Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > filinn0 | Structured version Visualization version GIF version |
Description: The intersection of two elements of a filter can't be empty. (Contributed by FL, 16-Sep-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
Ref | Expression |
---|---|
filinn0 | ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → (𝐴 ∩ 𝐵) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1137 | . 2 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → 𝐹 ∈ (Fil‘𝑋)) | |
2 | filin 22608 | . 2 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → (𝐴 ∩ 𝐵) ∈ 𝐹) | |
3 | fileln0 22604 | . 2 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∩ 𝐵) ∈ 𝐹) → (𝐴 ∩ 𝐵) ≠ ∅) | |
4 | 1, 2, 3 | syl2anc 587 | 1 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → (𝐴 ∩ 𝐵) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 ∈ wcel 2114 ≠ wne 2935 ∩ cin 3843 ∅c0 4212 ‘cfv 6340 Filcfil 22599 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5168 ax-nul 5175 ax-pow 5233 ax-pr 5297 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-rab 3063 df-v 3401 df-sbc 3682 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-op 4524 df-uni 4798 df-br 5032 df-opab 5094 df-mpt 5112 df-id 5430 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-iota 6298 df-fun 6342 df-fv 6348 df-fbas 20217 df-fil 22600 |
This theorem is referenced by: flimclsi 22732 hausflimlem 22733 filnetlem3 34215 |
Copyright terms: Public domain | W3C validator |