MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filinn0 Structured version   Visualization version   GIF version

Theorem filinn0 22076
Description: The intersection of two elements of a filter can't be empty. (Contributed by FL, 16-Sep-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
filinn0 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → (𝐴𝐵) ≠ ∅)

Proof of Theorem filinn0
StepHypRef Expression
1 simp1 1127 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → 𝐹 ∈ (Fil‘𝑋))
2 filin 22070 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → (𝐴𝐵) ∈ 𝐹)
3 fileln0 22066 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴𝐵) ∈ 𝐹) → (𝐴𝐵) ≠ ∅)
41, 2, 3syl2anc 579 1 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → (𝐴𝐵) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1071  wcel 2107  wne 2969  cin 3791  c0 4141  cfv 6137  Filcfil 22061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fv 6145  df-fbas 20143  df-fil 22062
This theorem is referenced by:  flimclsi  22194  hausflimlem  22195  filnetlem3  32967
  Copyright terms: Public domain W3C validator