MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fgtr Structured version   Visualization version   GIF version

Theorem fgtr 23148
Description: If 𝐴 is a member of the filter, then truncating 𝐹 to 𝐴 and regenerating the behavior outside 𝐴 using filGen recovers the original filter. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
fgtr ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝑋filGen(𝐹t 𝐴)) = 𝐹)

Proof of Theorem fgtr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 filfbas 23106 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
2 fbncp 23097 . . . . . . . 8 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴𝐹) → ¬ (𝑋𝐴) ∈ 𝐹)
31, 2sylan 580 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → ¬ (𝑋𝐴) ∈ 𝐹)
4 filelss 23110 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → 𝐴𝑋)
5 trfil3 23146 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝑋) → ((𝐹t 𝐴) ∈ (Fil‘𝐴) ↔ ¬ (𝑋𝐴) ∈ 𝐹))
64, 5syldan 591 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → ((𝐹t 𝐴) ∈ (Fil‘𝐴) ↔ ¬ (𝑋𝐴) ∈ 𝐹))
73, 6mpbird 256 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝐹t 𝐴) ∈ (Fil‘𝐴))
8 filfbas 23106 . . . . . 6 ((𝐹t 𝐴) ∈ (Fil‘𝐴) → (𝐹t 𝐴) ∈ (fBas‘𝐴))
97, 8syl 17 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝐹t 𝐴) ∈ (fBas‘𝐴))
10 restsspw 17240 . . . . . 6 (𝐹t 𝐴) ⊆ 𝒫 𝐴
114sspwd 4561 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → 𝒫 𝐴 ⊆ 𝒫 𝑋)
1210, 11sstrid 3943 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝐹t 𝐴) ⊆ 𝒫 𝑋)
13 filtop 23113 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)
1413adantr 481 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → 𝑋𝐹)
15 fbasweak 23123 . . . . 5 (((𝐹t 𝐴) ∈ (fBas‘𝐴) ∧ (𝐹t 𝐴) ⊆ 𝒫 𝑋𝑋𝐹) → (𝐹t 𝐴) ∈ (fBas‘𝑋))
169, 12, 14, 15syl3anc 1370 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝐹t 𝐴) ∈ (fBas‘𝑋))
171adantr 481 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → 𝐹 ∈ (fBas‘𝑋))
18 trfilss 23147 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝐹t 𝐴) ⊆ 𝐹)
19 fgss 23131 . . . 4 (((𝐹t 𝐴) ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (fBas‘𝑋) ∧ (𝐹t 𝐴) ⊆ 𝐹) → (𝑋filGen(𝐹t 𝐴)) ⊆ (𝑋filGen𝐹))
2016, 17, 18, 19syl3anc 1370 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝑋filGen(𝐹t 𝐴)) ⊆ (𝑋filGen𝐹))
21 fgfil 23133 . . . 4 (𝐹 ∈ (Fil‘𝑋) → (𝑋filGen𝐹) = 𝐹)
2221adantr 481 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝑋filGen𝐹) = 𝐹)
2320, 22sseqtrd 3972 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝑋filGen(𝐹t 𝐴)) ⊆ 𝐹)
24 filelss 23110 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝐹) → 𝑥𝑋)
2524ex 413 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → (𝑥𝐹𝑥𝑋))
2625adantr 481 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝑥𝐹𝑥𝑋))
27 elrestr 17237 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹𝑥𝐹) → (𝑥𝐴) ∈ (𝐹t 𝐴))
28273expa 1117 . . . . . . 7 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) ∧ 𝑥𝐹) → (𝑥𝐴) ∈ (𝐹t 𝐴))
29 inss1 4176 . . . . . . 7 (𝑥𝐴) ⊆ 𝑥
30 sseq1 3957 . . . . . . . 8 (𝑦 = (𝑥𝐴) → (𝑦𝑥 ↔ (𝑥𝐴) ⊆ 𝑥))
3130rspcev 3570 . . . . . . 7 (((𝑥𝐴) ∈ (𝐹t 𝐴) ∧ (𝑥𝐴) ⊆ 𝑥) → ∃𝑦 ∈ (𝐹t 𝐴)𝑦𝑥)
3228, 29, 31sylancl 586 . . . . . 6 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) ∧ 𝑥𝐹) → ∃𝑦 ∈ (𝐹t 𝐴)𝑦𝑥)
3332ex 413 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝑥𝐹 → ∃𝑦 ∈ (𝐹t 𝐴)𝑦𝑥))
3426, 33jcad 513 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝑥𝐹 → (𝑥𝑋 ∧ ∃𝑦 ∈ (𝐹t 𝐴)𝑦𝑥)))
35 elfg 23129 . . . . 5 ((𝐹t 𝐴) ∈ (fBas‘𝑋) → (𝑥 ∈ (𝑋filGen(𝐹t 𝐴)) ↔ (𝑥𝑋 ∧ ∃𝑦 ∈ (𝐹t 𝐴)𝑦𝑥)))
3616, 35syl 17 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝑥 ∈ (𝑋filGen(𝐹t 𝐴)) ↔ (𝑥𝑋 ∧ ∃𝑦 ∈ (𝐹t 𝐴)𝑦𝑥)))
3734, 36sylibrd 258 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝑥𝐹𝑥 ∈ (𝑋filGen(𝐹t 𝐴))))
3837ssrdv 3938 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → 𝐹 ⊆ (𝑋filGen(𝐹t 𝐴)))
3923, 38eqssd 3949 1 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝑋filGen(𝐹t 𝐴)) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  wrex 3070  cdif 3895  cin 3897  wss 3898  𝒫 cpw 4548  cfv 6480  (class class class)co 7338  t crest 17229  fBascfbas 20692  filGencfg 20693  Filcfil 23103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5230  ax-sep 5244  ax-nul 5251  ax-pow 5309  ax-pr 5373  ax-un 7651
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4271  df-if 4475  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4854  df-iun 4944  df-br 5094  df-opab 5156  df-mpt 5177  df-id 5519  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6432  df-fun 6482  df-fn 6483  df-f 6484  df-f1 6485  df-fo 6486  df-f1o 6487  df-fv 6488  df-ov 7341  df-oprab 7342  df-mpo 7343  df-1st 7900  df-2nd 7901  df-rest 17231  df-fbas 20701  df-fg 20702  df-fil 23104
This theorem is referenced by:  cfilres  24567
  Copyright terms: Public domain W3C validator