![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfg | Structured version Visualization version GIF version |
Description: A condition for elements of a generated filter. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
Ref | Expression |
---|---|
elfg | ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fgval 23221 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) = {𝑦 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑦) ≠ ∅}) | |
2 | 1 | eleq2d 2823 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ 𝐴 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑦) ≠ ∅})) |
3 | pweq 4574 | . . . . . 6 ⊢ (𝑦 = 𝐴 → 𝒫 𝑦 = 𝒫 𝐴) | |
4 | 3 | ineq2d 4172 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝐹 ∩ 𝒫 𝑦) = (𝐹 ∩ 𝒫 𝐴)) |
5 | 4 | neeq1d 3003 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝐹 ∩ 𝒫 𝑦) ≠ ∅ ↔ (𝐹 ∩ 𝒫 𝐴) ≠ ∅)) |
6 | 5 | elrab 3645 | . . 3 ⊢ (𝐴 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑦) ≠ ∅} ↔ (𝐴 ∈ 𝒫 𝑋 ∧ (𝐹 ∩ 𝒫 𝐴) ≠ ∅)) |
7 | elfvdm 6879 | . . . . 5 ⊢ (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ dom fBas) | |
8 | elpw2g 5301 | . . . . 5 ⊢ (𝑋 ∈ dom fBas → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) | |
9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) |
10 | elin 3926 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝐹 ∩ 𝒫 𝐴) ↔ (𝑥 ∈ 𝐹 ∧ 𝑥 ∈ 𝒫 𝐴)) | |
11 | velpw 4565 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
12 | 11 | anbi2i 623 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐹 ∧ 𝑥 ∈ 𝒫 𝐴) ↔ (𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝐴)) |
13 | 10, 12 | bitri 274 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐹 ∩ 𝒫 𝐴) ↔ (𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝐴)) |
14 | 13 | exbii 1850 | . . . . . 6 ⊢ (∃𝑥 𝑥 ∈ (𝐹 ∩ 𝒫 𝐴) ↔ ∃𝑥(𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝐴)) |
15 | n0 4306 | . . . . . 6 ⊢ ((𝐹 ∩ 𝒫 𝐴) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐹 ∩ 𝒫 𝐴)) | |
16 | df-rex 3074 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴 ↔ ∃𝑥(𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝐴)) | |
17 | 14, 15, 16 | 3bitr4i 302 | . . . . 5 ⊢ ((𝐹 ∩ 𝒫 𝐴) ≠ ∅ ↔ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴) |
18 | 17 | a1i 11 | . . . 4 ⊢ (𝐹 ∈ (fBas‘𝑋) → ((𝐹 ∩ 𝒫 𝐴) ≠ ∅ ↔ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴)) |
19 | 9, 18 | anbi12d 631 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝑋) → ((𝐴 ∈ 𝒫 𝑋 ∧ (𝐹 ∩ 𝒫 𝐴) ≠ ∅) ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴))) |
20 | 6, 19 | bitrid 282 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑦) ≠ ∅} ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴))) |
21 | 2, 20 | bitrd 278 | 1 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ≠ wne 2943 ∃wrex 3073 {crab 3407 ∩ cin 3909 ⊆ wss 3910 ∅c0 4282 𝒫 cpw 4560 dom cdm 5633 ‘cfv 6496 (class class class)co 7357 fBascfbas 20784 filGencfg 20785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-ral 3065 df-rex 3074 df-rab 3408 df-v 3447 df-sbc 3740 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-br 5106 df-opab 5168 df-id 5531 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-iota 6448 df-fun 6498 df-fv 6504 df-ov 7360 df-oprab 7361 df-mpo 7362 df-fg 20794 |
This theorem is referenced by: ssfg 23223 fgss 23224 fgss2 23225 fgfil 23226 elfilss 23227 fgcl 23229 fgabs 23230 fgtr 23241 trfg 23242 uffix 23272 elfm 23298 elfm2 23299 elfm3 23301 fbflim 23327 flffbas 23346 fclsbas 23372 isucn2 23631 metust 23914 cfilucfil 23915 metuel 23920 fgcfil 24635 fgmin 34842 filnetlem4 34853 |
Copyright terms: Public domain | W3C validator |