Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elfg | Structured version Visualization version GIF version |
Description: A condition for elements of a generated filter. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
Ref | Expression |
---|---|
elfg | ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fgval 23021 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) = {𝑦 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑦) ≠ ∅}) | |
2 | 1 | eleq2d 2824 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ 𝐴 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑦) ≠ ∅})) |
3 | pweq 4549 | . . . . . 6 ⊢ (𝑦 = 𝐴 → 𝒫 𝑦 = 𝒫 𝐴) | |
4 | 3 | ineq2d 4146 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝐹 ∩ 𝒫 𝑦) = (𝐹 ∩ 𝒫 𝐴)) |
5 | 4 | neeq1d 3003 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝐹 ∩ 𝒫 𝑦) ≠ ∅ ↔ (𝐹 ∩ 𝒫 𝐴) ≠ ∅)) |
6 | 5 | elrab 3624 | . . 3 ⊢ (𝐴 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑦) ≠ ∅} ↔ (𝐴 ∈ 𝒫 𝑋 ∧ (𝐹 ∩ 𝒫 𝐴) ≠ ∅)) |
7 | elfvdm 6806 | . . . . 5 ⊢ (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ dom fBas) | |
8 | elpw2g 5268 | . . . . 5 ⊢ (𝑋 ∈ dom fBas → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) | |
9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) |
10 | elin 3903 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝐹 ∩ 𝒫 𝐴) ↔ (𝑥 ∈ 𝐹 ∧ 𝑥 ∈ 𝒫 𝐴)) | |
11 | velpw 4538 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
12 | 11 | anbi2i 623 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐹 ∧ 𝑥 ∈ 𝒫 𝐴) ↔ (𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝐴)) |
13 | 10, 12 | bitri 274 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐹 ∩ 𝒫 𝐴) ↔ (𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝐴)) |
14 | 13 | exbii 1850 | . . . . . 6 ⊢ (∃𝑥 𝑥 ∈ (𝐹 ∩ 𝒫 𝐴) ↔ ∃𝑥(𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝐴)) |
15 | n0 4280 | . . . . . 6 ⊢ ((𝐹 ∩ 𝒫 𝐴) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐹 ∩ 𝒫 𝐴)) | |
16 | df-rex 3070 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴 ↔ ∃𝑥(𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝐴)) | |
17 | 14, 15, 16 | 3bitr4i 303 | . . . . 5 ⊢ ((𝐹 ∩ 𝒫 𝐴) ≠ ∅ ↔ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴) |
18 | 17 | a1i 11 | . . . 4 ⊢ (𝐹 ∈ (fBas‘𝑋) → ((𝐹 ∩ 𝒫 𝐴) ≠ ∅ ↔ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴)) |
19 | 9, 18 | anbi12d 631 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝑋) → ((𝐴 ∈ 𝒫 𝑋 ∧ (𝐹 ∩ 𝒫 𝐴) ≠ ∅) ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴))) |
20 | 6, 19 | bitrid 282 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑦) ≠ ∅} ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴))) |
21 | 2, 20 | bitrd 278 | 1 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ≠ wne 2943 ∃wrex 3065 {crab 3068 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 𝒫 cpw 4533 dom cdm 5589 ‘cfv 6433 (class class class)co 7275 fBascfbas 20585 filGencfg 20586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-fg 20595 |
This theorem is referenced by: ssfg 23023 fgss 23024 fgss2 23025 fgfil 23026 elfilss 23027 fgcl 23029 fgabs 23030 fgtr 23041 trfg 23042 uffix 23072 elfm 23098 elfm2 23099 elfm3 23101 fbflim 23127 flffbas 23146 fclsbas 23172 isucn2 23431 metust 23714 cfilucfil 23715 metuel 23720 fgcfil 24435 fgmin 34559 filnetlem4 34570 |
Copyright terms: Public domain | W3C validator |