MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filinn0 Structured version   Visualization version   GIF version

Theorem filinn0 21884
Description: The intersection of two elements of a filter can't be empty. (Contributed by FL, 16-Sep-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
filinn0 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → (𝐴𝐵) ≠ ∅)

Proof of Theorem filinn0
StepHypRef Expression
1 simp1 1130 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → 𝐹 ∈ (Fil‘𝑋))
2 filin 21878 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → (𝐴𝐵) ∈ 𝐹)
3 fileln0 21874 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴𝐵) ∈ 𝐹) → (𝐴𝐵) ≠ ∅)
41, 2, 3syl2anc 573 1 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → (𝐴𝐵) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1071  wcel 2145  wne 2943  cin 3722  c0 4063  cfv 6031  Filcfil 21869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fv 6039  df-fbas 19958  df-fil 21870
This theorem is referenced by:  flimclsi  22002  hausflimlem  22003  filnetlem3  32712
  Copyright terms: Public domain W3C validator