Step | Hyp | Ref
| Expression |
1 | | filfbas 22999 |
. . . . . . . 8
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) |
2 | | fbncp 22990 |
. . . . . . . 8
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹) → ¬ (𝑋 ∖ 𝐴) ∈ 𝐹) |
3 | 1, 2 | sylan 580 |
. . . . . . 7
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → ¬ (𝑋 ∖ 𝐴) ∈ 𝐹) |
4 | | filelss 23003 |
. . . . . . . 8
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ⊆ 𝑋) |
5 | | trfil3 23039 |
. . . . . . . 8
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ((𝐹 ↾t 𝐴) ∈ (Fil‘𝐴) ↔ ¬ (𝑋 ∖ 𝐴) ∈ 𝐹)) |
6 | 4, 5 | syldan 591 |
. . . . . . 7
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → ((𝐹 ↾t 𝐴) ∈ (Fil‘𝐴) ↔ ¬ (𝑋 ∖ 𝐴) ∈ 𝐹)) |
7 | 3, 6 | mpbird 256 |
. . . . . 6
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝐹 ↾t 𝐴) ∈ (Fil‘𝐴)) |
8 | | filfbas 22999 |
. . . . . 6
⊢ ((𝐹 ↾t 𝐴) ∈ (Fil‘𝐴) → (𝐹 ↾t 𝐴) ∈ (fBas‘𝐴)) |
9 | 7, 8 | syl 17 |
. . . . 5
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝐹 ↾t 𝐴) ∈ (fBas‘𝐴)) |
10 | | restsspw 17142 |
. . . . . 6
⊢ (𝐹 ↾t 𝐴) ⊆ 𝒫 𝐴 |
11 | 4 | sspwd 4548 |
. . . . . 6
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝒫 𝐴 ⊆ 𝒫 𝑋) |
12 | 10, 11 | sstrid 3932 |
. . . . 5
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝐹 ↾t 𝐴) ⊆ 𝒫 𝑋) |
13 | | filtop 23006 |
. . . . . 6
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝑋 ∈ 𝐹) |
14 | 13 | adantr 481 |
. . . . 5
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝑋 ∈ 𝐹) |
15 | | fbasweak 23016 |
. . . . 5
⊢ (((𝐹 ↾t 𝐴) ∈ (fBas‘𝐴) ∧ (𝐹 ↾t 𝐴) ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ 𝐹) → (𝐹 ↾t 𝐴) ∈ (fBas‘𝑋)) |
16 | 9, 12, 14, 15 | syl3anc 1370 |
. . . 4
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝐹 ↾t 𝐴) ∈ (fBas‘𝑋)) |
17 | 1 | adantr 481 |
. . . 4
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐹 ∈ (fBas‘𝑋)) |
18 | | trfilss 23040 |
. . . 4
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝐹 ↾t 𝐴) ⊆ 𝐹) |
19 | | fgss 23024 |
. . . 4
⊢ (((𝐹 ↾t 𝐴) ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (fBas‘𝑋) ∧ (𝐹 ↾t 𝐴) ⊆ 𝐹) → (𝑋filGen(𝐹 ↾t 𝐴)) ⊆ (𝑋filGen𝐹)) |
20 | 16, 17, 18, 19 | syl3anc 1370 |
. . 3
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝑋filGen(𝐹 ↾t 𝐴)) ⊆ (𝑋filGen𝐹)) |
21 | | fgfil 23026 |
. . . 4
⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑋filGen𝐹) = 𝐹) |
22 | 21 | adantr 481 |
. . 3
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝑋filGen𝐹) = 𝐹) |
23 | 20, 22 | sseqtrd 3961 |
. 2
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝑋filGen(𝐹 ↾t 𝐴)) ⊆ 𝐹) |
24 | | filelss 23003 |
. . . . . . 7
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝐹) → 𝑥 ⊆ 𝑋) |
25 | 24 | ex 413 |
. . . . . 6
⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑥 ∈ 𝐹 → 𝑥 ⊆ 𝑋)) |
26 | 25 | adantr 481 |
. . . . 5
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝑥 ∈ 𝐹 → 𝑥 ⊆ 𝑋)) |
27 | | elrestr 17139 |
. . . . . . . 8
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝑥 ∈ 𝐹) → (𝑥 ∩ 𝐴) ∈ (𝐹 ↾t 𝐴)) |
28 | 27 | 3expa 1117 |
. . . . . . 7
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ 𝑥 ∈ 𝐹) → (𝑥 ∩ 𝐴) ∈ (𝐹 ↾t 𝐴)) |
29 | | inss1 4162 |
. . . . . . 7
⊢ (𝑥 ∩ 𝐴) ⊆ 𝑥 |
30 | | sseq1 3946 |
. . . . . . . 8
⊢ (𝑦 = (𝑥 ∩ 𝐴) → (𝑦 ⊆ 𝑥 ↔ (𝑥 ∩ 𝐴) ⊆ 𝑥)) |
31 | 30 | rspcev 3561 |
. . . . . . 7
⊢ (((𝑥 ∩ 𝐴) ∈ (𝐹 ↾t 𝐴) ∧ (𝑥 ∩ 𝐴) ⊆ 𝑥) → ∃𝑦 ∈ (𝐹 ↾t 𝐴)𝑦 ⊆ 𝑥) |
32 | 28, 29, 31 | sylancl 586 |
. . . . . 6
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ 𝑥 ∈ 𝐹) → ∃𝑦 ∈ (𝐹 ↾t 𝐴)𝑦 ⊆ 𝑥) |
33 | 32 | ex 413 |
. . . . 5
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝑥 ∈ 𝐹 → ∃𝑦 ∈ (𝐹 ↾t 𝐴)𝑦 ⊆ 𝑥)) |
34 | 26, 33 | jcad 513 |
. . . 4
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝑥 ∈ 𝐹 → (𝑥 ⊆ 𝑋 ∧ ∃𝑦 ∈ (𝐹 ↾t 𝐴)𝑦 ⊆ 𝑥))) |
35 | | elfg 23022 |
. . . . 5
⊢ ((𝐹 ↾t 𝐴) ∈ (fBas‘𝑋) → (𝑥 ∈ (𝑋filGen(𝐹 ↾t 𝐴)) ↔ (𝑥 ⊆ 𝑋 ∧ ∃𝑦 ∈ (𝐹 ↾t 𝐴)𝑦 ⊆ 𝑥))) |
36 | 16, 35 | syl 17 |
. . . 4
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝑥 ∈ (𝑋filGen(𝐹 ↾t 𝐴)) ↔ (𝑥 ⊆ 𝑋 ∧ ∃𝑦 ∈ (𝐹 ↾t 𝐴)𝑦 ⊆ 𝑥))) |
37 | 34, 36 | sylibrd 258 |
. . 3
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝑥 ∈ 𝐹 → 𝑥 ∈ (𝑋filGen(𝐹 ↾t 𝐴)))) |
38 | 37 | ssrdv 3927 |
. 2
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐹 ⊆ (𝑋filGen(𝐹 ↾t 𝐴))) |
39 | 23, 38 | eqssd 3938 |
1
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝑋filGen(𝐹 ↾t 𝐴)) = 𝐹) |