | |
8 | elpw2g 5339 | . . . . 5 ⊢ (𝑋 ∈ dom fBas → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) | |
9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) |
10 | elin 3979 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝐹 ∩ 𝒫 𝐴) ↔ (𝑥 ∈ 𝐹 ∧ 𝑥 ∈ 𝒫 𝐴)) | |
11 | velpw 4610 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
12 | 11 | anbi2i 623 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐹 ∧ 𝑥 ∈ 𝒫 𝐴) ↔ (𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝐴)) |
13 | 10, 12 | bitri 275 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐹 ∩ 𝒫 𝐴) ↔ (𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝐴)) |
14 | 13 | exbii 1845 | . . . . . 6 ⊢ (∃𝑥 𝑥 ∈ (𝐹 ∩ 𝒫 𝐴) ↔ ∃𝑥(𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝐴)) |
15 | n0 4359 | . . . . . 6 ⊢ ((𝐹 ∩ 𝒫 𝐴) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐹 ∩ 𝒫 𝐴)) | |
16 | df-rex 3069 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴 ↔ ∃𝑥(𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝐴)) | |
17 | 14, 15, 16 | 3bitr4i 303 | . . . . 5 ⊢ ((𝐹 ∩ 𝒫 𝐴) ≠ ∅ ↔ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴) |
18 | 17 | a1i 11 | . . . 4 ⊢ (𝐹 ∈ (fBas‘𝑋) → ((𝐹 ∩ 𝒫 𝐴) ≠ ∅ ↔ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴)) |
19 | 9, 18 | anbi12d 632 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝑋) → ((𝐴 ∈ 𝒫 𝑋 ∧ (𝐹 ∩ 𝒫 𝐴) ≠ ∅) ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴))) |
20 | 6, 19 | bitrid 283 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑦) ≠ ∅} ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴))) |
21 | 2, 20 | bitrd 279 | 1 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1776 ∈ wcel 2106 ≠ wne 2938 ∃wrex 3068 {crab 3433 ∩ cin 3962 ⊆ wss 3963 ∅c0 4339 𝒫 cpw 4605 dom cdm 5689 ‘cfv 6563 (class class class)co 7431 fBascfbas 21370 filGencfg 21371 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-fg 21380 |
This theorem is referenced by: ssfg 23896 fgss 23897 fgss2 23898 fgfil 23899 elfilss 23900 fgcl 23902 fgabs 23903 fgtr 23914 trfg 23915 uffix 23945 elfm 23971 elfm2 23972 elfm3 23974 fbflim 24000 flffbas 24019 fclsbas 24045 isucn2 24304 metust 24587 cfilucfil 24588 metuel 24593 fgcfil 25319 fgmin 36353 filnetlem4 36364 |
Copyright terms: Public domain | W3C validator |