MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fgtr Structured version   Visualization version   GIF version

Theorem fgtr 23811
Description: If 𝐴 is a member of the filter, then truncating 𝐹 to 𝐴 and regenerating the behavior outside 𝐴 using filGen recovers the original filter. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
fgtr ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝑋filGen(𝐹t 𝐴)) = 𝐹)

Proof of Theorem fgtr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 filfbas 23769 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
2 fbncp 23760 . . . . . . . 8 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴𝐹) → ¬ (𝑋𝐴) ∈ 𝐹)
31, 2sylan 580 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → ¬ (𝑋𝐴) ∈ 𝐹)
4 filelss 23773 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → 𝐴𝑋)
5 trfil3 23809 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝑋) → ((𝐹t 𝐴) ∈ (Fil‘𝐴) ↔ ¬ (𝑋𝐴) ∈ 𝐹))
64, 5syldan 591 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → ((𝐹t 𝐴) ∈ (Fil‘𝐴) ↔ ¬ (𝑋𝐴) ∈ 𝐹))
73, 6mpbird 257 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝐹t 𝐴) ∈ (Fil‘𝐴))
8 filfbas 23769 . . . . . 6 ((𝐹t 𝐴) ∈ (Fil‘𝐴) → (𝐹t 𝐴) ∈ (fBas‘𝐴))
97, 8syl 17 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝐹t 𝐴) ∈ (fBas‘𝐴))
10 restsspw 17341 . . . . . 6 (𝐹t 𝐴) ⊆ 𝒫 𝐴
114sspwd 4562 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → 𝒫 𝐴 ⊆ 𝒫 𝑋)
1210, 11sstrid 3941 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝐹t 𝐴) ⊆ 𝒫 𝑋)
13 filtop 23776 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)
1413adantr 480 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → 𝑋𝐹)
15 fbasweak 23786 . . . . 5 (((𝐹t 𝐴) ∈ (fBas‘𝐴) ∧ (𝐹t 𝐴) ⊆ 𝒫 𝑋𝑋𝐹) → (𝐹t 𝐴) ∈ (fBas‘𝑋))
169, 12, 14, 15syl3anc 1373 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝐹t 𝐴) ∈ (fBas‘𝑋))
171adantr 480 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → 𝐹 ∈ (fBas‘𝑋))
18 trfilss 23810 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝐹t 𝐴) ⊆ 𝐹)
19 fgss 23794 . . . 4 (((𝐹t 𝐴) ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (fBas‘𝑋) ∧ (𝐹t 𝐴) ⊆ 𝐹) → (𝑋filGen(𝐹t 𝐴)) ⊆ (𝑋filGen𝐹))
2016, 17, 18, 19syl3anc 1373 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝑋filGen(𝐹t 𝐴)) ⊆ (𝑋filGen𝐹))
21 fgfil 23796 . . . 4 (𝐹 ∈ (Fil‘𝑋) → (𝑋filGen𝐹) = 𝐹)
2221adantr 480 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝑋filGen𝐹) = 𝐹)
2320, 22sseqtrd 3966 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝑋filGen(𝐹t 𝐴)) ⊆ 𝐹)
24 filelss 23773 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝐹) → 𝑥𝑋)
2524ex 412 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → (𝑥𝐹𝑥𝑋))
2625adantr 480 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝑥𝐹𝑥𝑋))
27 elrestr 17338 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹𝑥𝐹) → (𝑥𝐴) ∈ (𝐹t 𝐴))
28273expa 1118 . . . . . . 7 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) ∧ 𝑥𝐹) → (𝑥𝐴) ∈ (𝐹t 𝐴))
29 inss1 4186 . . . . . . 7 (𝑥𝐴) ⊆ 𝑥
30 sseq1 3955 . . . . . . . 8 (𝑦 = (𝑥𝐴) → (𝑦𝑥 ↔ (𝑥𝐴) ⊆ 𝑥))
3130rspcev 3572 . . . . . . 7 (((𝑥𝐴) ∈ (𝐹t 𝐴) ∧ (𝑥𝐴) ⊆ 𝑥) → ∃𝑦 ∈ (𝐹t 𝐴)𝑦𝑥)
3228, 29, 31sylancl 586 . . . . . 6 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) ∧ 𝑥𝐹) → ∃𝑦 ∈ (𝐹t 𝐴)𝑦𝑥)
3332ex 412 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝑥𝐹 → ∃𝑦 ∈ (𝐹t 𝐴)𝑦𝑥))
3426, 33jcad 512 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝑥𝐹 → (𝑥𝑋 ∧ ∃𝑦 ∈ (𝐹t 𝐴)𝑦𝑥)))
35 elfg 23792 . . . . 5 ((𝐹t 𝐴) ∈ (fBas‘𝑋) → (𝑥 ∈ (𝑋filGen(𝐹t 𝐴)) ↔ (𝑥𝑋 ∧ ∃𝑦 ∈ (𝐹t 𝐴)𝑦𝑥)))
3616, 35syl 17 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝑥 ∈ (𝑋filGen(𝐹t 𝐴)) ↔ (𝑥𝑋 ∧ ∃𝑦 ∈ (𝐹t 𝐴)𝑦𝑥)))
3734, 36sylibrd 259 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝑥𝐹𝑥 ∈ (𝑋filGen(𝐹t 𝐴))))
3837ssrdv 3935 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → 𝐹 ⊆ (𝑋filGen(𝐹t 𝐴)))
3923, 38eqssd 3947 1 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝑋filGen(𝐹t 𝐴)) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wrex 3056  cdif 3894  cin 3896  wss 3897  𝒫 cpw 4549  cfv 6487  (class class class)co 7352  t crest 17330  fBascfbas 21285  filGencfg 21286  Filcfil 23766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-rest 17332  df-fbas 21294  df-fg 21295  df-fil 23767
This theorem is referenced by:  cfilres  25229
  Copyright terms: Public domain W3C validator