| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfg | Structured version Visualization version GIF version | ||
| Description: A condition for elements of a generated filter. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
| Ref | Expression |
|---|---|
| elfg | ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fgval 23793 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) = {𝑦 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑦) ≠ ∅}) | |
| 2 | 1 | eleq2d 2819 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ 𝐴 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑦) ≠ ∅})) |
| 3 | pweq 4587 | . . . . . 6 ⊢ (𝑦 = 𝐴 → 𝒫 𝑦 = 𝒫 𝐴) | |
| 4 | 3 | ineq2d 4193 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝐹 ∩ 𝒫 𝑦) = (𝐹 ∩ 𝒫 𝐴)) |
| 5 | 4 | neeq1d 2990 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝐹 ∩ 𝒫 𝑦) ≠ ∅ ↔ (𝐹 ∩ 𝒫 𝐴) ≠ ∅)) |
| 6 | 5 | elrab 3669 | . . 3 ⊢ (𝐴 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑦) ≠ ∅} ↔ (𝐴 ∈ 𝒫 𝑋 ∧ (𝐹 ∩ 𝒫 𝐴) ≠ ∅)) |
| 7 | elfvdm 6909 | . . . . 5 ⊢ (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ dom fBas) | |
| 8 | elpw2g 5300 | . . . . 5 ⊢ (𝑋 ∈ dom fBas → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) | |
| 9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) |
| 10 | elin 3940 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝐹 ∩ 𝒫 𝐴) ↔ (𝑥 ∈ 𝐹 ∧ 𝑥 ∈ 𝒫 𝐴)) | |
| 11 | velpw 4578 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
| 12 | 11 | anbi2i 623 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐹 ∧ 𝑥 ∈ 𝒫 𝐴) ↔ (𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝐴)) |
| 13 | 10, 12 | bitri 275 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐹 ∩ 𝒫 𝐴) ↔ (𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝐴)) |
| 14 | 13 | exbii 1847 | . . . . . 6 ⊢ (∃𝑥 𝑥 ∈ (𝐹 ∩ 𝒫 𝐴) ↔ ∃𝑥(𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝐴)) |
| 15 | n0 4326 | . . . . . 6 ⊢ ((𝐹 ∩ 𝒫 𝐴) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐹 ∩ 𝒫 𝐴)) | |
| 16 | df-rex 3060 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴 ↔ ∃𝑥(𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝐴)) | |
| 17 | 14, 15, 16 | 3bitr4i 303 | . . . . 5 ⊢ ((𝐹 ∩ 𝒫 𝐴) ≠ ∅ ↔ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴) |
| 18 | 17 | a1i 11 | . . . 4 ⊢ (𝐹 ∈ (fBas‘𝑋) → ((𝐹 ∩ 𝒫 𝐴) ≠ ∅ ↔ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴)) |
| 19 | 9, 18 | anbi12d 632 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝑋) → ((𝐴 ∈ 𝒫 𝑋 ∧ (𝐹 ∩ 𝒫 𝐴) ≠ ∅) ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴))) |
| 20 | 6, 19 | bitrid 283 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑦) ≠ ∅} ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴))) |
| 21 | 2, 20 | bitrd 279 | 1 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 ≠ wne 2931 ∃wrex 3059 {crab 3413 ∩ cin 3923 ⊆ wss 3924 ∅c0 4306 𝒫 cpw 4573 dom cdm 5651 ‘cfv 6527 (class class class)co 7399 fBascfbas 21288 filGencfg 21289 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-sbc 3764 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-opab 5179 df-id 5545 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-iota 6480 df-fun 6529 df-fv 6535 df-ov 7402 df-oprab 7403 df-mpo 7404 df-fg 21298 |
| This theorem is referenced by: ssfg 23795 fgss 23796 fgss2 23797 fgfil 23798 elfilss 23799 fgcl 23801 fgabs 23802 fgtr 23813 trfg 23814 uffix 23844 elfm 23870 elfm2 23871 elfm3 23873 fbflim 23899 flffbas 23918 fclsbas 23944 isucn2 24202 metust 24482 cfilucfil 24483 metuel 24488 fgcfil 25208 fgmin 36309 filnetlem4 36320 |
| Copyright terms: Public domain | W3C validator |