MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfg Structured version   Visualization version   GIF version

Theorem elfg 23809
Description: A condition for elements of a generated filter. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
elfg (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ (𝐴𝑋 ∧ ∃𝑥𝐹 𝑥𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝑋(𝑥)

Proof of Theorem elfg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fgval 23808 . . 3 (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) = {𝑦 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑦) ≠ ∅})
21eleq2d 2820 . 2 (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ 𝐴 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑦) ≠ ∅}))
3 pweq 4589 . . . . . 6 (𝑦 = 𝐴 → 𝒫 𝑦 = 𝒫 𝐴)
43ineq2d 4195 . . . . 5 (𝑦 = 𝐴 → (𝐹 ∩ 𝒫 𝑦) = (𝐹 ∩ 𝒫 𝐴))
54neeq1d 2991 . . . 4 (𝑦 = 𝐴 → ((𝐹 ∩ 𝒫 𝑦) ≠ ∅ ↔ (𝐹 ∩ 𝒫 𝐴) ≠ ∅))
65elrab 3671 . . 3 (𝐴 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑦) ≠ ∅} ↔ (𝐴 ∈ 𝒫 𝑋 ∧ (𝐹 ∩ 𝒫 𝐴) ≠ ∅))
7 elfvdm 6913 . . . . 5 (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ dom fBas)
8 elpw2g 5303 . . . . 5 (𝑋 ∈ dom fBas → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
97, 8syl 17 . . . 4 (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
10 elin 3942 . . . . . . . 8 (𝑥 ∈ (𝐹 ∩ 𝒫 𝐴) ↔ (𝑥𝐹𝑥 ∈ 𝒫 𝐴))
11 velpw 4580 . . . . . . . . 9 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
1211anbi2i 623 . . . . . . . 8 ((𝑥𝐹𝑥 ∈ 𝒫 𝐴) ↔ (𝑥𝐹𝑥𝐴))
1310, 12bitri 275 . . . . . . 7 (𝑥 ∈ (𝐹 ∩ 𝒫 𝐴) ↔ (𝑥𝐹𝑥𝐴))
1413exbii 1848 . . . . . 6 (∃𝑥 𝑥 ∈ (𝐹 ∩ 𝒫 𝐴) ↔ ∃𝑥(𝑥𝐹𝑥𝐴))
15 n0 4328 . . . . . 6 ((𝐹 ∩ 𝒫 𝐴) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐹 ∩ 𝒫 𝐴))
16 df-rex 3061 . . . . . 6 (∃𝑥𝐹 𝑥𝐴 ↔ ∃𝑥(𝑥𝐹𝑥𝐴))
1714, 15, 163bitr4i 303 . . . . 5 ((𝐹 ∩ 𝒫 𝐴) ≠ ∅ ↔ ∃𝑥𝐹 𝑥𝐴)
1817a1i 11 . . . 4 (𝐹 ∈ (fBas‘𝑋) → ((𝐹 ∩ 𝒫 𝐴) ≠ ∅ ↔ ∃𝑥𝐹 𝑥𝐴))
199, 18anbi12d 632 . . 3 (𝐹 ∈ (fBas‘𝑋) → ((𝐴 ∈ 𝒫 𝑋 ∧ (𝐹 ∩ 𝒫 𝐴) ≠ ∅) ↔ (𝐴𝑋 ∧ ∃𝑥𝐹 𝑥𝐴)))
206, 19bitrid 283 . 2 (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑦) ≠ ∅} ↔ (𝐴𝑋 ∧ ∃𝑥𝐹 𝑥𝐴)))
212, 20bitrd 279 1 (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ (𝐴𝑋 ∧ ∃𝑥𝐹 𝑥𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  wne 2932  wrex 3060  {crab 3415  cin 3925  wss 3926  c0 4308  𝒫 cpw 4575  dom cdm 5654  cfv 6531  (class class class)co 7405  fBascfbas 21303  filGencfg 21304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-fg 21313
This theorem is referenced by:  ssfg  23810  fgss  23811  fgss2  23812  fgfil  23813  elfilss  23814  fgcl  23816  fgabs  23817  fgtr  23828  trfg  23829  uffix  23859  elfm  23885  elfm2  23886  elfm3  23888  fbflim  23914  flffbas  23933  fclsbas  23959  isucn2  24217  metust  24497  cfilucfil  24498  metuel  24503  fgcfil  25223  fgmin  36388  filnetlem4  36399
  Copyright terms: Public domain W3C validator