MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fgabs Structured version   Visualization version   GIF version

Theorem fgabs 23230
Description: Absorption law for filter generation. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
fgabs ((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) → (𝑋filGen(𝑌filGen𝐹)) = (𝑋filGen𝐹))

Proof of Theorem fgabs
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 765 . . . . . . . . 9 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → 𝐹 ∈ (fBas‘𝑌))
2 fgcl 23229 . . . . . . . . 9 (𝐹 ∈ (fBas‘𝑌) → (𝑌filGen𝐹) ∈ (Fil‘𝑌))
3 filfbas 23199 . . . . . . . . 9 ((𝑌filGen𝐹) ∈ (Fil‘𝑌) → (𝑌filGen𝐹) ∈ (fBas‘𝑌))
41, 2, 33syl 18 . . . . . . . 8 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → (𝑌filGen𝐹) ∈ (fBas‘𝑌))
5 fbsspw 23183 . . . . . . . . . 10 ((𝑌filGen𝐹) ∈ (fBas‘𝑌) → (𝑌filGen𝐹) ⊆ 𝒫 𝑌)
64, 5syl 17 . . . . . . . . 9 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → (𝑌filGen𝐹) ⊆ 𝒫 𝑌)
7 simplr 767 . . . . . . . . . 10 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → 𝑌𝑋)
87sspwd 4573 . . . . . . . . 9 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → 𝒫 𝑌 ⊆ 𝒫 𝑋)
96, 8sstrd 3954 . . . . . . . 8 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → (𝑌filGen𝐹) ⊆ 𝒫 𝑋)
10 simpr 485 . . . . . . . 8 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → 𝑋 ∈ V)
11 fbasweak 23216 . . . . . . . 8 (((𝑌filGen𝐹) ∈ (fBas‘𝑌) ∧ (𝑌filGen𝐹) ⊆ 𝒫 𝑋𝑋 ∈ V) → (𝑌filGen𝐹) ∈ (fBas‘𝑋))
124, 9, 10, 11syl3anc 1371 . . . . . . 7 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → (𝑌filGen𝐹) ∈ (fBas‘𝑋))
13 elfg 23222 . . . . . . 7 ((𝑌filGen𝐹) ∈ (fBas‘𝑋) → (𝑥 ∈ (𝑋filGen(𝑌filGen𝐹)) ↔ (𝑥𝑋 ∧ ∃𝑦 ∈ (𝑌filGen𝐹)𝑦𝑥)))
1412, 13syl 17 . . . . . 6 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → (𝑥 ∈ (𝑋filGen(𝑌filGen𝐹)) ↔ (𝑥𝑋 ∧ ∃𝑦 ∈ (𝑌filGen𝐹)𝑦𝑥)))
151adantr 481 . . . . . . . . . 10 ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ 𝑥𝑋) → 𝐹 ∈ (fBas‘𝑌))
16 elfg 23222 . . . . . . . . . 10 (𝐹 ∈ (fBas‘𝑌) → (𝑦 ∈ (𝑌filGen𝐹) ↔ (𝑦𝑌 ∧ ∃𝑧𝐹 𝑧𝑦)))
1715, 16syl 17 . . . . . . . . 9 ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ 𝑥𝑋) → (𝑦 ∈ (𝑌filGen𝐹) ↔ (𝑦𝑌 ∧ ∃𝑧𝐹 𝑧𝑦)))
18 fbsspw 23183 . . . . . . . . . . . . . . . . . . 19 (𝐹 ∈ (fBas‘𝑌) → 𝐹 ⊆ 𝒫 𝑌)
191, 18syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → 𝐹 ⊆ 𝒫 𝑌)
2019, 8sstrd 3954 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → 𝐹 ⊆ 𝒫 𝑋)
21 fbasweak 23216 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐹 ⊆ 𝒫 𝑋𝑋 ∈ V) → 𝐹 ∈ (fBas‘𝑋))
221, 20, 10, 21syl3anc 1371 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → 𝐹 ∈ (fBas‘𝑋))
23 fgcl 23229 . . . . . . . . . . . . . . . 16 (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) ∈ (Fil‘𝑋))
2422, 23syl 17 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → (𝑋filGen𝐹) ∈ (Fil‘𝑋))
2524ad2antrr 724 . . . . . . . . . . . . . 14 (((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ (𝑥𝑋𝑦𝑌)) ∧ ((𝑧𝐹𝑧𝑦) ∧ 𝑦𝑥)) → (𝑋filGen𝐹) ∈ (Fil‘𝑋))
26 ssfg 23223 . . . . . . . . . . . . . . . . . . 19 (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹))
2722, 26syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → 𝐹 ⊆ (𝑋filGen𝐹))
2827adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ (𝑥𝑋𝑦𝑌)) → 𝐹 ⊆ (𝑋filGen𝐹))
2928sselda 3944 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ (𝑥𝑋𝑦𝑌)) ∧ 𝑧𝐹) → 𝑧 ∈ (𝑋filGen𝐹))
3029adantrr 715 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ (𝑥𝑋𝑦𝑌)) ∧ (𝑧𝐹𝑧𝑦)) → 𝑧 ∈ (𝑋filGen𝐹))
3130adantrr 715 . . . . . . . . . . . . . 14 (((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ (𝑥𝑋𝑦𝑌)) ∧ ((𝑧𝐹𝑧𝑦) ∧ 𝑦𝑥)) → 𝑧 ∈ (𝑋filGen𝐹))
32 simplrl 775 . . . . . . . . . . . . . 14 (((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ (𝑥𝑋𝑦𝑌)) ∧ ((𝑧𝐹𝑧𝑦) ∧ 𝑦𝑥)) → 𝑥𝑋)
33 simprlr 778 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ (𝑥𝑋𝑦𝑌)) ∧ ((𝑧𝐹𝑧𝑦) ∧ 𝑦𝑥)) → 𝑧𝑦)
34 simprr 771 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ (𝑥𝑋𝑦𝑌)) ∧ ((𝑧𝐹𝑧𝑦) ∧ 𝑦𝑥)) → 𝑦𝑥)
3533, 34sstrd 3954 . . . . . . . . . . . . . 14 (((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ (𝑥𝑋𝑦𝑌)) ∧ ((𝑧𝐹𝑧𝑦) ∧ 𝑦𝑥)) → 𝑧𝑥)
36 filss 23204 . . . . . . . . . . . . . 14 (((𝑋filGen𝐹) ∈ (Fil‘𝑋) ∧ (𝑧 ∈ (𝑋filGen𝐹) ∧ 𝑥𝑋𝑧𝑥)) → 𝑥 ∈ (𝑋filGen𝐹))
3725, 31, 32, 35, 36syl13anc 1372 . . . . . . . . . . . . 13 (((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ (𝑥𝑋𝑦𝑌)) ∧ ((𝑧𝐹𝑧𝑦) ∧ 𝑦𝑥)) → 𝑥 ∈ (𝑋filGen𝐹))
3837expr 457 . . . . . . . . . . . 12 (((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ (𝑥𝑋𝑦𝑌)) ∧ (𝑧𝐹𝑧𝑦)) → (𝑦𝑥𝑥 ∈ (𝑋filGen𝐹)))
3938rexlimdvaa 3153 . . . . . . . . . . 11 ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ (𝑥𝑋𝑦𝑌)) → (∃𝑧𝐹 𝑧𝑦 → (𝑦𝑥𝑥 ∈ (𝑋filGen𝐹))))
4039anassrs 468 . . . . . . . . . 10 (((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ 𝑥𝑋) ∧ 𝑦𝑌) → (∃𝑧𝐹 𝑧𝑦 → (𝑦𝑥𝑥 ∈ (𝑋filGen𝐹))))
4140expimpd 454 . . . . . . . . 9 ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ 𝑥𝑋) → ((𝑦𝑌 ∧ ∃𝑧𝐹 𝑧𝑦) → (𝑦𝑥𝑥 ∈ (𝑋filGen𝐹))))
4217, 41sylbid 239 . . . . . . . 8 ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ 𝑥𝑋) → (𝑦 ∈ (𝑌filGen𝐹) → (𝑦𝑥𝑥 ∈ (𝑋filGen𝐹))))
4342rexlimdv 3150 . . . . . . 7 ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ 𝑥𝑋) → (∃𝑦 ∈ (𝑌filGen𝐹)𝑦𝑥𝑥 ∈ (𝑋filGen𝐹)))
4443expimpd 454 . . . . . 6 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → ((𝑥𝑋 ∧ ∃𝑦 ∈ (𝑌filGen𝐹)𝑦𝑥) → 𝑥 ∈ (𝑋filGen𝐹)))
4514, 44sylbid 239 . . . . 5 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → (𝑥 ∈ (𝑋filGen(𝑌filGen𝐹)) → 𝑥 ∈ (𝑋filGen𝐹)))
4645ssrdv 3950 . . . 4 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → (𝑋filGen(𝑌filGen𝐹)) ⊆ (𝑋filGen𝐹))
47 ssfg 23223 . . . . . 6 (𝐹 ∈ (fBas‘𝑌) → 𝐹 ⊆ (𝑌filGen𝐹))
4847ad2antrr 724 . . . . 5 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → 𝐹 ⊆ (𝑌filGen𝐹))
49 fgss 23224 . . . . 5 ((𝐹 ∈ (fBas‘𝑋) ∧ (𝑌filGen𝐹) ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ (𝑌filGen𝐹)) → (𝑋filGen𝐹) ⊆ (𝑋filGen(𝑌filGen𝐹)))
5022, 12, 48, 49syl3anc 1371 . . . 4 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → (𝑋filGen𝐹) ⊆ (𝑋filGen(𝑌filGen𝐹)))
5146, 50eqssd 3961 . . 3 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → (𝑋filGen(𝑌filGen𝐹)) = (𝑋filGen𝐹))
5251ex 413 . 2 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) → (𝑋 ∈ V → (𝑋filGen(𝑌filGen𝐹)) = (𝑋filGen𝐹)))
53 df-fg 20794 . . . . 5 filGen = (𝑤 ∈ V, 𝑥 ∈ (fBas‘𝑤) ↦ {𝑦 ∈ 𝒫 𝑤 ∣ (𝑥 ∩ 𝒫 𝑦) ≠ ∅})
5453reldmmpo 7490 . . . 4 Rel dom filGen
5554ovprc1 7396 . . 3 𝑋 ∈ V → (𝑋filGen(𝑌filGen𝐹)) = ∅)
5654ovprc1 7396 . . 3 𝑋 ∈ V → (𝑋filGen𝐹) = ∅)
5755, 56eqtr4d 2779 . 2 𝑋 ∈ V → (𝑋filGen(𝑌filGen𝐹)) = (𝑋filGen𝐹))
5852, 57pm2.61d1 180 1 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) → (𝑋filGen(𝑌filGen𝐹)) = (𝑋filGen𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  wrex 3073  {crab 3407  Vcvv 3445  cin 3909  wss 3910  c0 4282  𝒫 cpw 4560  cfv 6496  (class class class)co 7357  fBascfbas 20784  filGencfg 20785  Filcfil 23196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-fbas 20793  df-fg 20794  df-fil 23197
This theorem is referenced by:  minveclem4a  24794
  Copyright terms: Public domain W3C validator