MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fgabs Structured version   Visualization version   GIF version

Theorem fgabs 23773
Description: Absorption law for filter generation. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
fgabs ((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) → (𝑋filGen(𝑌filGen𝐹)) = (𝑋filGen𝐹))

Proof of Theorem fgabs
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . . . . . . 9 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → 𝐹 ∈ (fBas‘𝑌))
2 fgcl 23772 . . . . . . . . 9 (𝐹 ∈ (fBas‘𝑌) → (𝑌filGen𝐹) ∈ (Fil‘𝑌))
3 filfbas 23742 . . . . . . . . 9 ((𝑌filGen𝐹) ∈ (Fil‘𝑌) → (𝑌filGen𝐹) ∈ (fBas‘𝑌))
41, 2, 33syl 18 . . . . . . . 8 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → (𝑌filGen𝐹) ∈ (fBas‘𝑌))
5 fbsspw 23726 . . . . . . . . . 10 ((𝑌filGen𝐹) ∈ (fBas‘𝑌) → (𝑌filGen𝐹) ⊆ 𝒫 𝑌)
64, 5syl 17 . . . . . . . . 9 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → (𝑌filGen𝐹) ⊆ 𝒫 𝑌)
7 simplr 768 . . . . . . . . . 10 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → 𝑌𝑋)
87sspwd 4579 . . . . . . . . 9 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → 𝒫 𝑌 ⊆ 𝒫 𝑋)
96, 8sstrd 3960 . . . . . . . 8 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → (𝑌filGen𝐹) ⊆ 𝒫 𝑋)
10 simpr 484 . . . . . . . 8 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → 𝑋 ∈ V)
11 fbasweak 23759 . . . . . . . 8 (((𝑌filGen𝐹) ∈ (fBas‘𝑌) ∧ (𝑌filGen𝐹) ⊆ 𝒫 𝑋𝑋 ∈ V) → (𝑌filGen𝐹) ∈ (fBas‘𝑋))
124, 9, 10, 11syl3anc 1373 . . . . . . 7 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → (𝑌filGen𝐹) ∈ (fBas‘𝑋))
13 elfg 23765 . . . . . . 7 ((𝑌filGen𝐹) ∈ (fBas‘𝑋) → (𝑥 ∈ (𝑋filGen(𝑌filGen𝐹)) ↔ (𝑥𝑋 ∧ ∃𝑦 ∈ (𝑌filGen𝐹)𝑦𝑥)))
1412, 13syl 17 . . . . . 6 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → (𝑥 ∈ (𝑋filGen(𝑌filGen𝐹)) ↔ (𝑥𝑋 ∧ ∃𝑦 ∈ (𝑌filGen𝐹)𝑦𝑥)))
151adantr 480 . . . . . . . . . 10 ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ 𝑥𝑋) → 𝐹 ∈ (fBas‘𝑌))
16 elfg 23765 . . . . . . . . . 10 (𝐹 ∈ (fBas‘𝑌) → (𝑦 ∈ (𝑌filGen𝐹) ↔ (𝑦𝑌 ∧ ∃𝑧𝐹 𝑧𝑦)))
1715, 16syl 17 . . . . . . . . 9 ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ 𝑥𝑋) → (𝑦 ∈ (𝑌filGen𝐹) ↔ (𝑦𝑌 ∧ ∃𝑧𝐹 𝑧𝑦)))
18 fbsspw 23726 . . . . . . . . . . . . . . . . . . 19 (𝐹 ∈ (fBas‘𝑌) → 𝐹 ⊆ 𝒫 𝑌)
191, 18syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → 𝐹 ⊆ 𝒫 𝑌)
2019, 8sstrd 3960 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → 𝐹 ⊆ 𝒫 𝑋)
21 fbasweak 23759 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐹 ⊆ 𝒫 𝑋𝑋 ∈ V) → 𝐹 ∈ (fBas‘𝑋))
221, 20, 10, 21syl3anc 1373 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → 𝐹 ∈ (fBas‘𝑋))
23 fgcl 23772 . . . . . . . . . . . . . . . 16 (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) ∈ (Fil‘𝑋))
2422, 23syl 17 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → (𝑋filGen𝐹) ∈ (Fil‘𝑋))
2524ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ (𝑥𝑋𝑦𝑌)) ∧ ((𝑧𝐹𝑧𝑦) ∧ 𝑦𝑥)) → (𝑋filGen𝐹) ∈ (Fil‘𝑋))
26 ssfg 23766 . . . . . . . . . . . . . . . . . . 19 (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹))
2722, 26syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → 𝐹 ⊆ (𝑋filGen𝐹))
2827adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ (𝑥𝑋𝑦𝑌)) → 𝐹 ⊆ (𝑋filGen𝐹))
2928sselda 3949 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ (𝑥𝑋𝑦𝑌)) ∧ 𝑧𝐹) → 𝑧 ∈ (𝑋filGen𝐹))
3029adantrr 717 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ (𝑥𝑋𝑦𝑌)) ∧ (𝑧𝐹𝑧𝑦)) → 𝑧 ∈ (𝑋filGen𝐹))
3130adantrr 717 . . . . . . . . . . . . . 14 (((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ (𝑥𝑋𝑦𝑌)) ∧ ((𝑧𝐹𝑧𝑦) ∧ 𝑦𝑥)) → 𝑧 ∈ (𝑋filGen𝐹))
32 simplrl 776 . . . . . . . . . . . . . 14 (((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ (𝑥𝑋𝑦𝑌)) ∧ ((𝑧𝐹𝑧𝑦) ∧ 𝑦𝑥)) → 𝑥𝑋)
33 simprlr 779 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ (𝑥𝑋𝑦𝑌)) ∧ ((𝑧𝐹𝑧𝑦) ∧ 𝑦𝑥)) → 𝑧𝑦)
34 simprr 772 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ (𝑥𝑋𝑦𝑌)) ∧ ((𝑧𝐹𝑧𝑦) ∧ 𝑦𝑥)) → 𝑦𝑥)
3533, 34sstrd 3960 . . . . . . . . . . . . . 14 (((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ (𝑥𝑋𝑦𝑌)) ∧ ((𝑧𝐹𝑧𝑦) ∧ 𝑦𝑥)) → 𝑧𝑥)
36 filss 23747 . . . . . . . . . . . . . 14 (((𝑋filGen𝐹) ∈ (Fil‘𝑋) ∧ (𝑧 ∈ (𝑋filGen𝐹) ∧ 𝑥𝑋𝑧𝑥)) → 𝑥 ∈ (𝑋filGen𝐹))
3725, 31, 32, 35, 36syl13anc 1374 . . . . . . . . . . . . 13 (((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ (𝑥𝑋𝑦𝑌)) ∧ ((𝑧𝐹𝑧𝑦) ∧ 𝑦𝑥)) → 𝑥 ∈ (𝑋filGen𝐹))
3837expr 456 . . . . . . . . . . . 12 (((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ (𝑥𝑋𝑦𝑌)) ∧ (𝑧𝐹𝑧𝑦)) → (𝑦𝑥𝑥 ∈ (𝑋filGen𝐹)))
3938rexlimdvaa 3136 . . . . . . . . . . 11 ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ (𝑥𝑋𝑦𝑌)) → (∃𝑧𝐹 𝑧𝑦 → (𝑦𝑥𝑥 ∈ (𝑋filGen𝐹))))
4039anassrs 467 . . . . . . . . . 10 (((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ 𝑥𝑋) ∧ 𝑦𝑌) → (∃𝑧𝐹 𝑧𝑦 → (𝑦𝑥𝑥 ∈ (𝑋filGen𝐹))))
4140expimpd 453 . . . . . . . . 9 ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ 𝑥𝑋) → ((𝑦𝑌 ∧ ∃𝑧𝐹 𝑧𝑦) → (𝑦𝑥𝑥 ∈ (𝑋filGen𝐹))))
4217, 41sylbid 240 . . . . . . . 8 ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ 𝑥𝑋) → (𝑦 ∈ (𝑌filGen𝐹) → (𝑦𝑥𝑥 ∈ (𝑋filGen𝐹))))
4342rexlimdv 3133 . . . . . . 7 ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ 𝑥𝑋) → (∃𝑦 ∈ (𝑌filGen𝐹)𝑦𝑥𝑥 ∈ (𝑋filGen𝐹)))
4443expimpd 453 . . . . . 6 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → ((𝑥𝑋 ∧ ∃𝑦 ∈ (𝑌filGen𝐹)𝑦𝑥) → 𝑥 ∈ (𝑋filGen𝐹)))
4514, 44sylbid 240 . . . . 5 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → (𝑥 ∈ (𝑋filGen(𝑌filGen𝐹)) → 𝑥 ∈ (𝑋filGen𝐹)))
4645ssrdv 3955 . . . 4 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → (𝑋filGen(𝑌filGen𝐹)) ⊆ (𝑋filGen𝐹))
47 ssfg 23766 . . . . . 6 (𝐹 ∈ (fBas‘𝑌) → 𝐹 ⊆ (𝑌filGen𝐹))
4847ad2antrr 726 . . . . 5 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → 𝐹 ⊆ (𝑌filGen𝐹))
49 fgss 23767 . . . . 5 ((𝐹 ∈ (fBas‘𝑋) ∧ (𝑌filGen𝐹) ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ (𝑌filGen𝐹)) → (𝑋filGen𝐹) ⊆ (𝑋filGen(𝑌filGen𝐹)))
5022, 12, 48, 49syl3anc 1373 . . . 4 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → (𝑋filGen𝐹) ⊆ (𝑋filGen(𝑌filGen𝐹)))
5146, 50eqssd 3967 . . 3 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → (𝑋filGen(𝑌filGen𝐹)) = (𝑋filGen𝐹))
5251ex 412 . 2 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) → (𝑋 ∈ V → (𝑋filGen(𝑌filGen𝐹)) = (𝑋filGen𝐹)))
53 df-fg 21269 . . . . 5 filGen = (𝑤 ∈ V, 𝑥 ∈ (fBas‘𝑤) ↦ {𝑦 ∈ 𝒫 𝑤 ∣ (𝑥 ∩ 𝒫 𝑦) ≠ ∅})
5453reldmmpo 7526 . . . 4 Rel dom filGen
5554ovprc1 7429 . . 3 𝑋 ∈ V → (𝑋filGen(𝑌filGen𝐹)) = ∅)
5654ovprc1 7429 . . 3 𝑋 ∈ V → (𝑋filGen𝐹) = ∅)
5755, 56eqtr4d 2768 . 2 𝑋 ∈ V → (𝑋filGen(𝑌filGen𝐹)) = (𝑋filGen𝐹))
5852, 57pm2.61d1 180 1 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) → (𝑋filGen(𝑌filGen𝐹)) = (𝑋filGen𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wrex 3054  {crab 3408  Vcvv 3450  cin 3916  wss 3917  c0 4299  𝒫 cpw 4566  cfv 6514  (class class class)co 7390  fBascfbas 21259  filGencfg 21260  Filcfil 23739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-fbas 21268  df-fg 21269  df-fil 23740
This theorem is referenced by:  minveclem4a  25337
  Copyright terms: Public domain W3C validator