MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fgabs Structured version   Visualization version   GIF version

Theorem fgabs 21890
Description: Absorption law for filter generation. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
fgabs ((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) → (𝑋filGen(𝑌filGen𝐹)) = (𝑋filGen𝐹))

Proof of Theorem fgabs
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 774 . . . . . . . . 9 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → 𝐹 ∈ (fBas‘𝑌))
2 fgcl 21889 . . . . . . . . 9 (𝐹 ∈ (fBas‘𝑌) → (𝑌filGen𝐹) ∈ (Fil‘𝑌))
3 filfbas 21859 . . . . . . . . 9 ((𝑌filGen𝐹) ∈ (Fil‘𝑌) → (𝑌filGen𝐹) ∈ (fBas‘𝑌))
41, 2, 33syl 18 . . . . . . . 8 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → (𝑌filGen𝐹) ∈ (fBas‘𝑌))
5 fbsspw 21843 . . . . . . . . . 10 ((𝑌filGen𝐹) ∈ (fBas‘𝑌) → (𝑌filGen𝐹) ⊆ 𝒫 𝑌)
64, 5syl 17 . . . . . . . . 9 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → (𝑌filGen𝐹) ⊆ 𝒫 𝑌)
7 simplr 776 . . . . . . . . . 10 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → 𝑌𝑋)
8 sspwb 5101 . . . . . . . . . 10 (𝑌𝑋 ↔ 𝒫 𝑌 ⊆ 𝒫 𝑋)
97, 8sylib 209 . . . . . . . . 9 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → 𝒫 𝑌 ⊆ 𝒫 𝑋)
106, 9sstrd 3802 . . . . . . . 8 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → (𝑌filGen𝐹) ⊆ 𝒫 𝑋)
11 simpr 473 . . . . . . . 8 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → 𝑋 ∈ V)
12 fbasweak 21876 . . . . . . . 8 (((𝑌filGen𝐹) ∈ (fBas‘𝑌) ∧ (𝑌filGen𝐹) ⊆ 𝒫 𝑋𝑋 ∈ V) → (𝑌filGen𝐹) ∈ (fBas‘𝑋))
134, 10, 11, 12syl3anc 1483 . . . . . . 7 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → (𝑌filGen𝐹) ∈ (fBas‘𝑋))
14 elfg 21882 . . . . . . 7 ((𝑌filGen𝐹) ∈ (fBas‘𝑋) → (𝑥 ∈ (𝑋filGen(𝑌filGen𝐹)) ↔ (𝑥𝑋 ∧ ∃𝑦 ∈ (𝑌filGen𝐹)𝑦𝑥)))
1513, 14syl 17 . . . . . 6 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → (𝑥 ∈ (𝑋filGen(𝑌filGen𝐹)) ↔ (𝑥𝑋 ∧ ∃𝑦 ∈ (𝑌filGen𝐹)𝑦𝑥)))
161adantr 468 . . . . . . . . . 10 ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ 𝑥𝑋) → 𝐹 ∈ (fBas‘𝑌))
17 elfg 21882 . . . . . . . . . 10 (𝐹 ∈ (fBas‘𝑌) → (𝑦 ∈ (𝑌filGen𝐹) ↔ (𝑦𝑌 ∧ ∃𝑧𝐹 𝑧𝑦)))
1816, 17syl 17 . . . . . . . . 9 ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ 𝑥𝑋) → (𝑦 ∈ (𝑌filGen𝐹) ↔ (𝑦𝑌 ∧ ∃𝑧𝐹 𝑧𝑦)))
19 fbsspw 21843 . . . . . . . . . . . . . . . . . . 19 (𝐹 ∈ (fBas‘𝑌) → 𝐹 ⊆ 𝒫 𝑌)
201, 19syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → 𝐹 ⊆ 𝒫 𝑌)
2120, 9sstrd 3802 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → 𝐹 ⊆ 𝒫 𝑋)
22 fbasweak 21876 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐹 ⊆ 𝒫 𝑋𝑋 ∈ V) → 𝐹 ∈ (fBas‘𝑋))
231, 21, 11, 22syl3anc 1483 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → 𝐹 ∈ (fBas‘𝑋))
24 fgcl 21889 . . . . . . . . . . . . . . . 16 (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) ∈ (Fil‘𝑋))
2523, 24syl 17 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → (𝑋filGen𝐹) ∈ (Fil‘𝑋))
2625ad2antrr 708 . . . . . . . . . . . . . 14 (((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ (𝑥𝑋𝑦𝑌)) ∧ ((𝑧𝐹𝑧𝑦) ∧ 𝑦𝑥)) → (𝑋filGen𝐹) ∈ (Fil‘𝑋))
27 ssfg 21883 . . . . . . . . . . . . . . . . . . 19 (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹))
2823, 27syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → 𝐹 ⊆ (𝑋filGen𝐹))
2928adantr 468 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ (𝑥𝑋𝑦𝑌)) → 𝐹 ⊆ (𝑋filGen𝐹))
3029sselda 3792 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ (𝑥𝑋𝑦𝑌)) ∧ 𝑧𝐹) → 𝑧 ∈ (𝑋filGen𝐹))
3130adantrr 699 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ (𝑥𝑋𝑦𝑌)) ∧ (𝑧𝐹𝑧𝑦)) → 𝑧 ∈ (𝑋filGen𝐹))
3231adantrr 699 . . . . . . . . . . . . . 14 (((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ (𝑥𝑋𝑦𝑌)) ∧ ((𝑧𝐹𝑧𝑦) ∧ 𝑦𝑥)) → 𝑧 ∈ (𝑋filGen𝐹))
33 simplrl 786 . . . . . . . . . . . . . 14 (((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ (𝑥𝑋𝑦𝑌)) ∧ ((𝑧𝐹𝑧𝑦) ∧ 𝑦𝑥)) → 𝑥𝑋)
34 simprlr 789 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ (𝑥𝑋𝑦𝑌)) ∧ ((𝑧𝐹𝑧𝑦) ∧ 𝑦𝑥)) → 𝑧𝑦)
35 simprr 780 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ (𝑥𝑋𝑦𝑌)) ∧ ((𝑧𝐹𝑧𝑦) ∧ 𝑦𝑥)) → 𝑦𝑥)
3634, 35sstrd 3802 . . . . . . . . . . . . . 14 (((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ (𝑥𝑋𝑦𝑌)) ∧ ((𝑧𝐹𝑧𝑦) ∧ 𝑦𝑥)) → 𝑧𝑥)
37 filss 21864 . . . . . . . . . . . . . 14 (((𝑋filGen𝐹) ∈ (Fil‘𝑋) ∧ (𝑧 ∈ (𝑋filGen𝐹) ∧ 𝑥𝑋𝑧𝑥)) → 𝑥 ∈ (𝑋filGen𝐹))
3826, 32, 33, 36, 37syl13anc 1484 . . . . . . . . . . . . 13 (((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ (𝑥𝑋𝑦𝑌)) ∧ ((𝑧𝐹𝑧𝑦) ∧ 𝑦𝑥)) → 𝑥 ∈ (𝑋filGen𝐹))
3938expr 446 . . . . . . . . . . . 12 (((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ (𝑥𝑋𝑦𝑌)) ∧ (𝑧𝐹𝑧𝑦)) → (𝑦𝑥𝑥 ∈ (𝑋filGen𝐹)))
4039rexlimdvaa 3216 . . . . . . . . . . 11 ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ (𝑥𝑋𝑦𝑌)) → (∃𝑧𝐹 𝑧𝑦 → (𝑦𝑥𝑥 ∈ (𝑋filGen𝐹))))
4140anassrs 455 . . . . . . . . . 10 (((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ 𝑥𝑋) ∧ 𝑦𝑌) → (∃𝑧𝐹 𝑧𝑦 → (𝑦𝑥𝑥 ∈ (𝑋filGen𝐹))))
4241expimpd 443 . . . . . . . . 9 ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ 𝑥𝑋) → ((𝑦𝑌 ∧ ∃𝑧𝐹 𝑧𝑦) → (𝑦𝑥𝑥 ∈ (𝑋filGen𝐹))))
4318, 42sylbid 231 . . . . . . . 8 ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ 𝑥𝑋) → (𝑦 ∈ (𝑌filGen𝐹) → (𝑦𝑥𝑥 ∈ (𝑋filGen𝐹))))
4443rexlimdv 3214 . . . . . . 7 ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ 𝑥𝑋) → (∃𝑦 ∈ (𝑌filGen𝐹)𝑦𝑥𝑥 ∈ (𝑋filGen𝐹)))
4544expimpd 443 . . . . . 6 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → ((𝑥𝑋 ∧ ∃𝑦 ∈ (𝑌filGen𝐹)𝑦𝑥) → 𝑥 ∈ (𝑋filGen𝐹)))
4615, 45sylbid 231 . . . . 5 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → (𝑥 ∈ (𝑋filGen(𝑌filGen𝐹)) → 𝑥 ∈ (𝑋filGen𝐹)))
4746ssrdv 3798 . . . 4 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → (𝑋filGen(𝑌filGen𝐹)) ⊆ (𝑋filGen𝐹))
48 ssfg 21883 . . . . . 6 (𝐹 ∈ (fBas‘𝑌) → 𝐹 ⊆ (𝑌filGen𝐹))
4948ad2antrr 708 . . . . 5 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → 𝐹 ⊆ (𝑌filGen𝐹))
50 fgss 21884 . . . . 5 ((𝐹 ∈ (fBas‘𝑋) ∧ (𝑌filGen𝐹) ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ (𝑌filGen𝐹)) → (𝑋filGen𝐹) ⊆ (𝑋filGen(𝑌filGen𝐹)))
5123, 13, 49, 50syl3anc 1483 . . . 4 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → (𝑋filGen𝐹) ⊆ (𝑋filGen(𝑌filGen𝐹)))
5247, 51eqssd 3809 . . 3 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → (𝑋filGen(𝑌filGen𝐹)) = (𝑋filGen𝐹))
5352ex 399 . 2 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) → (𝑋 ∈ V → (𝑋filGen(𝑌filGen𝐹)) = (𝑋filGen𝐹)))
54 df-fg 19946 . . . . 5 filGen = (𝑤 ∈ V, 𝑥 ∈ (fBas‘𝑤) ↦ {𝑦 ∈ 𝒫 𝑤 ∣ (𝑥 ∩ 𝒫 𝑦) ≠ ∅})
5554reldmmpt2 6995 . . . 4 Rel dom filGen
5655ovprc1 6906 . . 3 𝑋 ∈ V → (𝑋filGen(𝑌filGen𝐹)) = ∅)
5755ovprc1 6906 . . 3 𝑋 ∈ V → (𝑋filGen𝐹) = ∅)
5856, 57eqtr4d 2839 . 2 𝑋 ∈ V → (𝑋filGen(𝑌filGen𝐹)) = (𝑋filGen𝐹))
5953, 58pm2.61d1 172 1 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) → (𝑋filGen(𝑌filGen𝐹)) = (𝑋filGen𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384   = wceq 1637  wcel 2155  wne 2974  wrex 3093  {crab 3096  Vcvv 3387  cin 3762  wss 3763  c0 4110  𝒫 cpw 4345  cfv 6095  (class class class)co 6868  fBascfbas 19936  filGencfg 19937  Filcfil 21856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2067  ax-7 2103  ax-8 2157  ax-9 2164  ax-10 2184  ax-11 2200  ax-12 2213  ax-13 2419  ax-ext 2781  ax-sep 4968  ax-nul 4977  ax-pow 5029  ax-pr 5090
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2060  df-eu 2633  df-mo 2634  df-clab 2789  df-cleq 2795  df-clel 2798  df-nfc 2933  df-ne 2975  df-nel 3078  df-ral 3097  df-rex 3098  df-rab 3101  df-v 3389  df-sbc 3628  df-csb 3723  df-dif 3766  df-un 3768  df-in 3770  df-ss 3777  df-nul 4111  df-if 4274  df-pw 4347  df-sn 4365  df-pr 4367  df-op 4371  df-uni 4624  df-br 4838  df-opab 4900  df-mpt 4917  df-id 5213  df-xp 5311  df-rel 5312  df-cnv 5313  df-co 5314  df-dm 5315  df-rn 5316  df-res 5317  df-ima 5318  df-iota 6058  df-fun 6097  df-fv 6103  df-ov 6871  df-oprab 6872  df-mpt2 6873  df-fbas 19945  df-fg 19946  df-fil 21857
This theorem is referenced by:  minveclem4a  23407
  Copyright terms: Public domain W3C validator