MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfg Structured version   Visualization version   GIF version

Theorem elfg 21954
Description: A condition for elements of a generated filter. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
elfg (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ (𝐴𝑋 ∧ ∃𝑥𝐹 𝑥𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝑋(𝑥)

Proof of Theorem elfg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fgval 21953 . . 3 (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) = {𝑦 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑦) ≠ ∅})
21eleq2d 2830 . 2 (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ 𝐴 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑦) ≠ ∅}))
3 pweq 4318 . . . . . 6 (𝑦 = 𝐴 → 𝒫 𝑦 = 𝒫 𝐴)
43ineq2d 3976 . . . . 5 (𝑦 = 𝐴 → (𝐹 ∩ 𝒫 𝑦) = (𝐹 ∩ 𝒫 𝐴))
54neeq1d 2996 . . . 4 (𝑦 = 𝐴 → ((𝐹 ∩ 𝒫 𝑦) ≠ ∅ ↔ (𝐹 ∩ 𝒫 𝐴) ≠ ∅))
65elrab 3519 . . 3 (𝐴 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑦) ≠ ∅} ↔ (𝐴 ∈ 𝒫 𝑋 ∧ (𝐹 ∩ 𝒫 𝐴) ≠ ∅))
7 elfvdm 6407 . . . . 5 (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ dom fBas)
8 elpw2g 4985 . . . . 5 (𝑋 ∈ dom fBas → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
97, 8syl 17 . . . 4 (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
10 elin 3958 . . . . . . . 8 (𝑥 ∈ (𝐹 ∩ 𝒫 𝐴) ↔ (𝑥𝐹𝑥 ∈ 𝒫 𝐴))
11 selpw 4322 . . . . . . . . 9 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
1211anbi2i 616 . . . . . . . 8 ((𝑥𝐹𝑥 ∈ 𝒫 𝐴) ↔ (𝑥𝐹𝑥𝐴))
1310, 12bitri 266 . . . . . . 7 (𝑥 ∈ (𝐹 ∩ 𝒫 𝐴) ↔ (𝑥𝐹𝑥𝐴))
1413exbii 1943 . . . . . 6 (∃𝑥 𝑥 ∈ (𝐹 ∩ 𝒫 𝐴) ↔ ∃𝑥(𝑥𝐹𝑥𝐴))
15 n0 4095 . . . . . 6 ((𝐹 ∩ 𝒫 𝐴) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐹 ∩ 𝒫 𝐴))
16 df-rex 3061 . . . . . 6 (∃𝑥𝐹 𝑥𝐴 ↔ ∃𝑥(𝑥𝐹𝑥𝐴))
1714, 15, 163bitr4i 294 . . . . 5 ((𝐹 ∩ 𝒫 𝐴) ≠ ∅ ↔ ∃𝑥𝐹 𝑥𝐴)
1817a1i 11 . . . 4 (𝐹 ∈ (fBas‘𝑋) → ((𝐹 ∩ 𝒫 𝐴) ≠ ∅ ↔ ∃𝑥𝐹 𝑥𝐴))
199, 18anbi12d 624 . . 3 (𝐹 ∈ (fBas‘𝑋) → ((𝐴 ∈ 𝒫 𝑋 ∧ (𝐹 ∩ 𝒫 𝐴) ≠ ∅) ↔ (𝐴𝑋 ∧ ∃𝑥𝐹 𝑥𝐴)))
206, 19syl5bb 274 . 2 (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑦) ≠ ∅} ↔ (𝐴𝑋 ∧ ∃𝑥𝐹 𝑥𝐴)))
212, 20bitrd 270 1 (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ (𝐴𝑋 ∧ ∃𝑥𝐹 𝑥𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wex 1874  wcel 2155  wne 2937  wrex 3056  {crab 3059  cin 3731  wss 3732  c0 4079  𝒫 cpw 4315  dom cdm 5277  cfv 6068  (class class class)co 6842  fBascfbas 20007  filGencfg 20008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3597  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-br 4810  df-opab 4872  df-id 5185  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-iota 6031  df-fun 6070  df-fv 6076  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-fg 20017
This theorem is referenced by:  ssfg  21955  fgss  21956  fgss2  21957  fgfil  21958  elfilss  21959  fgcl  21961  fgabs  21962  fgtr  21973  trfg  21974  uffix  22004  elfm  22030  elfm2  22031  elfm3  22033  fbflim  22059  flffbas  22078  fclsbas  22104  isucn2  22362  metust  22642  cfilucfil  22643  metuel  22648  fgcfil  23348  fgmin  32808  filnetlem4  32819
  Copyright terms: Public domain W3C validator