MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fgtr Structured version   Visualization version   GIF version

Theorem fgtr 23394
Description: If 𝐴 is a member of the filter, then truncating 𝐹 to 𝐴 and regenerating the behavior outside 𝐴 using filGen recovers the original filter. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
fgtr ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝑋filGen(𝐹t 𝐴)) = 𝐹)

Proof of Theorem fgtr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 filfbas 23352 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
2 fbncp 23343 . . . . . . . 8 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴𝐹) → ¬ (𝑋𝐴) ∈ 𝐹)
31, 2sylan 581 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → ¬ (𝑋𝐴) ∈ 𝐹)
4 filelss 23356 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → 𝐴𝑋)
5 trfil3 23392 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝑋) → ((𝐹t 𝐴) ∈ (Fil‘𝐴) ↔ ¬ (𝑋𝐴) ∈ 𝐹))
64, 5syldan 592 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → ((𝐹t 𝐴) ∈ (Fil‘𝐴) ↔ ¬ (𝑋𝐴) ∈ 𝐹))
73, 6mpbird 257 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝐹t 𝐴) ∈ (Fil‘𝐴))
8 filfbas 23352 . . . . . 6 ((𝐹t 𝐴) ∈ (Fil‘𝐴) → (𝐹t 𝐴) ∈ (fBas‘𝐴))
97, 8syl 17 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝐹t 𝐴) ∈ (fBas‘𝐴))
10 restsspw 17377 . . . . . 6 (𝐹t 𝐴) ⊆ 𝒫 𝐴
114sspwd 4616 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → 𝒫 𝐴 ⊆ 𝒫 𝑋)
1210, 11sstrid 3994 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝐹t 𝐴) ⊆ 𝒫 𝑋)
13 filtop 23359 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)
1413adantr 482 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → 𝑋𝐹)
15 fbasweak 23369 . . . . 5 (((𝐹t 𝐴) ∈ (fBas‘𝐴) ∧ (𝐹t 𝐴) ⊆ 𝒫 𝑋𝑋𝐹) → (𝐹t 𝐴) ∈ (fBas‘𝑋))
169, 12, 14, 15syl3anc 1372 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝐹t 𝐴) ∈ (fBas‘𝑋))
171adantr 482 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → 𝐹 ∈ (fBas‘𝑋))
18 trfilss 23393 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝐹t 𝐴) ⊆ 𝐹)
19 fgss 23377 . . . 4 (((𝐹t 𝐴) ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (fBas‘𝑋) ∧ (𝐹t 𝐴) ⊆ 𝐹) → (𝑋filGen(𝐹t 𝐴)) ⊆ (𝑋filGen𝐹))
2016, 17, 18, 19syl3anc 1372 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝑋filGen(𝐹t 𝐴)) ⊆ (𝑋filGen𝐹))
21 fgfil 23379 . . . 4 (𝐹 ∈ (Fil‘𝑋) → (𝑋filGen𝐹) = 𝐹)
2221adantr 482 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝑋filGen𝐹) = 𝐹)
2320, 22sseqtrd 4023 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝑋filGen(𝐹t 𝐴)) ⊆ 𝐹)
24 filelss 23356 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝐹) → 𝑥𝑋)
2524ex 414 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → (𝑥𝐹𝑥𝑋))
2625adantr 482 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝑥𝐹𝑥𝑋))
27 elrestr 17374 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹𝑥𝐹) → (𝑥𝐴) ∈ (𝐹t 𝐴))
28273expa 1119 . . . . . . 7 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) ∧ 𝑥𝐹) → (𝑥𝐴) ∈ (𝐹t 𝐴))
29 inss1 4229 . . . . . . 7 (𝑥𝐴) ⊆ 𝑥
30 sseq1 4008 . . . . . . . 8 (𝑦 = (𝑥𝐴) → (𝑦𝑥 ↔ (𝑥𝐴) ⊆ 𝑥))
3130rspcev 3613 . . . . . . 7 (((𝑥𝐴) ∈ (𝐹t 𝐴) ∧ (𝑥𝐴) ⊆ 𝑥) → ∃𝑦 ∈ (𝐹t 𝐴)𝑦𝑥)
3228, 29, 31sylancl 587 . . . . . 6 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) ∧ 𝑥𝐹) → ∃𝑦 ∈ (𝐹t 𝐴)𝑦𝑥)
3332ex 414 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝑥𝐹 → ∃𝑦 ∈ (𝐹t 𝐴)𝑦𝑥))
3426, 33jcad 514 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝑥𝐹 → (𝑥𝑋 ∧ ∃𝑦 ∈ (𝐹t 𝐴)𝑦𝑥)))
35 elfg 23375 . . . . 5 ((𝐹t 𝐴) ∈ (fBas‘𝑋) → (𝑥 ∈ (𝑋filGen(𝐹t 𝐴)) ↔ (𝑥𝑋 ∧ ∃𝑦 ∈ (𝐹t 𝐴)𝑦𝑥)))
3616, 35syl 17 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝑥 ∈ (𝑋filGen(𝐹t 𝐴)) ↔ (𝑥𝑋 ∧ ∃𝑦 ∈ (𝐹t 𝐴)𝑦𝑥)))
3734, 36sylibrd 259 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝑥𝐹𝑥 ∈ (𝑋filGen(𝐹t 𝐴))))
3837ssrdv 3989 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → 𝐹 ⊆ (𝑋filGen(𝐹t 𝐴)))
3923, 38eqssd 4000 1 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝑋filGen(𝐹t 𝐴)) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wrex 3071  cdif 3946  cin 3948  wss 3949  𝒫 cpw 4603  cfv 6544  (class class class)co 7409  t crest 17366  fBascfbas 20932  filGencfg 20933  Filcfil 23349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-rest 17368  df-fbas 20941  df-fg 20942  df-fil 23350
This theorem is referenced by:  cfilres  24813
  Copyright terms: Public domain W3C validator