MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfg Structured version   Visualization version   GIF version

Theorem elfg 23367
Description: A condition for elements of a generated filter. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
elfg (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ (𝐴𝑋 ∧ ∃𝑥𝐹 𝑥𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝑋(𝑥)

Proof of Theorem elfg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fgval 23366 . . 3 (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) = {𝑦 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑦) ≠ ∅})
21eleq2d 2820 . 2 (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ 𝐴 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑦) ≠ ∅}))
3 pweq 4616 . . . . . 6 (𝑦 = 𝐴 → 𝒫 𝑦 = 𝒫 𝐴)
43ineq2d 4212 . . . . 5 (𝑦 = 𝐴 → (𝐹 ∩ 𝒫 𝑦) = (𝐹 ∩ 𝒫 𝐴))
54neeq1d 3001 . . . 4 (𝑦 = 𝐴 → ((𝐹 ∩ 𝒫 𝑦) ≠ ∅ ↔ (𝐹 ∩ 𝒫 𝐴) ≠ ∅))
65elrab 3683 . . 3 (𝐴 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑦) ≠ ∅} ↔ (𝐴 ∈ 𝒫 𝑋 ∧ (𝐹 ∩ 𝒫 𝐴) ≠ ∅))
7 elfvdm 6926 . . . . 5 (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ dom fBas)
8 elpw2g 5344 . . . . 5 (𝑋 ∈ dom fBas → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
97, 8syl 17 . . . 4 (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
10 elin 3964 . . . . . . . 8 (𝑥 ∈ (𝐹 ∩ 𝒫 𝐴) ↔ (𝑥𝐹𝑥 ∈ 𝒫 𝐴))
11 velpw 4607 . . . . . . . . 9 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
1211anbi2i 624 . . . . . . . 8 ((𝑥𝐹𝑥 ∈ 𝒫 𝐴) ↔ (𝑥𝐹𝑥𝐴))
1310, 12bitri 275 . . . . . . 7 (𝑥 ∈ (𝐹 ∩ 𝒫 𝐴) ↔ (𝑥𝐹𝑥𝐴))
1413exbii 1851 . . . . . 6 (∃𝑥 𝑥 ∈ (𝐹 ∩ 𝒫 𝐴) ↔ ∃𝑥(𝑥𝐹𝑥𝐴))
15 n0 4346 . . . . . 6 ((𝐹 ∩ 𝒫 𝐴) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐹 ∩ 𝒫 𝐴))
16 df-rex 3072 . . . . . 6 (∃𝑥𝐹 𝑥𝐴 ↔ ∃𝑥(𝑥𝐹𝑥𝐴))
1714, 15, 163bitr4i 303 . . . . 5 ((𝐹 ∩ 𝒫 𝐴) ≠ ∅ ↔ ∃𝑥𝐹 𝑥𝐴)
1817a1i 11 . . . 4 (𝐹 ∈ (fBas‘𝑋) → ((𝐹 ∩ 𝒫 𝐴) ≠ ∅ ↔ ∃𝑥𝐹 𝑥𝐴))
199, 18anbi12d 632 . . 3 (𝐹 ∈ (fBas‘𝑋) → ((𝐴 ∈ 𝒫 𝑋 ∧ (𝐹 ∩ 𝒫 𝐴) ≠ ∅) ↔ (𝐴𝑋 ∧ ∃𝑥𝐹 𝑥𝐴)))
206, 19bitrid 283 . 2 (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑦) ≠ ∅} ↔ (𝐴𝑋 ∧ ∃𝑥𝐹 𝑥𝐴)))
212, 20bitrd 279 1 (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ (𝐴𝑋 ∧ ∃𝑥𝐹 𝑥𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wex 1782  wcel 2107  wne 2941  wrex 3071  {crab 3433  cin 3947  wss 3948  c0 4322  𝒫 cpw 4602  dom cdm 5676  cfv 6541  (class class class)co 7406  fBascfbas 20925  filGencfg 20926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6493  df-fun 6543  df-fv 6549  df-ov 7409  df-oprab 7410  df-mpo 7411  df-fg 20935
This theorem is referenced by:  ssfg  23368  fgss  23369  fgss2  23370  fgfil  23371  elfilss  23372  fgcl  23374  fgabs  23375  fgtr  23386  trfg  23387  uffix  23417  elfm  23443  elfm2  23444  elfm3  23446  fbflim  23472  flffbas  23491  fclsbas  23517  isucn2  23776  metust  24059  cfilucfil  24060  metuel  24065  fgcfil  24780  fgmin  35244  filnetlem4  35255
  Copyright terms: Public domain W3C validator