MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fgabs Structured version   Visualization version   GIF version

Theorem fgabs 22487
Description: Absorption law for filter generation. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
fgabs ((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) → (𝑋filGen(𝑌filGen𝐹)) = (𝑋filGen𝐹))

Proof of Theorem fgabs
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 765 . . . . . . . . 9 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → 𝐹 ∈ (fBas‘𝑌))
2 fgcl 22486 . . . . . . . . 9 (𝐹 ∈ (fBas‘𝑌) → (𝑌filGen𝐹) ∈ (Fil‘𝑌))
3 filfbas 22456 . . . . . . . . 9 ((𝑌filGen𝐹) ∈ (Fil‘𝑌) → (𝑌filGen𝐹) ∈ (fBas‘𝑌))
41, 2, 33syl 18 . . . . . . . 8 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → (𝑌filGen𝐹) ∈ (fBas‘𝑌))
5 fbsspw 22440 . . . . . . . . . 10 ((𝑌filGen𝐹) ∈ (fBas‘𝑌) → (𝑌filGen𝐹) ⊆ 𝒫 𝑌)
64, 5syl 17 . . . . . . . . 9 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → (𝑌filGen𝐹) ⊆ 𝒫 𝑌)
7 simplr 767 . . . . . . . . . 10 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → 𝑌𝑋)
87sspwd 4554 . . . . . . . . 9 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → 𝒫 𝑌 ⊆ 𝒫 𝑋)
96, 8sstrd 3977 . . . . . . . 8 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → (𝑌filGen𝐹) ⊆ 𝒫 𝑋)
10 simpr 487 . . . . . . . 8 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → 𝑋 ∈ V)
11 fbasweak 22473 . . . . . . . 8 (((𝑌filGen𝐹) ∈ (fBas‘𝑌) ∧ (𝑌filGen𝐹) ⊆ 𝒫 𝑋𝑋 ∈ V) → (𝑌filGen𝐹) ∈ (fBas‘𝑋))
124, 9, 10, 11syl3anc 1367 . . . . . . 7 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → (𝑌filGen𝐹) ∈ (fBas‘𝑋))
13 elfg 22479 . . . . . . 7 ((𝑌filGen𝐹) ∈ (fBas‘𝑋) → (𝑥 ∈ (𝑋filGen(𝑌filGen𝐹)) ↔ (𝑥𝑋 ∧ ∃𝑦 ∈ (𝑌filGen𝐹)𝑦𝑥)))
1412, 13syl 17 . . . . . 6 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → (𝑥 ∈ (𝑋filGen(𝑌filGen𝐹)) ↔ (𝑥𝑋 ∧ ∃𝑦 ∈ (𝑌filGen𝐹)𝑦𝑥)))
151adantr 483 . . . . . . . . . 10 ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ 𝑥𝑋) → 𝐹 ∈ (fBas‘𝑌))
16 elfg 22479 . . . . . . . . . 10 (𝐹 ∈ (fBas‘𝑌) → (𝑦 ∈ (𝑌filGen𝐹) ↔ (𝑦𝑌 ∧ ∃𝑧𝐹 𝑧𝑦)))
1715, 16syl 17 . . . . . . . . 9 ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ 𝑥𝑋) → (𝑦 ∈ (𝑌filGen𝐹) ↔ (𝑦𝑌 ∧ ∃𝑧𝐹 𝑧𝑦)))
18 fbsspw 22440 . . . . . . . . . . . . . . . . . . 19 (𝐹 ∈ (fBas‘𝑌) → 𝐹 ⊆ 𝒫 𝑌)
191, 18syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → 𝐹 ⊆ 𝒫 𝑌)
2019, 8sstrd 3977 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → 𝐹 ⊆ 𝒫 𝑋)
21 fbasweak 22473 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐹 ⊆ 𝒫 𝑋𝑋 ∈ V) → 𝐹 ∈ (fBas‘𝑋))
221, 20, 10, 21syl3anc 1367 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → 𝐹 ∈ (fBas‘𝑋))
23 fgcl 22486 . . . . . . . . . . . . . . . 16 (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) ∈ (Fil‘𝑋))
2422, 23syl 17 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → (𝑋filGen𝐹) ∈ (Fil‘𝑋))
2524ad2antrr 724 . . . . . . . . . . . . . 14 (((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ (𝑥𝑋𝑦𝑌)) ∧ ((𝑧𝐹𝑧𝑦) ∧ 𝑦𝑥)) → (𝑋filGen𝐹) ∈ (Fil‘𝑋))
26 ssfg 22480 . . . . . . . . . . . . . . . . . . 19 (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹))
2722, 26syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → 𝐹 ⊆ (𝑋filGen𝐹))
2827adantr 483 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ (𝑥𝑋𝑦𝑌)) → 𝐹 ⊆ (𝑋filGen𝐹))
2928sselda 3967 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ (𝑥𝑋𝑦𝑌)) ∧ 𝑧𝐹) → 𝑧 ∈ (𝑋filGen𝐹))
3029adantrr 715 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ (𝑥𝑋𝑦𝑌)) ∧ (𝑧𝐹𝑧𝑦)) → 𝑧 ∈ (𝑋filGen𝐹))
3130adantrr 715 . . . . . . . . . . . . . 14 (((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ (𝑥𝑋𝑦𝑌)) ∧ ((𝑧𝐹𝑧𝑦) ∧ 𝑦𝑥)) → 𝑧 ∈ (𝑋filGen𝐹))
32 simplrl 775 . . . . . . . . . . . . . 14 (((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ (𝑥𝑋𝑦𝑌)) ∧ ((𝑧𝐹𝑧𝑦) ∧ 𝑦𝑥)) → 𝑥𝑋)
33 simprlr 778 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ (𝑥𝑋𝑦𝑌)) ∧ ((𝑧𝐹𝑧𝑦) ∧ 𝑦𝑥)) → 𝑧𝑦)
34 simprr 771 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ (𝑥𝑋𝑦𝑌)) ∧ ((𝑧𝐹𝑧𝑦) ∧ 𝑦𝑥)) → 𝑦𝑥)
3533, 34sstrd 3977 . . . . . . . . . . . . . 14 (((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ (𝑥𝑋𝑦𝑌)) ∧ ((𝑧𝐹𝑧𝑦) ∧ 𝑦𝑥)) → 𝑧𝑥)
36 filss 22461 . . . . . . . . . . . . . 14 (((𝑋filGen𝐹) ∈ (Fil‘𝑋) ∧ (𝑧 ∈ (𝑋filGen𝐹) ∧ 𝑥𝑋𝑧𝑥)) → 𝑥 ∈ (𝑋filGen𝐹))
3725, 31, 32, 35, 36syl13anc 1368 . . . . . . . . . . . . 13 (((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ (𝑥𝑋𝑦𝑌)) ∧ ((𝑧𝐹𝑧𝑦) ∧ 𝑦𝑥)) → 𝑥 ∈ (𝑋filGen𝐹))
3837expr 459 . . . . . . . . . . . 12 (((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ (𝑥𝑋𝑦𝑌)) ∧ (𝑧𝐹𝑧𝑦)) → (𝑦𝑥𝑥 ∈ (𝑋filGen𝐹)))
3938rexlimdvaa 3285 . . . . . . . . . . 11 ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ (𝑥𝑋𝑦𝑌)) → (∃𝑧𝐹 𝑧𝑦 → (𝑦𝑥𝑥 ∈ (𝑋filGen𝐹))))
4039anassrs 470 . . . . . . . . . 10 (((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ 𝑥𝑋) ∧ 𝑦𝑌) → (∃𝑧𝐹 𝑧𝑦 → (𝑦𝑥𝑥 ∈ (𝑋filGen𝐹))))
4140expimpd 456 . . . . . . . . 9 ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ 𝑥𝑋) → ((𝑦𝑌 ∧ ∃𝑧𝐹 𝑧𝑦) → (𝑦𝑥𝑥 ∈ (𝑋filGen𝐹))))
4217, 41sylbid 242 . . . . . . . 8 ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ 𝑥𝑋) → (𝑦 ∈ (𝑌filGen𝐹) → (𝑦𝑥𝑥 ∈ (𝑋filGen𝐹))))
4342rexlimdv 3283 . . . . . . 7 ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) ∧ 𝑥𝑋) → (∃𝑦 ∈ (𝑌filGen𝐹)𝑦𝑥𝑥 ∈ (𝑋filGen𝐹)))
4443expimpd 456 . . . . . 6 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → ((𝑥𝑋 ∧ ∃𝑦 ∈ (𝑌filGen𝐹)𝑦𝑥) → 𝑥 ∈ (𝑋filGen𝐹)))
4514, 44sylbid 242 . . . . 5 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → (𝑥 ∈ (𝑋filGen(𝑌filGen𝐹)) → 𝑥 ∈ (𝑋filGen𝐹)))
4645ssrdv 3973 . . . 4 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → (𝑋filGen(𝑌filGen𝐹)) ⊆ (𝑋filGen𝐹))
47 ssfg 22480 . . . . . 6 (𝐹 ∈ (fBas‘𝑌) → 𝐹 ⊆ (𝑌filGen𝐹))
4847ad2antrr 724 . . . . 5 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → 𝐹 ⊆ (𝑌filGen𝐹))
49 fgss 22481 . . . . 5 ((𝐹 ∈ (fBas‘𝑋) ∧ (𝑌filGen𝐹) ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ (𝑌filGen𝐹)) → (𝑋filGen𝐹) ⊆ (𝑋filGen(𝑌filGen𝐹)))
5022, 12, 48, 49syl3anc 1367 . . . 4 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → (𝑋filGen𝐹) ⊆ (𝑋filGen(𝑌filGen𝐹)))
5146, 50eqssd 3984 . . 3 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) ∧ 𝑋 ∈ V) → (𝑋filGen(𝑌filGen𝐹)) = (𝑋filGen𝐹))
5251ex 415 . 2 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) → (𝑋 ∈ V → (𝑋filGen(𝑌filGen𝐹)) = (𝑋filGen𝐹)))
53 df-fg 20543 . . . . 5 filGen = (𝑤 ∈ V, 𝑥 ∈ (fBas‘𝑤) ↦ {𝑦 ∈ 𝒫 𝑤 ∣ (𝑥 ∩ 𝒫 𝑦) ≠ ∅})
5453reldmmpo 7285 . . . 4 Rel dom filGen
5554ovprc1 7195 . . 3 𝑋 ∈ V → (𝑋filGen(𝑌filGen𝐹)) = ∅)
5654ovprc1 7195 . . 3 𝑋 ∈ V → (𝑋filGen𝐹) = ∅)
5755, 56eqtr4d 2859 . 2 𝑋 ∈ V → (𝑋filGen(𝑌filGen𝐹)) = (𝑋filGen𝐹))
5852, 57pm2.61d1 182 1 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) → (𝑋filGen(𝑌filGen𝐹)) = (𝑋filGen𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016  wrex 3139  {crab 3142  Vcvv 3494  cin 3935  wss 3936  c0 4291  𝒫 cpw 4539  cfv 6355  (class class class)co 7156  fBascfbas 20533  filGencfg 20534  Filcfil 22453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-fbas 20542  df-fg 20543  df-fil 22454
This theorem is referenced by:  minveclem4a  24033
  Copyright terms: Public domain W3C validator